高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场电场磁场经典解题技巧专题辅导
高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导

【考点透视】

一万有引力定律 万有引力定律的数学表达式:2

21r m m G

F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R

Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T

πω2=,r v ω=。 二电场 库仑定律:221r

Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E =

(实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r

kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB =

-=??。 电容的定义式:U Q C =,平行板电容器的决定式kd

S C πε4=。 电场对带电粒子的作用:直线加速

221mv Uq =

。偏转:带电粒子垂直进入平行板间的

匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。

三磁场

磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。

熟悉几种常见的磁场磁感线的分布。

通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB

m T π2=。 【例题解析】

一万有引力

例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。

解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步

卫星距离地面的高度为h ,由向万F F =,有 )(4)(22

2h R T

m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h

R GM v +=;再由ma h R GmM =+2)(得2

)(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。

点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。

例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

抛出物体(不计一切阻力,万有引力常量为G )?

解析:由题意可知是要求该星球上的“近地卫星”的绕行速度,也即为第一宇宙速度。设该星球表面处的重力加速度为g ,由平抛运动可得02tan v gt x y ==θ,故t v g θtan 20=;对于该星球表面上的物体有mg R Mm G =2,所以θ

tan 20v GMt R =;而对于绕该星球做匀速圆周运动的“近地卫星”应有R mv mg 2=,故4

0tan 2t GMv gR v θ==。 点拨:只有准确理解了第一宇宙速度的概念才能找到此题的切入点。以某星球为背景,在该星球上作相关的物理实验是高考试题的一种新趋势。处理时最好把该星球理解为熟知的地球,以便“身临其境”,这样会更容易理解、思考问题,从而找出正确的解题方法。

例3如右图所示,a 、b 、c 是在地球大气层外的圆形轨道上运行的3颗人造卫星,下列说法正确的是()

A .b 、c 的线速度大小相等,且大于a 的线速度

B .b 、c 的向心加速度大小相等,且大于a 的向心加速度

C .c 加速可以追上同轨道上的b ,b 减速可以等候同一轨道上的c

D .a 卫星由于某种原因,轨道半径缓慢变小,其线速度将变大

解析:因为b 、c 在同一轨道上运行,由ma r v m r

Mm G ==2

2知,其线速度大小、加速度大小相等,而b 、c 轨道半径大于a 轨道半径,由r

GM v =知a c b v v v ?=;而因2r M G a =, 有a c b a a a ?=;当c 加速时,有c c r v m r

Mm G 22?,离故它将偏离原轨道而做离心运动;当b 减速时,有b b r v m r

Mm G 22?,它将偏原轨道而离圆心越来越近,所以在同轨道上无论如何c 也追不上b ,b 也等不到c ;而a 卫星由于某种原因,轨道半径缓慢变小,由在此过程中万有引力做正功,减少的引力势能一部分转化为内能,另一部分则转化为卫星的动能,故其线速度将变大,所以综上所述,正确选项是D 。

点拨:通过万有引力与所需向心力大小的比较,可以判定卫星是否作圆周运动,也能有助于理解天体变轨过程。

二电场

【例题解析】

例4、ab 是长为l 的均匀带电细杆,P 1、P 2是位于ab 所

在直线上的两点,位置如图所示。ab 上电荷产生的静电场P 2 a b 4l 4

l

在P 1处的场强大小为1E ,在P 2处的场强大小为2E ,则以下说法正确的是()

A .两处的电场方向相同,1E >2E

B .两处的电场方向相反,1E >2E

C .两处的电场方向相同,1E <2E

D .两处的电场方向相反,1

E <2E

解析:设均匀带电细杆带正电荷,杆P 1点左边的4l 和P 1点右边的4l 的电荷在P 1处产生的场强叠加为0,细杆右边距P 1的4l 到4

3l 处的电荷在P 1处产生的场强为1E ,方向水平向左,而整个杆在P 2处产生的场强2E 方向水平向右,可等效为杆的右端的2

l 部分在该点产生的场强(大小与1E 相等)和杆左端的2

l 部分该点产生的场强E '的矢量叠加,因两者方向相同,均与1E 的方向相反,必有E E E '+=12,所以1E <2E ,正确选项是D 。

点拨:场强是矢量,叠加遵守矢量的平行四边形定则。对此类非点电荷场强叠加问题,在中学阶段常利用电荷分布的对称性、等效性来处理。

例5如图所示的匀强电场中,有a 、b 、c 三点,ab =5cm ,bc =12cm ,其中ab 沿电场方向,bc 和电场方向成600角,一个电荷量为q =8104-?C 的正电荷从a 移到b 电场力做功为W l =7102.1-?J ,求:

(1)匀强电场的场强E =?

(2)电荷从b 移到c ,电场力做功W 2=?

(3)a 、c 两点的电势差ac U =?

