低功耗电路设计

低功耗电路设计
低功耗电路设计

便携式产品低功耗电路设计的综合考虑

集成电路和计算机系统的发展对低功耗的要求越来越高

分析了功耗产生的主要原因以及与成本的关系

如今为了适应这一变化

低功率逻辑电路的标准被定义为每一级门电路功耗小于1.3uW/MHz最终用户认为

对于总体系统设计来说这是电子工业发展的必然趋势更轻和功能更强大的最终产品

从功率观点看设计任务将变得更加艰巨

就是单个或一组充电电池能维持设备连续几天的工作

另外绿色所有政府部门采购的台式电脑必须符合功耗要求

VLSI技术公司移动产品部销售经理Barta指出深绿色

这些机器将挂起所有操作直到被相关激励信号唤醒后才进入正常运行模式

ARPA?y?ú??μí1|?êμ?×óáìóò×÷é?è??D??

ê1D?ò?′úμ?×ó?μí3μ?1|o?????μíóú??óD?μí3μ?1|o?

?÷?tμ??′1üàíμè?÷??áìóò?Dμ??è????ê?

òò?a?aá???áìóòé??°′óá?μ??ìo?D?o?′|àí

随着每隔几年电路密度的成倍增大难度越来越大

LSI逻辑公司ASIC市场部副总裁Koc说200k门数的芯片

这么大的功率已经远远超过了封装的散热能力

因为高温工作会给集成电路带来可靠性和功能性问题

与温度有关的这些故障模型包括工作器件故障以及电流密度

低功率应用

在电池供电模式下由于受便携式电脑的实际尺寸和重量限制也限制了电池的大小和重量

低功率系统的另一个例子是蜂窝电话模拟电路

电池在充电一次后接收模式下工作一整天

一般来说而现在系统设计都将功耗作为其中的一项重要性能指标

同时也带来功耗问题但利用适当的功率控制方法或创新性设计可以获得多种解决方案

首先则速度越慢

会减小电容充放电的电流或负载驱动电流较低的电压将导致较低的输出功率或较低的信号幅度

产生功耗的原因

整体的功耗取决于诸多因素封装密度产品性能和供电电压往往速度越高功耗越大

它通常由负载器件和寄生元件产生

在电阻性负载电路如模拟电路中更是如此

电路中的导线(金属导线)和层间寄生电阻会产生静态阻抗功耗

有源器件的正常工作模式可用一条转移曲线和某些I-V特性来描述

适用于全部有源器件对无源和有源器件来说

在CMOS电路中I-V转移曲线是一个瞬态函数

从一个状态转移到另一个状态不消耗功率转移曲线并不是理想的方形理论上看

具有零内阻的开关器件会在电源与地之间形成直接短路的现象

最大的功耗来自于内部和外部电容的充放电

据此

峰值电流I=C(V/T)T是上升或下降沿时间因此峰值电流通常都比较大此时C 是指输出端的负载电容F则是开关频率

所需要的电源电压也越高由此产生的影响涉及到电源总线母板布线另外

因此可能会影响到系统的总体封装

电池尺寸

一般情况下备份电池和充电器在尺寸与重量方面可能与原设备相当

供电可以用系统整体功率要求得越低

同时小型电源产品占用空间小因此会对系统整体功耗有益

但也许不容易做到系统可能没有足够的空间或电力来放置冷却元件

封装外形的限制也可能迫使所有产热元件集中在一个小块区域

当一个发热的塑料外壳电子设备置于膝上时为了进行散热而使设备敞开运行对在线操作(line-operated)系统来说也是不允许的

其它问题包括风扇与另外一些散热元件的成本

散热器与排热管有助于热源热量的散发

低成本的塑料封装不能适应高集成度IC的高功率特性要求

低功率电路的实现方案

IC工业正寻求多种途径来满足低功率系统要求

将模拟器件的电源电压从这些改变归功于先进的

硅片技术与电路结构未来数字芯片工作电压的发展趋势将是2.5V?ü???ùê?0.9V(电池电压的最低极限)的倍数更高的工作频率和器件物理性质将共同促进这一发展趋势

