梅加强版 数学分析 5.8课后习题答案

梅加强版 数学分析 5.8课后习题答案
梅加强版 数学分析 5.8课后习题答案

梅加强版数学分析5.8节习题答案

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析课本(华师大三)习题及答案第二十章

第十章 曲线积分 一、证明题 1.证明:若函数f 在光滑曲线L:x=x(t),y=y(t)(β≤≤αt )上连续,则存在点()L y ,x 00∈,使得,()?L ds y ,x f =()L y ,x f 00? 其中L ?为L 的长。 二、计算题 1.计算下列第一型曲线积分: (1) ()?+L ds y x ,其中L 是以0(0,0),A(1,0)B(0,1)为顶点的三角形; (2) ()?+L 2122ds y x ,其中L 是以原点为中心,R 为半径的右半圆周; (3) ?L xyds ,其中L 为椭圆22a x +22 b y =1在第一象限中的部分; (4) ?L ds y ,其中L 为单位圆22y x +=1; (5) () ?++L 222ds z y x ,其中L 为螺旋线x=acost,y=asinr, z=bt(π≤≤2t 0)的一段; (6) ?L xyzds ,其中L 是曲线x=t,y=3t 232,z=2t 2 1 ()1t 0≤≤的一段; (7) ?+L 22ds z y 2,其中L 是222z y x ++=2a 与x=y 相交的圆周. 2.求曲线x=a,y=at,z=2at 21(0a ,1t 0>≤≤)的质量,设其线密度为a z 2=ρ, 3.求摆线x=a(t -sint),y=a(1-cost)(π≤≤t 0)的重心,设其质量分布是均匀的. 4.若曲线以极坐()θρ=ρ()21θ≤θ≤θ表示,试给出计算 ()?L ds y ,x f 的公式.并用此公式计算下列曲线积分.

(1)? +L y x ds e 22,其中L 为曲线ρ=a ??? ??π≤θ≤40的一段; (2)?L xds ,其中L 为对数螺线θ=ρx ae (x>0)在圆r=a 内的部分. 5.设有一质量分布不均匀的半圆弧,x=rcos θ,y=rsin θ(π≤θ≤0),其线密度θ=ρa (a 为常数),求它对原点(θ,0)处质量为m 的质点的引力. 6.计算第二型曲线积分: (1) ?-L ydx xdy ,其中L 为本节例2的三种情形; (2) ()?+-L dy dx y a 2,其中L 为摞线x=a(t-sint),y=a(1-cost)(π≤≤2t 0)沿t 增加方向的 一段; (3) ?++-L 22y x ydy xdx ,其中L 为圆周222a y x =+,依逆时针方向; (4)?+L xdy sin ydx ,其中L 为y=sinx(π≤≤x 0) 与x 轴所围的闭曲线,依顺时针方向; (5)?++L zdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段. 7.质点受力的作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a,0)沿椭圆移动到(0,b),求力所作的功. 8.设质点受力的作用,力的方向指向原点,大小与质点到xy 平面的距离成反比,若质点沿直线x=at,y=bt,z=ct(0c ≠) 从M(a,b,c)到N(2a,2b,2c),求力所作的功. 9.计算沿空间曲线的第二型曲线积分: (1) ?L xyzddz ,其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8卦限; (2) ()()() ?-+-+-L 222222dz y x dy x z dx z y ,其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zx 平面部分 .