解析: (1)设ab 两点间距离d ,

ab qU W =1W l =qU ab ,d U E ab =,所以V /m 601==qd W E 。 (2)设bc 两点沿场强方向距离0160cos .bc d =,1Ed U bc =,bc qU W =2,即

J 1044.160cos ..702-?==bc Eq W 。

(3)设电荷从a 移到c 电场力做功为W ,则ac qU W W W =+=21,V 6.621=+=q

W W U ac 。 点拨:匀强电场的场强公式d

U E =中的d 是指两点间距离在场强方向上的投影。电场力做功W =qU 与路径无关,只与初末位置间的电势差有关,注意理解第三问的求解思路。 例6一束质量为m 、电荷量为q 的带电粒子以平行于两极板的

速度0v 进入匀强电场,如图所示。如果两极板间电压为U ,两极板间的距离为d ,板长为l ,设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量是多少(粒子的重力忽略不计)?

解析:粒子在极板间运动的时间0v l t =,垂直于极板方向的加速度md qU m qE m F a ===,所以粒子在飞越极板间电场的过程中,在电场方向发生的侧移2022.2121mdv qUl at s ==,电场力对粒子做的功2022222v md l U q d s qU W ==,所以粒子电势能的变化量2022

222v md l U q W E ==?。 点评:本题未说明粒子射入的位置,但从“粒子束不会击中极板”的题设条件,可知凡是能穿越电场的粒子,发生的侧移距离都相等,电势能的变化量都相等,而与粒子的射入位置无关。由此可见,仔细阅审题,领会一些关键句子的意义,具有决定性的意义。顺便指出,粒子射出电场后将作匀速直线运动。

例7如图(a )所示,真空中相距d =5cm 的两块平行金属板A 、B 与电源连接(图中未画出),其中B 板接地(电势为零),A 板电势变化的规律如图(b )所示。将一个质量m =2.0

×10-27 kg,电量q =+1.6×10-19C 的带电粒子从紧临B 板处释放,不计重力。求:

(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;

(2)若A 板电势变化周期T =1.0×10-5 s,

在t =0时将带电粒子从紧临B 板处无初速

释放,粒子到达A 板时动量的大小;

(3)A 板电势变化频率多大时,在t =

4T 到t=2

T 时间内从紧临B 板处无初速释放该带电粒子,粒子不能到达A 板。 解析:(1)电场强度d U E =

,带电粒子所受电场力d U q qE F ==,ma F =,故29m/s 100.4-?==md

qU a ; (2)粒子在0~2T 时间内走过的距离为m 100.5)2

(2122-?=T a ,故带电粒子在t=2T 时恰好到达A 板,根据动量定理,此时粒子动量kg.m /s 10

0.423-?==Ft p ; (3)若在带t=4T 释放电粒子,粒子在t=4

T 到t=43T 内先作匀加速运动,后作匀减速运动至速度为零,以后将返回。粒子向A 板运动的可能最大位移16

)4(2122

2aT T a s =?=,当s

f 1=,故电势变化频率应满足Hz 1025164?=?d a f 。

点拨:处理带电粒子在“方波”电压形成的交变电场中的运动问题,关键是将带电粒子在不同方向的电场中的运动过程、受力情况分析清楚。要特别注意:①粒子在不同时刻射入电场,它在电场中的运动会有很大差别;②当电场方向改变时,粒子的运动方向不一定改变。若粒子的速度恰好为零,它将沿电场力方向运动;若不为零,则运动方向不变。 三磁场

例8在水平面上平行放置着两根长度均为L 的金属导轨MN 和PQ ,导轨间距为d ,导轨和电路的连接如图所示。在导轨的MP 端放置着一根金属棒,与导轨垂直且接触良好。空间中存在方向竖直向上的匀强磁场,磁感应强度为B 。将开关1S 闭合,2S 断开,电压表和电流表的示数分别为1U 和1I ,金属棒仍处于静止状态;再

将开关2S 闭合,电压表和电流表的示数分别为2U 和2I ,

金属棒在导轨上由静止开始运动,运动过程中金属棒始终

与导轨垂直。设金属棒的质量为m ,金属棒与导轨之间的动

摩擦因数为μ,忽略导轨的电阻以及金属棒运动过程中产

生的感应电动势,重力加速度为g 。求:(1)金属棒到达NQ 端时的速度大小。 (2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量。

解析:(1)当通过金属棒的电流为2I 时,金属棒受恒定的安培力和滑动摩擦力,在导轨上做匀加速运动,设加速度为a ,金属棒到达端NQ 时的速率为v ,由牛顿第二定律得ma mg BdI =-μ2,根据运动学公式aL v 22=有m L mg BdI v )(22μ-=。 (2)开关1S 闭合,2S 断开,当金属棒静止不动,其电阻为1

1I U r =;设金属棒在导轨上运动的时间为t ,电流在金属棒中产生的热量为Q ,根据焦耳定律rt I Q 22=和运动学公式

t v L 2=得mg

BdI Lm I U I Q μ-=211222。 点拨:关于磁场对电流的作用力问题,往往都会与其它力学或电学知识相联系,这就要求考生有一定的综合能力,能对所遇问题进行具体分析,弄清其中的物理状态,物理过程,找出其中起重要作用的因素及有关条件。

例9在以坐标原点O 为圆心、半径为r 的圆形区域内,存

在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如

图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A

处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交

点C 处沿+y 方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷m q ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ',该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B '多大?此次粒子在磁场中运动所用时间t 是多少?