ASIC厂商为满足低功率系统要求这些产品经过优化能同时工作在3V或5V电源下利用特殊的接口单元据AT&T贝尔实验室的Harrington说

现有的大量系统都采用5V电源

此外粗略评估速度也可以降低功率

1. 降低工作电压

2. 采用智能电源检测许多膝上型电脑及其电源管理就具有这种特殊的机制并在不必要时降低时钟速率

3. 采用较低的时钟速率因此较低的时钟速率下器件的功耗也较小

在模拟电路(包括A/D转换器)中

如果有可能降低A/D转换器的速率,也能减少功耗

使它只在工作时消耗功率

另外一个副作用是可能产生与输出电路有关的额外漏电流

并使其它输出电路处于很高的漏电交叉工作区域

对于许多ASIC来说通过重新调整电路使其足以驱动封装和板上的寄生元件这样可以减小输出电路尺寸和功率

BiCMOS电路综合了CMOS器件和双极性器件的优点

GaAs器件也能满足较低功耗和较高速度的要求

半导体制造商正在开发新的设计技术以满足特殊功率要求

摩托罗拉半导体公司应用工程师Pivot说最后的极限值将取决于决定器件最小尺寸的器件工艺水平

在提高性能的同时降低功耗将是他们努力实现的目标

另外还要满足基本的系统性能指标要求不过

用于优化功耗设计的新工具和新技术有助于改善设计环境

作者简介

电子爱好者大专院校学生

推广专业网站电子技术应用交流电子设计软件下载电子产品发布

本资料由网站收集整理

需要更多的电子技术相关资料或软件电子爱好者

 http://www.etuni.com

网站

防反接保护电路

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示

直流电机驱动电路设计

直流电机驱动电路设计 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1. 功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电 器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。 如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2. 性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动

1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。 2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约 1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效

较大功率直流电机驱动电路的设计方案

1 引言 直流电机具有优良的调速特性,调速平滑、方便、调速围广,过载能力强,可以实现频繁的无级快速启动、制动和反转,能满足生产过程中自动化系统各种不同的特殊运行要求,因此在工业控制领域,直流电机得到了广泛的应用。 许多半导体公司推出了直流电机专用驱动芯片,但这些芯片多数只适合小功率直流电机,对于大功率直流电机的驱动,其集成芯片价格昂贵。基于此,本文详细分析和探讨了较大功率直流电机驱动电路设计中可能出现的各种问题,有针对性设计和实现了一款基于25D60-24A 的直流电机驱动电路。该电路驱动功率大,抗干扰能力强,具有广泛的应用前景。 2 H 桥功率驱动电路的设计 在直流电机中,可以采用GTR 集电极输出型和射极输出性驱动电路实现电机的驱动,但是它们都属于不可逆变速控制,其电流不能反向,无制动能力,也不能反向驱动,电机只能单方向旋转,因此这种驱动电路受到了很大的限制。对于可逆变速控制, H 桥型互补对称式驱动电路使用最为广泛。可逆驱动允许电流反向,可以实现直流电机的四象限运行,有效实现电机的正、反转控制。而电机速度的控制主要有三种,调节电枢电压、减弱励磁磁通、改变电枢回路电阻。三种方法各有优缺点,改变电枢回路电阻只能实现有级调速,减弱磁通虽然能实现平滑调速,但这种方法的调速围不大,一般都是配合变压调速使用。因此在直流调速系统中,都是以变压调速为主,通过PWM(Pulse Width Mo dulation)信号占空比的调节改变电枢电压的大小,从而实现电机的平滑调速。 2.1 H 桥驱动原理 要控制电机的正反转,需要给电机提供正反向电压,这就需要四路开关去控制电机两个输入端的电压。当开关S1 和S4 闭合时,电流从电机左端流向电机的右端,电机沿一个方向旋转;当开关S2 和S3 闭合时,电流从电机右端流向电机左端,电机沿另一个方向旋转, H 桥驱动原理等效电路图如图1 所示。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

大功率LED的驱动电路设计(PT4115应用)

大功率LED 的驱动电路设计(PT4115应用) 摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。 本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标: 1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定电流为350mA,3W LED 的750mA 。 3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V 。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm)。如1W 大功率LED 的光通量一般为60~80LM 。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度.,单位为勒克斯(lx)。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压,电流等条件)的一种电路,也是LED 能工作必不可少的条件,好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式: (1) 镇流电阻驱动:就是简单的的在LED 变LED 的驱动电流.。 LED 的工作电流为: R U U I L -= 所以I 与镇流电阻R 成反比;当电源电压U 时,R 能限制I 的过量增长,使I 不超出LED