1992-2016年南京大学627数学分析考研真题及答案解析-汇编

2017版南京大学《627数学分析》全套考研资料我们是布丁考研网南大考研团队,是在读学长。我们亲身经历过南大考研, 录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南大。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。有任何考南大相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。 以下为本科目的资料清单(有实物图及预览,货真价实): 南京大学《数学分析》全套考研资料 一、南京大学《数学分析》历年考研真题及答案解析 2016年南京大学《数学分析》考研真题(含答案解析) 2015年南京大学《数学分析》考研真题(含答案解析) 2014年南京大学《数学分析》考研真题(含答案解析) 2013年南京大学《数学分析》考研真题(含答案解析) 2012年南京大学《数学分析》考研真题(含答案解析) 2011年南京大学《数学分析》考研真题(含答案解析) 2010年南京大学《数学分析》考研真题(含答案解析) 2009年南京大学《数学分析》考研真题(含答案解析) 2008年南京大学《数学分析》考研真题(含答案解析) 2007年南京大学《数学分析》考研真题(含答案解析) 2006年南京大学《数学分析》考研真题(含答案解析) 2005年南京大学《数学分析》考研真题(含答案解析) 2004年南京大学《数学分析》考研真题(含答案解析) 2003年南京大学《数学分析》考研真题(含答案解析) 2002年南京大学《数学分析》考研真题(含答案解析) 2001年南京大学《数学分析》考研真题(含答案解析) 2000年南京大学《数学分析》考研真题(含答案解析) 1999年南京大学《数学分析》考研真题(含答案解析) 1998年南京大学《数学分析》考研真题(含答案解析) 1997年南京大学《数学分析》考研真题(含答案解析) 1996年南京大学《数学分析》考研真题(含答案解析) 1992年南京大学《数学分析》考研真题(含答案解析) 本试题均配有详细的答案解析过程,并且均为WORD打印版。考研必备! 二、南京大学《数学分析》考研复习笔记 本笔记由学长提供,字迹清晰,知识点总结梳理到位,是一份非常好的辅助复习参考资料,学长推荐! 三、南京大学《数学分析》赠送资料(电子档,邮箱发送) 1、南京大学梅加强《数学分析》经典复习讲义 2、南京大学《数学分析》本科生期中期末试卷 3、南京大学《数学分析》本科生每周作业题汇总

(完整word版)微积分(数学分析)练习题及答案doc

统计专业和数学专业数学分练习题 计算题 1. 试求极限 .4 2lim )0,0(),(xy xy y x +-→ 2. 试求极限.)() cos(1lim 222222) 0,0(),(y x y x e y x y x ++-→ 3. 试求极限.1 sin 1sin )(lim )0,0(),(y x y x y x +→ 4. 试讨论.lim 4 22 )0,0(),(y x xy y x +→ 5. 试求极限 .1 1lim 2 2 22) 0,0(),(-+++→y x y x y x 6. ),(xy y x f u +=,f 有连续的偏导数,求 .,y u x u ???? 7. ,arctan xy z =,x e y = 求 .dx dz 8. 求抛物面 2 22y x z +=在点 )3,1,1(M 处的切平面方程与法线方程. 9. 求5362),(2 2+----=y x y xy x y x f 在)2,1(-处的泰勒公式. 10. 求函数)2(),(2 2y y x e y x f x ++=的极值. 11. 叙述隐函数的定义. 12. 叙述隐函数存在唯一性定理的内容. 13. 叙述隐函数可微性定理的内容. 14. 利用隐函数说明反函数的存在性及其导数. 15. 讨论笛卡儿叶形线 0333=-+axy y x 所确定的隐函数)(x f y =的一阶与二阶导数. 16. 讨论方程 0),,(323=-++=z y x xyz z y x F 在原点附近所确定的二元隐函数及其偏导数. 17. 设函数23 (,,)f x y z xy z =, 方程 2223x y z xyz ++=. (1)验证在点0(1,1,1)P 附近由上面的方程能确定可微的隐函数(,)y y z x =和(,)z z x y =; (2)试求(,(,),)x f x y x z z 和(,,(,))x f x y z x y ,以及它们在点)(x f y =处的值. 18. 讨论方程组

数学分析(一):一元微积分 南京大学 7 第七章拾遗 (7.2.1) 有限覆盖定理

一元微积分与数学分析—有限覆盖定理 梅加强 南京大学数学系

在研究函数的时候,我们希望能将其局部性质转化为整体性质.从局部过渡到整体往往要用到所谓的有限覆盖定理.

在研究函数的时候,我们希望能将其局部性质转化为整体性质.从局部过渡到整体往往要用到所谓的有限覆盖定理. 集合族:设Γ为集合.如果Γ中的每一个元素α都对应一个集合Aα,则称{Aα}α∈Γ为集合族(一族集合),Γ为这一族集合的指标集.当指标集给定时,集合族也简记为{Aα}.例如,{[a n,b n]}是以N为指标集的一族集合.

在研究函数的时候,我们希望能将其局部性质转化为整体性质.从局部过渡到整体往往要用到所谓的有限覆盖定理. 集合族:设Γ为集合.如果Γ中的每一个元素α都对应一个集合Aα,则称{Aα}α∈Γ为集合族(一族集合),Γ为这一族集合的指标集.当指标集给定时,集合族也简记为{Aα}.例如,{[a n,b n]}是以N为指标集的一族集合. 集合之间的运算可以对集合族来定义.例如,交集运算可定义为 Aα={x|任给α∈Γ,均有x∈Aα}, α∈Γ