解析:(1) 根据左手定则,由粒子的飞行轨迹可知该粒子带负电。

粒子由A 点射入,由C 点飞出了其速度方向改变了900,则粒子轨

迹半径r R =,而R mv qvB 2=,粒子的比荷Br

v m q =。 (2)粒子从D 点飞出磁场速度方向改变了600角,故AD 弧所对

圆心角为600,粒子做圆周运动的半径r r R 330cot 0==',而

B q mv R '=',所以B B 33='。粒子在磁场中飞行时间v

r B q m T t 332616ππ='?==。 点评:带电粒子在磁场中的圆周运动的问题,往往是确定圆心、半径、运动时间。确定方法分别是:①圆周轨迹上任意两点的速度的方向垂线的交点或者一条速度的方向垂线和圆的某条弦的中垂线的交点,就是圆心;②圆心确定后,画出半径,根据平面几何知识(大多用勾股定理)去求解半径;③先求出运动轨迹所对应的圆心角,然

后根据公式θπ

?=2T t (T 为运动周期)就可求得运动时间。 例10如图所示,在x <0与x >0的区域中,存在磁感应强度大小

分别为1B 与2B 的匀强磁场,磁场方向均垂直于纸而向里,且

1B >2B 。一个带负电荷的粒子从坐标原点O 以速度v 沿x 轴负方

向射出,要使该粒了经过一段时间后又经过O 点,1B 与2B 的比值应满足什么条件? 解析:粒子在整个过程中的速度大小恒为v ,交替地在xy 平

面内1B 与2B 的磁场区域中做匀速圆周运动,轨道都是半个圆周。

设粒子的质量和电荷量的大小分别为m 和q ,圆周运动的半径分

别为1r 和2r ,由r

v m qvB 2=得11qB mv r =,22qB mv r =,粒子的运动轨迹如图所示。在xy 平面内粒子先沿半径为1r 的半圆1C 运动

至y 轴上距O 为12r 的A 点,接着沿半径为2r 的半圆1D 运动至y 轴下方的1O 点,1OO 距离为)(212r r d -=,此后,粒子每经过一次“回旋”(即从y 轴出发沿半径为1r 的半圆和沿半径2r 为的半圆回到原点下方的y 轴上),与入射相比,粒子的y 坐标就降低d 。设粒子经过

n 次“回旋”后经过n O 点,若n OO 间的距离(即nd )满足12r nd =,则粒子再经过半个圆1+n C 就能经过原点,所以121+=n n r r ,整理得1

12+=n n B B ,其中??=321、、n 为“回旋”次数。

点拨:处理带电粒子在两单一磁场中的组合问题,关键是尽可能准确地画出粒子的运动轨迹,通过轨迹寻找半径与其他量间的关系,进而确定磁场间的关系。

四复合场

例11如图所示,一质量为m 的带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸

面向里,若此液滴在垂直于磁感应强度的平面内,做半径为R 的匀速

圆周运动,求:(1)液滴的速度大小和绕行方向;(2)倘若液滴运行

到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来

面内做半径为R R 31=的圆周运动,绕行方向不变,且此圆周的最低

点也是A ,另一液滴将如何运动?

解析:(1)因液滴做匀速圆周运动,必然有重力与电场力平衡Eq mg =,故液滴带的是

负电,由R mv qvB 2=得m qBR v =,所以E

gBR v =,其方向为顺时针环绕。 (2)分裂成大小相同的两个液滴后,由于已知一个液滴仍做匀速圆周运动,所以两个液滴各自所受电场力仍与重力平衡。设按原绕行方向做半径为1R 运动的液滴速度为1v ,由 (1)的解法可知v E gBR v 311==;因分裂前后动量守恒212121mv mv mv +=,得v v v v -=-=122。表明另一液滴速度与原液滴速度大小相等、方向相反,所以这该液滴仍以R 为半径做圆周运动,其轨迹最高点为A ,绕行方向也为顺时针。

点拨:微粒在复合场中运动时,应注意对微粒运动过程及运动状态的变化分析,据此推断应遵守的物理规律,找到物理量间的联系。微粒在复合场是否计重力的判定:对于微观粒子,重力通常被忽略,对质量较大的油滴或固体微粒,则重力一般不能忽略。

例12如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(1<<α)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。

(1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少?