电子设计大赛常用电路图

错误 !未定义书签。 图2 L293D 的电机驱动电路 图3 电源稳压电路 图4 降压电路

图3 降压斩波电路原理图 图4 电流检测模块

OS CI ICE_SDA ICE_SCK ICE_EN AV SS1OP I AGC M ICOUT DA C2DA C IOB12IOB11IOB15IOB13SLE EP IOB14VS S IOA12IOA14IOA11IOA10IOA15IOA13I O B 9I O B 10IOA9 I O B 5I O B 8I O B 7V C P I O A 8 V D D H I O A 6I O A 7V S S VS S V D D H VS S V R T A V S S 1 V D D _P I O B 2V C M I O A 3I O B 6I O B 1I O A 1V M I C I O B 0I O A 2M I C P R E S _B I O B 4 I O A 4 I O B 3I O A 0I O A 5VREF2V S S V D D H SPCE061A DA C1M ICN AV SS1VDD VS S VS S VS S OS CO +C29100u C31104 U1 OS C32O 12OS C32I 13XT EST 14VDD 15XICE 16XICECLK 17XICES DA 18VS S 19PV IN 20DA C121DA C222VREF223VS S 24AGC 25OP I 26M ICOUT 27M ICN 28PFUSE 29M I C P 33V C M 34V R T P A D 35V D D 36V M I C 37V S S 38I O A 041I O A 142I O A 243I O A 344I O A 445I O A 546I O A 647I O A 748V S S 49V S S 50V D D H 51V D D H 52I O A 8 53 N C 39N C 40NC 30NC 31NC 32 IOA9 54 IOA1055IOA1156IOA1257IOA1358IOA1459IOA1560XROM T 61VS S 62XS LEEP 63IOB1564IOB1465IOB1366IOB1267IOB1168PV PP 69V D D H 75 I O B 1076I O B 977NC 70NC 71NC 72NC 73NC 74I O B 878I O B 779I O B 680I O B 581I O B 41I O B 32I O B 23N C 82N C 83N C 84I O B 14I O B 05X R E S B 6V D D 7V C P 8V S S 9N C 10N C 11C8104C7104C18104 +C5 100u C28104 + C27100u +C17100u + C4100u V D D _A SPCE061A 芯片引脚电路图 电机驱动电路 图5 电源变换电路图

最简单地恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED 灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED 随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

从EMC角度考虑常用电路设计及PCB设计

从EMC角度考虑常用电路设计及PCB设计 A.电源电路 电源电路设计中,功能性设计主要考虑温升和纹波大小。温升大小由结构 很关键:大电容一般采用低ESR电容,小电容采用0.1UF和1000pF共用。电源电路设计中,电磁兼容设计是关键设计。主要涉及的电磁兼容设计有:传导发射和浪涌。 传导发射设计一般采用输入滤波器方式。外部采购的滤波器内部电路一般采用下列电路: Cx1和Cx2为X电容,防止差模干扰。差模干扰大时,可增加其值进行抑制;Cy1和Cy2为Y电容,防止共模干扰。共模干扰大时,可增加其值进行抑制。需要注意的是,如自行设计滤波电路,Y电容不可设计在输入端,也不可双端都加Y电容。 浪涌设计一般采用压敏电阻。差模可根据电源输入耐压选取;共模需要电源输入耐压和产品耐压测试综合考虑。 当浪涌能量大时,也可考虑压敏电阻(或TVS)与放电管组合设计。

1 电源输入部分的EMC设计 应遵循①先防护后滤波;②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端;③在电源输入端滤波电路前和滤波电路中无采样电路和其它分叉电路;如果一定有采样电路,采样电路应额外增加了足够的滤波电路。 原因说明: ①先防护后滤波: 第一级防护器件应在滤波器件之前,防止滤波器件在浪涌、防雷测试中损坏,或导致滤波参数偏离,第二级保护器件可以放在滤波器件的后面;选择防护器件时,还应考虑个头不要太大,防止滤波器件在PCB布局时距离接口太远,起不到滤波效果。 ②CLASS B规格要求的电源输入端推荐两级滤波电路,且尽量靠近输入端:CLASSB要求比CLASS A要求小10dB,即小3倍,所以应有两级滤波电路; CLASSA规格要求至少一级滤波电路;所谓一级滤波电路指包含一级共模电感的滤波电路。

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

压敏电阻保护电路设计讲解

??AUMOV????LV UltraMOV??? 儎???????????? ???? ???????? ????