在研究函数的时候,我们希望能将其局部性质转化为整体性质.从局部过渡到整体往往要用到所谓的有限覆盖定理. 集合族:设Γ为集合.如果Γ中的每一个元素α都对应一个集合Aα,则称{Aα}α∈Γ为集合族(一族集合),Γ为这一族集合的指标集.当指标集给定时,集合族也简记为{Aα}.例如,{[a n,b n]}是以N为指标集的一族集合. 集合之间的运算可以对集合族来定义.例如,交集运算可定义为 Aα={x|任给α∈Γ,均有x∈Aα}, α∈Γ 并集运算可定义为 Aα={x|存在α∈Γ,使得x∈Aα}. α∈Γ

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

数学分析复习题及答案

数学分析复习题及答案 一.单项选择题 1.已知x e x x f +=3)(,则)0(f '=( ) A. 1 B. 2 C. 3 D. 4 2.设3)21(lim -∞ →=+e x kx x ,则=k ( ) A. 6- B. 23 C. 32- D. 23- 3.? =dx xe x ( ) A. C e x + B. C e xe x x +- C. C e x x +- D. C e x ++1 4.下列函数在),(∞-∞内单调增加的是( ) A. x y = B. x y -= C. 3x y = D. x y sin = 二、填空题 1.设函数==+dz e z y x 则全微分,2 2..______________23sin lim 0 =→x x x 3.??? ????>+=<=0)1ln()(00 sin )(x x x k x k x x x x f 为常数在0=x 处连续,则_________=a 三、判断题 1.若函数f 在区间),(b a 上连续,则f 在),(b a 上一致连续。( ) 2.实轴上的任一有界无限点集S 至少有一个聚点。( ) 3.设f 为定义在)(0x U ?上的单调有界函数,则右极限)(lim 0 x f x x +→存在。( ) 四、名词解释 1.用δε-的语言叙述函数极限的定义 2.用N -ε的语言叙述数列极限的定义 五、计算题

1.根据第四题第1小题证明04 )1(lim 2=--+∞→n n n n 2.根据第四题第2小题证明5311lim 22=++→x x x 3.设n n n x x x x x x x ++=++ ==+11,,11110010 ,,求证n n x ∞→lim 存在,并求其值。 4.证明:2)(x x f =在[]b a ,上一致连续,但在()+∞∞-,上不一致连续。 5.证明:若)(0x f '存在,则=??--?+→?x x x f x x f x )()(lim 000)(20x f ' 6.证明:若函数)(x f 在0x 连续,则)(x f 与)(2x f 也在0x 连续,问:若在)(x f 或) (2x f 在I 上连续,那么)(x f 在I 上是否必连续。 一、1.D 2.C 3. B 4.C 二、1. dy e dx e y x y x +++222 2.2 3 3. 1 三、1.× 2.√ 3.√ 四、 1. 函数极限定义:设函数f 在点0x 的某个空心邻域);(0δ'?x U 内有定义,A 为定数。 0>?ε,0>?δ,当δ<-<00x x 时,ε<-A x f )(,则A x f x x =→)(lim 0 。 2.数列极限定义:设为数列}{n a ,a 为定数,0>?ε,0>?N ,当N n >时,有ε<-a a n ,则称数列}{n a 收敛于a 。 五、1.证明:ε<-<-?++=-+<--+2 12121414)1(22n n n n n n n n n )2(>n 0>?∴ε,21+?? ????=?εN ,当N n >时,ε<--+4)1(2n n n ;得证。 2. 证明:)13()2() 1(5)13)(2(531122+-<++-=-++x x x x x x x 令1)2(<-x ,则31<?ε,? ?????=?10,1min εδ,当δ<-<20x 时,ε<-++53112x x

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析习题及答案 (50)

习 题 12.5 偏导数在几何中的应用 1. 求下列曲线在指定点处的切线与法平面方程: (1)?????+==.1,2x x z x y 在??? ??21,1,1点; (2)??? ? ??? =-=-=.2sin 4,cos 1, sin t z t y t t x 在2π=t 的点; (3)???=++=++.6, 0222z y x z y x 在)1,2,1(-点; (4)???=+=+. ,2 22222R z x R y x 在??? ??2,2,2R R R 点。 解 (1)曲线的切向量函数为2 1(1,2, )(1)x x +,在?? ? ??21,1,1点的切向量为1(1,2,)4。于是曲线在?? ? ??21,1,1点的切线方程为 )12(41)1(2-=-=-z y x , 法平面方程为 252168=++z y x 。 (2)曲线的切向量函数为(1cos ,sin ,2cos )2 t t t -,在2 π =t 对应点的切向 量为(1,1。于是曲线在2 π = t 对应点的切线方程为 22 2 112 -= -=+- z y x π , 法平面方程为 (1)(1)2 x y z π - ++-+- =402 x y π ++- -=。 (3)曲线的切向量函数为2(,,)y z z x x y ---,在)1,2,1(-点的切向量为 (6,0,6)-。于是曲线在)1,2,1(-点的切线方程为