(2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。

解析:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要使小球能不

A B + - + - d ε

停地往返运动,小球所受的向上的电场力至少应大于重力,即mg d q >ε,其中Q q α=,又有εC Q =,由以上三式有C

mgd αε>; (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以1a 表示其加速度,1t 表示从A 板到B 板所用的时间,则有1ma mg d q =+ε

,2112

1t a d =,当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以2a 表示其加速度,2t 表示从B 板到A 板所用的时间,则有2ma mg d q =-ε

,2222

1t a d =,小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数21t t T n +=

,由以上关系式得mgd C md mgd C md T

n -++=222222εαεα,小球往返一次通过的电量为2q ,在T 时间内通过

电源的总电量mgd C md mgd C md T

C nq Q -++=='22222222εαεαεα。

点拨:处理此类带电粒子在复合场中的运动问题时,要认真审题,弄清关键词语的含义,如本题中的“电源内阻不计(板间场强恒定)、上下往返运动(G F >电)、较长时间[2

1t t T n +=]等”。还要弄清在不同物理过程中小球的运动情况和受力情况,寻找不同物理过程对应的规律,才能正确解题。

例13如图所示,在xoy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xoy 平面的匀强磁场,y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为0v 的电子(质量为m ,电量为e )。如果电场和磁场同时存在,电子将做匀速直线运动。如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点L 3的C 点离开磁

场。不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小

和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未

标出)离开电场,求D 点的坐标;(3)电子通过D 点时的动能。

解析:(1) 只有磁场时,电子运动轨迹如右图所示,洛仑兹力

提供向心力R mv B ev 200=,由几何关系可得

222)4()3(R L L R -+=,故eL mv B 2580=,方向垂直纸面向里。由电子做匀速直线运动得B ev Ee 0=,所以eL mv E 25820=,方向沿y 轴负方向。 (2)只有电场时,电子从MN 上的D 点离开电场,如右图。

D 点横坐标为t v x 0=,电子在竖直方向上的位移222t m

eE L =,有225L x =,故D 点横坐标2

25L x =,纵坐标L y 6=。 (3)从A 点到D 点,由动能定理得202

12.mv E L Ee KD -=,2050

57mv E KD =。 点拨:带电粒子在复合场中的运动往往只是一些问题的组合,从心里上对此类问题要充满自信,不要畏惧,只要一个问题一个地认真分析,顺藤摸瓜,并抓住物理量间联系问题还是很容易得到解决的。即使不能完全作正确,也应进行一些基本推断,力求对基础问题给出合理的解答。

【专题训练与高考预测】

1.我国将要发射一颗绕月运动的探月卫星“嫦娥l 号”。设该卫星的轨道是圆形的,且贴近月球表面。已知月球的质量约为地球质量的811,月球的半径约为地球半径的41,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( )

A 0.4km/s

B .1.8km/s

C 1lkm/s

D 36km/s

2.1969年7月21日,美国宇航员阿姆斯特朗在月球上留下了人类第一只脚印,迈出了人类征服宇宙的第一步。在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤测出质量为m 的仪器的重力为F ,而另一位宇航员科林斯驾驶指挥舱,在月球表面飞行一周,记下所用时间T ,已知引力常量为G 试计算月球的质量。

3.一带负电小球在从空中的a 点运动到b 点的过程中,受重力、空气阻力和电场力作用,小球克服重力做功5J ,小球克服空气阻力做功1J ,电场力对小球做功2J ,则下列说法正确的是( )

A .小球在a 点的重力势能比在b 点的大5J

B .小球在a 点的机械能比在b 点的大1 J

C .小球在a 点的电势能比在b 点的多2 J

D .小球在a 点的动能比在b 点的多4 J

4.如图所示,在竖直放置的铅屏A 的右表面上贴着β射线放射源P ,

已知β射线实质为高速电子流,放射源放出β粒子的速度

m/s 100.170?=v 。足够大的荧光屏M 与铅屏A 平行放置,相距

m 100.22-?=d ,其间有水平向左的匀强电场,电场强度大小N/C 105.24?=E 。已知电子电量C 106.119-?=e ,电子质量取g m k 100.931?=。求(1)电子到达荧光屏M 上的动能;(2)荧光屏上的发光面积。

5.如图所示,在空间存在着水平方向的匀强磁场和竖直方向的匀强电场,电场强度为E ,磁感应强度为B ,在某点由静止释放一个带电液滴a ,它运动到最

低点处,恰与一个原来处于静止的液滴b 相撞,撞后两液滴合为一

体,沿水平方向做直线运动,已知液滴a 质量是液滴b 质量的2倍,

液滴a 所带电荷量是液滴b 所带电荷量的4倍,求两液滴初始位置

之间的高度差h (设a 、b 之间的静电力可以不计)。

6.空间中存在着以0=x 平面为理想分界面的两个匀强磁场,左

右两边磁场的磁感强度分别为1B 和2B ,且1B :2B =4:3,方向如

图所示,现在原点O 处有带等量异号电荷的二个带电粒子a 、b ,分

别以大小相等的水平初动量沿x 轴正向和负向同时在磁场中开始运

动,且a 带正电,b 带负电,若a 粒子在第4次经过y 轴时,恰与b 粒

子相遇,试求a 粒子和b 粒子的质量比b a m m :(不计a 、b 粒子的重

力)。

7.如图所示,坐标平面的第I 象限内存在大小为E 、方向水平向左的匀强电场,足够长的挡板MN 垂直x 轴放置且距离点O 为d ,第II 象限内存在垂直于纸面向里的匀强磁场,磁感应强度为B 。一质量为m ,带电量为-q 的粒子(重力忽略不计)若自距原点O 为L 的A 点以一定的速度垂直x 轴进入磁场,则粒子恰好到达O 点而