2 https://www.360docs.net/doc/3919097270.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础 8 汽车MOV 背景信息和应用例举 11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术 18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联 21 附件:技术规格和零件号相互参照 本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。 更多信息,请访问https://www.360docs.net/doc/3919097270.html, 。

https://www.360docs.net/doc/3919097270.html, 3 AUMOV TM 系列压敏电阻介绍 以上器件有以下规格: ? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC 额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V AUMOV TM 系列特点 ? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层) ? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力 AUMOV TM 系列的优点 ? 符合汽车行业要求? 符合ISO 7637-2的规定 ? 有助于电路设计员符合UL1449标准? 适合高温环境和应用 ? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件 AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

电子电路设计的一般方法和步骤

电子电路设计的一般方法与步骤 一、总体方案的设计与选择 1.方案原理的构想 (1)提出原理方案 一个复杂的系统需要进行原理方案的构思,也就是用什么原理来实现系统要求。因此,应对课题的任务、要求和条件进行仔细的分析与研究,找出其关键问题是什么,然后根据此关键问题提出实现的原理与方法,并画出其原理框图(即提出原理方案)。提出原理方案关系到设计全局,应广泛收集与查阅有关资料,广开思路,开动脑筋,利用已有的各种理论知识,提出尽可能多的方案,以便作出更合理的选择。所提方案必须对关键部分的可行性进行讨论,一般应通过试验加以确认。 (2)原理方案的比较选择 原理方案提出后,必须对所提出的几种方案进行分析比较。在详细的总体方案尚未完成之前,只能就原理方案的简单与复杂,方案实现的难易程度进行分析比较,并作出初步的选择。如果有两种方案难以敲定,那么可对两种方案都进行后续阶段设计,直到得出两种方案的总体电路图,然后就性能、成本、体积等方面进行分析比较,才能最后确定下来。 2.总体方案的确定 原理方案选定以后,便可着手进行总体方案的确定,原理方案只着眼于方案的原理,不涉及方案的许多细节,因此,原理方案框图中的每个框图也只是原理性的、粗略的,它可能由一个单元电路构成,亦可能由许多单元电路构成。为了把总体方案确定下来,必须把每一个框图进一步分解成若干个小框,每个小框为一个较简单的单元电路。当然,每个框图不宜分得太细,亦不能分得太粗,太细对选择不同的单元电路或器件带来不利,并使单元电路之间的相互连接复杂化;但太粗将使单元电路本身功能过于复杂,不好进行设计或选择。总之,

应从单元电路和单元之间连接的设计与选择出发,恰当地分解框图。 二、单元电路的设计与选择 1.单元电路结构形式的选择与设计 按已确定的总体方案框图,对各功能框分别设计或选择出满足其要求的单元电路。因此,必须根据系统要求,明确功能框对单元电路的技术要求,必要时应详细拟定出单元电路的性能指标,然后进行单元电路结构形式的选择或设计。 满足功能框要求的单元电路可能不止一个,因此必须进行分析比较,择优选择。 2.元器件的选择 (1)元器件选择的一般原则 元器件的品种规格十分繁多,性能、价格和体积各异,而且新品种不断涌现,这就需要我们经常关心元器件信息和新动向,多查阅器件手册和有关的科技资料,尤其要熟悉一些常用的元器件型号、性能和价格,这对单元电路和总体电路设计极为有利。选择什么样的元器件最合适,需要进行分析比较。首先应考虑满足单元电路对元器件性能指标的要求,其次是考虑价格、货源和元器件体积等方面的要求。 (2)集成电路与分立元件电路的选择问题 随着微电子技术的飞速发展,各种集成电路大量涌现,集成电路的应用越来越广泛。今天,一块集成电路常常就是具有一定功能的单元电路,它的性能、体积、成本、安装调试和维修等方面一般都优于由分立元件构成的单元电路。 优先选用集成电路不等于什么场合都一定要用集成电路。在某些特殊情况,如:在高频、宽频带、高电压、大电流等场合,集成电路往往还不能适应,有时仍需采用分立元件。另外,对一些功能十分简单的电路,往往只需一只三极管或一只二极管就能解决问题,就不必选用集成电路。