?? ?-==+2 2 y z x , 法平面方程为 z x =。 (4)曲线的切向量函数为4(,,)yz xz xy --,在?? ? ??2, 2 , 2 R R R 点的切向量为22(1,1,1)R --。于是曲线在?? ? ??2, 2,2R R R 点的切线方程为 2 22R z R y R x +-=+-=-, 法平面方程为 02 2 =+ --R z y x 。 2.在曲线32,,t z t y t x ===上求一点,使曲线在这一点的切线与平面102=++z y x 平行。 解 曲线的切向量为2(1,2,3)t t ,平面的法向量为(1,2,1),由题设, 22(1,2,3)(1,2,1)1430t t t t ?=++=, 由此解出1t =-或13 -,于是 )1,1,1(-- 和 )27 1 ,91,31(-- 为满足题目要求的点。 3. 求曲线t z t t y t x 22cos ,cos sin ,sin ===在2 π =t 所对应的点处的切线的 方向余弦。 解曲线的切向量函数为(sin 2,cos 2,sin 2)t t t -,将2 t π =代入得)0,1,0(-,它是单位向量,所以是方向余弦。 4. 求下列曲面在指定点的切平面与法线方程: (1)3432y x z +=,在点)35,1,2(; (2)4e e =+z y z x ,在点)1,2ln ,2(ln ; (3)3322,,v u z v u y v u x +=+=+=,在点1,0==v u 所对应的点。 解(1)曲面的法向量函数为32(8,9,1)x y -,以(,,)(2,1,35)x y z =代入,得

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

(完整word版)数学分析—极限练习题及详细答案

一、选择题 1.若0 () lim 1sin x x x φ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。 A.sin ||x B.ln(1)x - C. 1 1.【答案】D 。 2.设f(x)在x=0处存在3阶导数,且0() lim 1tan sin x f x x x →=-则'''f (0)=( ) A.5 B.3 C.1 D.0 2. 【 答 案 】 B. 解 析 由 洛 必达 法 则 可 得 300 02() '() ''() lim lim lim 1 tan sin 2cos sin sin cos cos x x x f x f x f x x x x x x x x -→→→==-+-42200''()''() lim lim 16cos sin 2cos cos 21 x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3x B.3 4 x C.3 2 x D.x 3.【答案】A.解析 .1 2 2 33 31233 2000311(1)1133lim lim (1)3313 x x x x x x x ---→→→-+?==+=选A 。 4.函数2sin f ()lim 1(2)n n x x x π→∞=+的间断点有( )个 A.4 B.3 C.2 D.1 4.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故 20.5sin 12lim 1(2(0.5))2n x π →-- =- +?-, 20.5sin 12lim 1(20.5)2n x π →= +?,故,有两个跳跃间断点,选C 。 5.已知()bx x f x a e =-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

数学分析试题及答案7

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2 220 0-+++→→y x y x y x 5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原 点不连续,但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[) 1(11 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2 R D ?内对于变量x 是连续的,对于变量y 满足 Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,(' ''∈为常数证 明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析课本(华师大三版)-习题及答案第四章

第四章 函数的连续性 一、填空题 1.设??? ? ???>+=<=0 11sin 0 0 sin 1 )(x x x x k x x x x f ,若函数)(x f 在定义域内连续,则 =k ; 2.函数?? ?≤>-=0 sin 0 1)(x x x x x f 的间断点是 ; 3.函数x x f =)(的连续区间是 ; 4.函数3 21 )(2--= x x x f 的连续区间是 ; 5.函数) 3(9 )(2--=x x x x f 的间断点是 ; 6.函数) 4)(1(2 )(+++= x x x x f 的间断点是 ; 7.函数) 2)(1(1 )(-+= x x x f 的连续区间是 ; 8.设?????=≠-=-0 0 )(x k x x e e x f x x 在0=x 点连续,则 =k ; 9.函数?? ? ??≤≤+-<≤+-<≤-+=3x 1 31x 0 101 1)(x x x x x f 的间断点是 ; 10.函数0b a 0 )(0 )(2 ≠+?? ?<++≥+=x x x b a x b ax x f .则)(x f 处处连续的充要条件是 =b ; 11.函数?????=≠=-0 0 )(2 1x a x e x f x ,则=→)(lim 0 x f x ,若)(x f 无间断点,则=a ; 12.如果?????-=-≠+-=1 1 11)(2x a x x x x f ,当=a 时,函数)(x f 连续