不进入电场。现该粒子仍从A 点进入磁场,但初速度大小为

原来的4倍,为使粒子进入电场后能垂直到达挡板MN 上,

求:(1)粒子从A 点进入磁场时,速度方向与x 轴正向间的

夹角大小;(2)粒子打到挡板上时的速度大小。

8.如图所示,在x >0的空间中,存在沿x 轴方向的匀强

电场,电场强度E =10N/C ;在x <0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B =0.5T 。一带负电的粒子(比荷C/kg 160=m

q )在x =0.06m 处的d 点以0v =8m/s 的初速度沿y 轴正方向开始运

动,不计带电粒子的重力。求:

(1)带电粒子开始运动后第一次通过y 轴时距O 点的距

离。

(2)带电粒子进入磁场后经多长时间返回电场。

(3)带电粒子运动的周期。

【参考答案】

1.B 。

2.344316m G T F M π=。 解析:根据题意有2R Mm G F =,R T m R

m M G 22)2(π'=',所以344316m G T F M π=。 3.C D 。

4.J 1025.116-?,23m 1083.2-?。

解析:(1)由动能定理得202

1mv E eEd k -=,J 1025.116-?=k E ; (2)射线在A 、M 间电场中被加速,除平行于电场线的电子流外,其余均在电场中偏转,其中和铅屏A 平行的电子流在纵向偏移距离最大:221t m eE d ??=

,该电子的竖直位移为t v s 0=,在荧光屏上观察到的范围是半径m 10320-?===t v s r 的圆面,面积2r S π=23m 1083.2-?=。

5.2

2

23gB E h =。 解析:由a 受洛伦兹力作曲线运动知,a 带负电荷,由液滴b 原来处于静止知,b 带正电荷。设a 的质量为2m ,带电椅量为-4q ;b 的质量为m ,带电荷量为+ q 。

碰前:对a 液滴有21)2(2

1)24(v m h mg qE =+ ,对b 液滴有mg qE =,碰撞过程满足动量守恒定律2132mv mv =;碰后整体有B qv mg qE 2333=+,整理得

22

23gB

E h =。 6.75=b a m m 。 解析:由题意知p v m v m b b a a ==,q q q b a ==,在1B 区域

内1qB p R R b a ==,在2B 区域内2

qB p R R b a ='=',所以4312=='='B B R R R R b b a

a ,两粒子在场区中运动轨迹如图所示。要a 第4次经过y 轴时,a 、

b 相遇,应相遇在必然在图中A 点处,设从

开始运动到相遇历时为t ,则对a 有)(221qB m qB m t a a

ππ+=,对b 有2

12qB m qB m t b b ππ+=,整理可

得75=b a m m 。 7.?=30θ或?=150θ,222242m L B q m qEd +。 解析:(1)粒子在磁场中作圆周运动半径为r ,速度为0v ,由牛顿第二定律知:

r mv B qv 200=,2

L r = ;粒子初速度为原来的4倍时半径为1r ,速度为1v ,由牛顿第二定律知: 1

211r mv B qv =,014v v =,r 1=2L ,所以m qBL v 21=,为使粒子进入电场后能垂直到达挡板MN 上,粒子必须平行x 轴进入电场,圆心O 在y 轴上的O '点,设速度方向与x 轴正方向间夹角为θ,由几何关系知:2

12sin =='=L L A O OA θ,故?=30θ或?=150θ。 (2)设粒子到达挡板速度为2v ,由动能定理知21222

121mv mv qEd -= ,所以有 22

22242m

L B q m qEd v +=。 8.m 069.0,s 120π

,0.043s )s 120

20032(=+?=πT 。 解析:(1)对于粒子在电场中的运动有m

qE a =,221at d =,第一次通过y 轴的交点到O 点的距离为m 069.001==t v y ;