PCB电路版图设计的常见问题

PCB电路版图设计的常见问题 PCB设计中的注意事项 作为一个电子工程师设计电路是一项必备的硬功夫,然而原理设计再完美,假如电路板设计不合理性能将大打折扣,严峻时甚至不能正常工作。依照我的体会,我总结出以下一些PCB设计中应该注意的地点,期望能对您有所启发。 不管用什么软件,PCB设计有个大致的程序,按顺序来会省时省力,因此我将按制作流程来介绍一下。(由于protel界面风格与windows视窗接近,操作适应也相近,且有强大的仿真功能,使用的人比较多,将以此软件作说明。) 原理图设计是前期预备工作,经常见到初学者为了省事直截了当就去画PCB板了,如此将得不偿失,对简单的板子,假如熟练流程,不妨能够跃过。然而关于初学者一定要按流程来,如此一方面能够养成良好的适应,另一方面对复杂的电路也只有如此才能幸免出错。 在画原理图时,层次设计时要注意各个文件最后要连接为一个整体,这同样对以后的工作有重要意义。由于,软件的差别有些软件会显现看似相连实际未连(电气性能上)的情形。假如不用相关检测工具检测,万一出了问题,等板子做好了才发觉就晚了。因此一再强调按顺序来做的重要性,期望引起大伙儿的注意。 原理图是依照设计的项目来的,只要电性连接正确没什么好说的。下面我们重点讨论一下具体的制板程序中的问题。 l、制作物理边框 封闭的物理边框对以后的元件布局、走线来说是个差不多平台,也对自动布局起着约束作用,否则,从原理图过来的元件会不知所措的。但那个地点一定要注意精确,否则以后显现安装问题苦恼可就大了。还有确实是拐角地点最好用圆弧,一方面能够幸免尖角划伤工人,同时又能够减轻应力作用。往常我的一个产品老是在运输过程中有个别机器显现面壳PCB板断裂的情形,改用圆弧后就好了。

MOSFECT的驱动保护电路的设计与应用

MOSFET的驱动保护电路的设计与应用 时间:2012-05-30 10:12:34 来源:电子设计工程作者:郭毅军,苏小维,李章勇,陈丽 摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。分析了MOSFET器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。该电路具有结构简单,实用性强,响应速度快等特点。在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。 关键词:功率场效应晶体管;功耗和匹配;驱动电路;保护电路 功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。该设计使系统功率驱动部分的可靠性大大的提高。 1 功率MOSFET保护电路设计 功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。功率MOSFET保护电路主要有以下几个方面: 1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt而引起误导通。为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。 2)防止栅源极间过电压由于栅极与源极的阻抗很高,漏极与源极间的电压突变会通过极间电容耦合到栅极而产生相当高的栅源尖峰电压,此电压会使很薄的栅源氧化层击穿,同时栅极很容易积累电荷也会使栅源氧化层击穿,所以要在MOS管栅极并联稳压管以限制栅极电压在稳压管稳压值以下,保护MOS管不被击穿,MOS管栅极并联电阻是为了释放栅极电荷,不让电荷积累。 3)防护漏源极之间过电压虽然漏源击穿电压VDS一般都很大,但如果漏源极不加保护电路,同样有可能因为器件开关瞬间电流的突变而产生漏极尖峰电压,进而损坏MOS管,功率管开关速度越快,产生的过电压也就越高。为了防止器件损坏,通常采用齐纳二极管钳位和RC缓冲电路等保护措施。 当电流过大或者发生短路时,功率MOSFET漏极与源极之间的电流会迅速增加并超过额定值,必须在过流极限值所规定的时间内关断功率MOSFET,否则器件将被烧坏,因此在主回路增加电流采样保护电路,当电流到达一定值,通过保护电路关闭驱动电路来保护MOSFET 管。图1是MOSFET管的保护电路,由此可以清楚的看出保护电路的功能。