二、选择填空 1.设)(x f 和)(x ?在()+∞∞-,内有定义,)(x f 为连续函数,且0)(≠x f ,)(x ?有间断点,则( ) A.[])(x f ?必有间断点。 B.[]2 )(x ?必有间断点 C.[])(x f ?必有间断点 D. ) () (x f x ?必有间断点 2.设函数bx e a x x f += )(,在()∞∞-,内连续,且)(lim x f x -∞→0=,则常数b a ,满足( ) A.0,0<>b a C.0,0>≤b a D.0,0<≥b a 3.设x x e e x f 11 11)(-+=,当,1)(;0-=≠x f x 当0=x ,则 A 有可去间断点。 B 。有跳跃间断点。 C 有无穷间断点 D 连续 4.函数n n x x x f 211lim )(++=∞→ A 不存在间断点。 B 存在间断点1-=x C 存在间断点0=x D 存在间断点1=x 5.设????? =≠=???=≠=0 10 1sin )(;0 00 1)(x x x x x g x x x f ,则在点0=x 处有间断点的函数是 A )}(),(max{x g x f B )}(),(min{x g x f C )()(x g x f - D )()(x g x f + 6.下述命题正确的是 A 设)(x f 与)(x g 均在0x 处不连续,则)(x f )(x g 在0x 处必不连续。 B 设)(x g 在0x 处连续,0)(0=x f ,则0 lim x x →)(x f )(x g =0。 C 设在0x 的去心左邻域内)(x f <)(x g ,且-→0 lim x x )(x f =a , -→0 lim x x )(x g =b ,则必有a

最新数学分析选讲刘三阳-部分习题解答

第一讲 习题解答 习题1-1 1 计算下列极限 ① ()1lim 11,0p n n p n →∞ ?? ??+->?? ??????? 解:原式=()1111110lim lim 110 p p p n n n n n n →∞→∞???? +-+-+ ? ?????=-()()0110lim 0p p n x x →+-+=-()() 01p x x p ='=+= ② () sin sin lim sin x a x a x a →-- 解:原式=()()()()sin sin sin sin lim lim sin x a x a x a x a x a x a x a x a →→---?=---=()sin cos x a x a ='= ③ 1x →,,m n 为自然数 解:原式 = 1 1 x x n m →=' == ④ ( ) lim 21,0n n a →∞ > 解:原式( ) () 10 ln 21lim ln 21 1lim ln 1 lim n x n x a e a n n x n e e e →∞ →?? ??- ? ??-→∞ === =()( ) ()()0ln 21ln 21 ln 21lim 2ln 20 x a a x x a a x x e e e a ---→' -==== ⑤ lim ,0x a x a a x a x a →->- 解:原式=lim x a a a x a a a a x x a →-+--lim lim x a a a x a x a a a x a x a x a →→--=---()()x a x a x a a x ==''=-()ln 1a a a =- ⑥ lim ,0x a a x x a x a a a a a x →->-

数学分析习题及答案 (37)

习题 16.2 Fourier 级数的收敛判别法 1.设)(x ψ在[,)0+∞上连续且单调,0)(lim =+∞ →x x ψ,证明 0sin )(lim =? ∞ ++∞→dx px x p ψ. 证 因为0)(lim =+∞ →x x ψ,所以存在0>N ,使得当N x ≥时,1|)(|?), 因此p dx px x N 4 sin )(≤ ?∞ +ψ,从而 lim ()sin 0N p x pxdx ψ+∞ →+∞=? 。 而由Riemann 引理, 0sin )(lim =? +∞ →N p dx px x ψ。 因此 lim ()sin lim ()sin lim ()sin 0N N p p p x px dx x px dx x px dx ψψψ+∞+∞→+∞ →+∞ →+∞ =+=? ? ? 。 2.设函数)(u ψ在],[ππ-上可积或绝对可积,在u =0点连续且有单侧导数,证明 ??--=--+∞→πππψψψ02 cot )]()([212 sin 2cos 2cos )(lim du u u u du u pu u u p 。 证 ??---=--π ππψψψ02 sin 2cos 2cos )]()([2sin 2cos 2cos )(du u pu u u u du u pu u u 。 由于

相关文档
最新文档