(2)x 方向的速度m/s 38==t m

qE v x ,设进入磁场时速度与y 轴正方向的夹角为θ,3tan 0

==v v x θ,故060=θ,所以在磁场中作圆周运动所对应的圆心角为01202==θα,带电粒子在磁场中做匀速圆周运动周期为

qB m T π2=,带电粒子在磁场中运动的时间s 1203601202π==T t ; (3)从开始至第一次到达y 轴的时间s 200

3/21==m qE d t ,从磁场再次回到电场中的过程(未进入第二周期)是第一次离开电场时的逆运动,根据对称性13t t =,因此粒子的运

x

y

动周期为0.043s )s 12020032(321=+?=++=πt t t T 。

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

初三物理一对一补习班有哪些暑假高二理综一对一辅导

初三物理一对一补习班有哪些/暑假高中理综一对一辅导 学大教育小学、初中、高中、1对1、小组辅导 一对一辅导课程:各年级各科目提分、全科短期集训、中高考冲刺、艺考生文化课、天津、辽宁考生特训、小升初备考辅导; 班组辅导课程:艺考生全日制托管班、中高考押题串讲班、春季同步3-6人/班。 学大教育将1对1个性化授课与重点学科串讲相结合,实现4倍学习效率,强化解题思路,提升应试能力,使学生完成学科知识和考试分数双提分!从专业的授课、舒适的陪读教室到班主任的学业管理,及必要时心理咨询师的有效参与,学大教育向学生提供优质的辅导体验和效果。唐山学大教育8058136 理综学习方法: 1.勤于预习,善于听课做笔记 在预习时,除了要把新课内容仔细读一遍外,还应在不懂处作上记号,并试着做一做课本上的练习。这样带着疑问、难点,听课的效率就会大大地提高。初中理综内容比较多,老师在讲课时,着重围绕重点内容进行讲授。因此大家要仔细听课,认真做笔记,这不仅有利于进行课后复习,掌握重点,而且还可以有效地预防上课时“走神”。不过,在记笔记时,必须讲究方法,要在听清楚老师所讲内容的基础上,记重点、难点、疑点和课本上没有的内容。 2.常复习,多记忆 课后应及时复习,认真做好作业,这是学好理综的重要环节。复习可采用课后复习、周后复习、单元复习、章节复习、综合复习等。复习的方法有复述、默写、做联系等。只有通过多次复习才能牢固地掌握知识。若不能熟记,在复习时便会感到障碍重重都而无从下手。 3.吃透课本,联系实际 以课本为主线,认真吃透课本,这是学好理综的根本。为此,同学们必须善于阅读课本,做到课前预读、课后细读、经常选读等,既重视主要内容,也不忽视小字部分和一些图表及选学内容。中理综内容与生活、生产联系紧密。这就要求我们在学习理综的同时,应尽量联系生产、生活实际,从身边的生活中发现理综,体味理综,这样就能越学越有兴趣,越学越想学,越学越爱学。 4.重视实验,培养兴趣 理综都以实验为基础的学科,实验不仅可以激发我们的学习兴趣,而且对于我们形成理综概念、理解巩固知识、训练实验技能、培养观察和动手能力、提高思维和解决实际问题的能力都是非常重要的。这就要求我们要认真、细致地观察老师的演示实验,对实验所用的仪

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中物理电学经典试题

高中物理电学经典试题

实验:电表的改装 基础过关:如果某电流表内阻为R g Ω,满偏电流为I g uA ,要把它改装为一个UV 的电压表,需 要_____联一个阻值为________________Ω的电阻;如果要把它改装为一个IA 的电流表,则应____联一个阻值为_ ______________Ω的电阻. 1.电流表的内阻是R g =200Ω,满刻度电流值是I g =500微安培,现欲把这电流表改装成量程为1.0V 的电压表,正确的方法是 [ ] A .应串联一个0.1Ω的电阻 B .应并联一个0.1Ω的电阻 C .应串联一个1800Ω的电阻 D .应并联一个1800Ω的电阻 2.(2011年临沂高二检测)磁电式电流表(表头)最基本的组成部分是磁铁和放在磁铁两极之间的线圈,由于线圈的导线很细,允许通过的电流很弱,所以在使用时还要扩大量程.已知某一表头G ,内阻R g =30 Ω,满偏电流I g =5 mA ,要将它改装为量程为0~3 A 的电流表,所做的操作是( ) A .串联一个570 Ω的电阻 B .并联一个570 Ω的电阻 C .串联一个0.05 Ω的电阻 D .并联一个0.05 Ω的电阻 3.如图2-4-17所示,甲、乙两个电路,都是由一个灵敏电流表G 和一个变阻器R 组成,下列说法正确的是( ) A .甲表是电流表,R 增大时量程增大 B .甲表是电流表,R 增大时量程减小 C .乙表是电压表,R 增大时量程增大 D .乙表是电压表,R 增大时量程减小 4.用两只完全相同的电流表分别改装成一只电流表和一只电压表.将它们串联起来接入电路中,如图2-4-21所示,此时( ) A .两只电表的指针偏转角相同 B .两只电表的指针都不偏转 C .电流表指针的偏转角小于电压表指针的偏转角 D .电流表指针的偏转角大于电压表指针的偏转角 5.(2011年黄冈高二检测)已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 6、用相同的灵敏电流计改装成量程为3V 和15V 两个电压表,将它们串联接人电路中,指针偏角之比为______,读数之比________。用相同电流计改装成0.6A 和3A 的两个电流表将它们并联接入电路中,指针偏角之比_______,读数之比_________. 7.一只电流表,并联0.01Ω的电阻后,串联到电路中去,指针所示0.4A ,并联到0.02Ω的电阻后串联 到同一电路中去(电流不变),指针指示0.6A 。则电流表的内阻R A =_______Ω 8.在如图所示的电路中,小量程电流表的内阻为100Ω满偏 电流为 1mA,R 1=900ΩR 2=999100 Ω.(1)当S 1和 S 2均断开时,改装所成的表是什么表?量程多大?(2)当S 1和 S 2均闭合时,改装所成的表是什么表?量程多 大? 9.一电压表由电流表G 与电阻R 串联而成,如图所示,若在使用中发现此电压表计数总比准确值稍小一些,可以加以改正的措施是 10、有一量程为100mA 内阻为1Ω的电流表,按如图所示的电路改 装,量程扩大到1A 和10A 则图中的R 1=______ G R 2 R 1 S 1 S 2 R G G 公共 10A 1A R 1 R 2