ESD防护与电路设计经验

ESD 防护与电路设计 陶显芳 2013.04.10

静电的产生与防护GB/T17626.2 IEC61000-4-2

物体B 两种不同性质的物体接触在一起,因原子外层电子的能级不同,在其接触的界面处就会产生接点电位差,并产生势垒电荷;当把接触在一起的两种物体进行分离时,两个物体都会带电,这种带电称为静电。由于绝缘体中被极化带电的分子来不及中和,所以绝缘体带电要比导体严重。 带电物体通过电场的作用,会对其周边的物体产生感应,使周边物体产生极化带电;在电场不断产生变化的时候,如果极化带电变化的速度跟不上电场变化的速度,物体就会产生分离带电,即:一个带正电,另一个带负电。很多高分子绝缘材料,其极化带电变化的速度比较慢,所以很容易感应带电,因此,当两种不同性质的高分子绝缘体互相接触后再分离,其带电比其它物质严重,经过

静电抗扰度试验的目的 在天气比较干燥的冬天, 通过皮鞋与地毯摩擦,或不同 材料的衣服互相摩擦,人体很 容易会带上静电,其电压最高 可达15kV。如果人体带上这 个高压静电之后,再触摸一些 敏感电子设备,这些电子设备 中的敏感元器件就很容易被击 穿损坏。右图是电子产品静电 抗扰度试验室的设备配置图, 静电抗扰度试验主要就是模拟 人体带电(静电)对电子产品 的影响或损伤。 静电抗扰度试验一般都称为 ESD(Electro-Static– discharge,静电释放)。

(a)图1 (b)

静电抗扰度试验要点 静电抗扰度试验的关键设备是静 电放电枪,右图是静电放电枪的工 作原理图,试验时,150P电容被充 上2000V以上的电压(模仿人体带 电),然后通过探头与被测设备的 外壳,输入、输出接口,直接触或 部分接触进行放电;或通过探头与 被测设备内部电路的分布电容,以 及被测设备与地之间的电容产生静 电感应,使设备中的敏感元器件感 应带电;或通过对被测设备周边的 导体进行放电所产生的高频电磁场 对被测设备的干扰,以此方法来检 测设备对静电放电或静电感应的承 受能力。

电气原理图及电子电路

电气原理图及接线图识读方法VS画图技巧2016-11-11 07:30 识图方法 电气图纸一般可分为两大类,一类为电力电气图,它主要是表 述电能的传输、分配和转换,如电网电气图、电厂电气控制图等。 另一类为电子电气图,它主要表述电子信息的传递、处理;如 电视机电气原理图。本文主要谈电力电气图的识读。 电力电气图分一次回路图、二次回路图。一次回路图表示一次电气 设备(主设备)连接顺序。一次电气设备主要包括发电机、变压器、 断路器、电动机、电抗器、电力电缆、电力母线、输电线等。 为对一次设备及其电路进行控制、测量、保护而设计安装的各类 电气设备,如测量仪表、控制开关、继电器、信号装置、自动装置 等称二次设备。表示二次设备之间连接顺序的电气图称二次回路 图。 一、电气图的种类 电气图主要有系统原理图、电路原理图、安装接线图。 1.系统原理图(方框图) 用较简单的符号或带有文字的方框,简单明了地表示电路系统的最 基本结构和组成,直观表述电路中最基本的构成单元和主要特征 及相互间关系。 2.电路原理图 电路原理图又分为集中式、展开式两种。集中式电路图中各元器件 等均以整体形式集中画出,说明元件的结构原理和工作原理。识读 时需清楚了解图中继电器相关线圈、触点属于什么回路,在什么情 况下动作,动作后各相关部分触点发生什么样变化。 展开式电路图在表明各元件、继电器动作原理、动作顺序方面, 较集中式电路图有其独特的优点。展开式电路图按元件的线圈、触 点划分为各自独立的交流电流、交流电压、直流信号等回路.凡属 于同一元件或继电器的电流、电压线圈及触点采用相同的文字。展