(完整版)高中物理培训研修日志

高中物理培训研修日志 一、更新教育观念,以先进的教学思想为指导,是上好一节课的前提 课堂上教师的一言一行、一举一动,甚至一个眼神、一副表情无不反映着教师的教育教学思想,教学思想制约着教师的教学设计,起着导向的作用,课堂教学改革放在首位的不是财,也不是物,而是教育观念和教学方法,观念是统帅,有什么样的观念就有什么样的教学效果。作为一名物理教师应当在下面几个方面更新观念。 1、关于学生的观念。 (1)不同的学生学习不同水平的物理。 (2)学生可以用自己的方法学习物理。 (3)学生会把所学的知识运用到实践当中去。 (4)学生是课堂教学的主人。 2、关于教学的观念。 (1)教学中要启发学生的学习兴趣。 (2)物理教学要培养学生的情感,使学生建立学好物理的信心。 (3)要为学生提供丰富多采的情境。 (4)为学生留有探索与思考的余地。 (5)提倡合作与交流的课堂气氛。 3、关于教师的观念。 (1)教师是课程实施过程中的决策者。 (2)教师是教学过程中的组织者、指导者、参与者。 (3)教师是学生学习过程中的合作者。 (4)教师的一切教学工作都要以“发展学生为本”为核心。 我们要在平时的教学过程中,要把这些新的教学理念转换成教师与学生的行为。只有这样我们才能教着今天,想着明天,才能使学生既长知识又长智慧。如果我们不从根本上重新认识学生、重新认识教师、重新认识教学,我们就不能悟出教学新理念的真谛,就不能改变学生的学习方式,就不能“全班学生照老师的示范画唯一的苹果”的“复制教学”,培养学生的创新意识和实践能力只能是一句口号,“素质教育”的雨点永远落不到封闭式的课堂教学里。 二、备好课是上好一节课的关键 大家知道备课历来就是教师最主要的工作这一,在不同的时代就有不同的要求。从20世纪50年代开始,我国的教育深受前苏联凯洛夫《教育学》的影响,他把教学目标定为“传授人类千百年来实践所形成的稳固的知识”而传授知识的过程便出现了五个环节:组织教学-—导入新课--讲授新课--巩固练习--布置作业,经过半个世纪的演变五环节有了新的变化,但总体精神没有改变,并且又给予了时间限制。 新授课的基本模式是: 1、铺垫--强力度(3分钟) 2、导入--高速度(2分钟) 3、新授--大密度(15分钟) 4、巩固--多角度(10分钟) 5、作业--重效度(8分钟) 6、小结--抓重度(2分钟) 这种固定的教学模式,使教学缺乏生动性,学生的学习缺乏主动性,这种开会式的教学给学生留下的印象是枯燥呆板,无可奈何。所以国外有人把我们的课堂教学总结成教学四部曲:第一部是“赶鸭子”,把我们的学生从教室外面像赶鸭子式的赶到教室,板板正正坐在座位上,当观众、当容器。第二部曲就是“填鸭子”,老师在课堂上满堂灌、满堂问,学生不懂装懂。第三部曲就是“考鸭子”,到了期末,要进行考试,以学生的考分定学生的好坏。这样考来考去,学生就成了“板鸭子”,学生双基得不到落实,能力得不到发展。这些就是我们过去教学

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理经典电学实验题(全)