开式电路图中对每个独立回路,交流按U、V、W相序;直流按继电器动作顺序依次排列。识读展开式电路图时,对照每一回路右侧的文字说明,先交流后直流,由上而下,由左至右逐行识读。集中式、展开式电路图互相补充、互相对照来识读更易理解。 3.安装接线图 安装接线图是以电路原理为依据绘制而成,是现场维修中不可缺少的重要资料。安装图中各元件图形、位置及相互间连接关系与元件的实际形状、实际安装位置及实际连接关系相一致。图中连接关系采用相对标号法来表示。 二、识读电气图须知 1.学习掌握一定的电子、电工技术基本知识,了解各类电气设备的性能、工作原理,并清楚有关触点动作前后状态的变化关系。 2.对常用常见的典型电路,如过流、欠压、过负荷、控制、信号电路的工作原理和动作顺序有一定的了解。 3.熟悉国家统一规定的电力设备的图形符号、文字符号、数字符号、回路编号规定通则及相关的国标。了解常见常用的外围电气图形符号、文字符号、数字符号、回路编号及国际电工委员会(IEC)规定的通用符号和物理量符号(相关资料附后)。 4.了解绘制二次回路图的基本方法。电气图中一次回路用粗实线,二次回路用细实线画出。一次回路画在图纸左侧,二次回路画在图纸右侧。由上而下先画交流回路,再画直流回路。同一电器中不同部分(如线圈、触点)不画在一起时用同一文字符号标注。对接在不同回路中的相同电器,在相同文字符号后面标注数字来区别。 5.电路中开关、触点位置均在"平常状态"绘制。所谓"平常状态"是指开关、继电器线圈在没有电流通过及无任何外力作用时触点的状态。通常说的动合、动断触点都指开关电器在线圈无电、无外力作用时它们是断开或闭合的,一旦通电或有外力作用时触点状态随之改变。 三、识读电气图方法 1.仔细阅读设备说明书、操作手册,了解设备动作方式、顺序,有关设备元件在电路中的作用。

常见电路设计(一)

常见电路设计(一) 文章主要阐述了电压信号、电流信号硬件方面的处理和调制;通过硬件对这些信号的处理,处理后的波形能够直接通过板卡采集,通过换算显示在测试界面上。因此,对于工控机板卡采集和处理的信号参数带来了方便,提高了测试精度。 标签:电压信号;电流信号;硬件处理 现在测试设备很多都是在向集成、综合方向发展,都需要在电脑上控制和采集各种信号,对以往的模拟电压表、电流表都很少用了,都是通过板卡采集、软件换算后显示在测试界面上。于是就对电路设计提出了更高的要求,有许多信号不能直接通过工控机的板卡直接采集,需要对一些信号通过硬件处理后采集。例如大于10V的电压信号、电流信号、不规则的波形信号等一些电路中出现的信号。 1 电压信号采集 如果测试设备采集的电压信号精度要求不是特别高的话,那就采用传统的电阻分压的方法(如图1)。通常电阻长时间通电,电阻的温度会升高导致电阻有微小的变化,因此高精度的电压采集不能通过这种方法采集。由于板卡采集的电压最大范围为±10V,故不能直接将超过此范围电压直接输入采集板卡里,为了解决此问题,需要将该电压降低后采集。电压采集主要采用传统的电阻分压采集如图1。此时采集到的电压为X= Y,然后将此公式反算回去即可求出输入电压,此公式为Y= X。通过软件编程界面上就可以显示出输入的实际电压。当然如果Y电压太大,通过R1和R2分压后X值还是大于10V,那就需要对R1和R2的电阻值进行合理的分配。如果需要高精度的电压,那需要专用的电压传感器和高精度的板卡。 图1 电压采集电路图 若信号(电压、波形等信号)仅仅是需要把幅值降低,而不需要具体数值的话,可以通过光电耦合器(6N136)芯片降压,通过光电耦合后除幅值降低外其它各种参数均未发生变化。信号输出的幅值大小可以通过调节R1和R2阻值的大小控制,但最大不会超过5V。如图2,这样采集板卡可以采集并处理信号中的各种参数。 2 电流信号采集 传统的电流采集是采集电流通过采样电阻时采样电阻之间的电压,用采集到的电压值除以该电阻值即为所测试的电流值(如图3),计算公式为I= 。该设备测试的电流范围为10mA~4A。实际电流为I= ,当测试大电流时,采样电阻R 可以很小,对产品的内阻R1影响很小,实际测试到的电流为I0= ,但是由于电流偏大,采样电阻R会发热导致采样电阻R的值变化,采集到的电压也随之变

相关文档
最新文档