八、电学实验题集粹(33个) 1.给你一只内阻不计的恒压电源,但电压未知,一只已知电阻R,一只未知电阻Rx,一只内阻不计的电流表但量程符合要求,以及开关、导线等,用来测Rx接在该恒压电源上时的消耗功率Px,画出测量线路图并写出简要测量步骤,以及Px的表达式. 2.如图3-94所示是研究闭合电路的内电压、外电压和电源电动势间关系的电路.(1)电压表V的(填“正”或“负”)接线柱应接在电源正极A上,电压表V′的(填“正”或“负”)接线柱应接在探针D上.(2)当滑片P向右移动时,V′的示数将(填“变大”、“变小”或“不变”). 图3-94 图3-95 3.有一只电压表,量程已知,内阻为RV,另有一电池(电动势未知,但不超过电压表的量程,内阻可忽略).请用这只电压表和电池,再用一个开关和一些连接导线,设计测量某一高值电阻Rx的实验方法.(已知Rx的阻值和RV相差不大) (1)在如图3-95线框内画出实验电路. (2)简要写出测量步骤和需记录的数据,导出高值电阻Rx的计算式. 4.在“测定金属的电阻率”的实验中,用电压表测得金属丝两端的电压U,用电流表测得通过金属丝中的电流I,用螺旋测微器测得金属的直径d,测得数据如图3-96(1)、(2)、(3)所示.请从图中读出U=V,I=A,d=mm. 图3-96 5.如图3-97所示,是一根表面均匀地镀有很薄的发热电阻膜的长陶瓷管,管长L约40cm,直径D约8cm.已知镀膜材料的电阻率为ρ,管的两端有导电箍M、N,现有实验器材:米尺、游标卡尺、电压表、电流表、直流电源、滑动变阻器、开关、导线若干根,请你设计一个测定电阻膜膜层厚度d的实验,实验中应该测定的物理量是,计算镀膜膜层厚度的公式是. 图3-97 6.用万用表的欧姆挡测电阻时,下列说法中正确的是.(填字母代号) A.万用电表的指针达满偏时,被测电阻值最大 B.万用电表的指针指示零时,说明通过被测电阻的电流最大

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

(完整版)高中物理恒定电流经典习题20道-带答案

选择题(共20小题) 1、如图所示,电解槽内有一价的电解溶液,ts内通过溶液内横截面S的正离子数是n1,负离子数是n2,设元电荷的电量为e,以下解释正确的是() A.正离子定向移动形成电流,方向从A到B,负离子定向移动形成电流方向从B到A B.溶液内正负离子沿相反方向运动,电流相互抵消 C. 溶液内电流方向从A到B,电流I= D. 溶液内电流方向从A到B,电流I= 2、某电解池,如果在1s钟内共有5×1018个二价正离子和1.0×1019个一价负离子通过某截面,那么通过这个截面的电流是() A.0A B.0.8A C.1.6A D.3.2A 3、图中的甲、乙两个电路,都是由一个灵敏电流计G和一个变阻器R组成,它们之中一个是测电压的电压表,另一个是测电流的电流表,那么以下结论中正确的是() A.甲表是电流表,R增大时量程增大 B.甲表是电流表,R增大时量程减小 C.乙表是电压表,R增大时量程减小 D.上述说法都不对 4、将两个相同的灵敏电流计表头,分别改装成一只较大量程电流表和一只较大量程电压表,一个同学在做实验时误将这两个表串联起来,则() A.两表头指针都不偏转 B.两表头指针偏角相同 C.改装成电流表的表头指针有偏转,改装成电压表的表头指针几乎不偏转 D.改装成电压表的表头指针有偏转,改装成电流表的表头指针几乎不偏转 5、如图,虚线框内为改装好的电表,M、N为新电表的接线柱,其中灵敏电流计G的满偏电流为200μA,已测得它的内阻为495.0Ω.图中电阻箱读数为5.0Ω.现将MN接入某电路,发现灵敏电流计G刚好满偏,则根据以上数据计算可知()

A.M、N两端的电压为1mV B.M、N两端的电压为100mV C.流过M、N的电流为2μA D.流过M、N的电流为20mA 6、一伏特表有电流表G与电阻R串联而成,如图所示,若在使用中发现此伏特计的读数总比准确值稍小一些,采用下列哪种措施可能加以改进() A.在R上串联一比R小得多的电阻 B.在R上串联一比R大得多的电阻 C.在R上并联一比R小得多的电阻 D.在R上并联一比R大得多的电阻 7、电流表的内阻是R g=200Ω,满偏电流值是I g=500μA,现在欲把这电流表改装成量程为1.0V的电压表,正确的方法是() A.应串联一个0.1Ω的电阻B.应并联一个0.1Ω的电阻 C.应串联一个1800Ω的电阻D.应并联一个1800Ω的电阻 8、相同的电流表分别改装成两个电流表A1、A2和两个电压表V1、V2,A1的量程大于A2的量程,V1的量程大于V2的量程,把它们接入图所示的电路,闭合开关后() A.A1的读数比A2的读数大 B.A1指针偏转角度比A2指针偏转角度大 C.V1的读数比V2的读数大 D.V1指针偏转角度比V2指针偏转角度大 9、如图所示是一个双量程电压表,表头是一个内阻R g=500Ω,满刻度电流为I g=1mA的毫安表,现接成量程分别为10V和100V的两个量程,则所串联的电阻R1和R2分别为() A.9500Ω,9.95×104ΩB.9500Ω,9×104Ω C.1.0×103Ω,9×104ΩD.1.0×103Ω,9.95×104Ω 10、用图所示的电路测量待测电阻R X的阻值时,下列关于由电表产生误差的说法中,正确的是() A.电压表的内电阻越小,测量越精确 B.电流表的内电阻越小,测量越精确 C.电压表的读数大于R X两端真实电压,R X的测量值大于真实值 D.由于电流表的分流作用,使R X的测量值小于真实值

相关文档
最新文档