绝对值几何意义知识点经典例题及练习题带答案

绝对值几何意义知识点经典例题及练习题带答案
绝对值几何意义知识点经典例题及练习题带答案

绝对值的几何意义

【考纲说明】

1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值;

2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。

【趣味链接】

正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。

【知识梳理】

1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。

2、绝对值的性质:

(1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;

a (a >0)

(2) |a|= 0 (a=0) (代数意义)

-a (a <0)

(3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0;

(4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a ,

且|a|≥-a ;

(5) 若|a|=|b|,则a=b 或a=-b ;(几何意义)

(6) |ab|=|a|·|b|;|b a |=|

|||b a (b≠0); (7) |a|2=|a 2|=a 2

(8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】

【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( )

A.a <0,b <0

B.a >0,b <0

C.a <0,b >0

D.ab <0

【例2】(2011莱芜)下列各组判断中,正确的是( )

A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b

C. 若|a|>b ,则一定有|a|>|b|

D.若|a|=b ,则一定有a 2=(-b) 2

【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( )

A .2a+3b-c

B .3b-c

C .b+c

D .c-b

【例4】(2009淮安)如果a a -=||,下列成立的是( )

A .0>a

B .0

C .0≥a

D .0≤a

【例5】(2008扬州)在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 .

【例6】(2010南京)数轴上分属于原点两侧且与原点的距离相等的两点间的距离为5,那么这两个点表示的数为________.

【例7】(2010泰安)已知a 是有理数,| a -2007|+| a -2008|的最小值是________.

【例8】绝对值小于3.1的整数有哪些?它们的和为多少?

【例9】(2012盐城)|x|=4,|y|=6,求代数式|x+y|的值.

【例10】(2012宿迁)已知:|x-2|+x-2=0,

求:(1)x+2的最大值;(2)6-x 的最小值.

【课堂练习】

1、(2012镇江)若a >b ,且|a|<|b|,则下面判断正确的是( )

A.a <0

B.a >0

C.b <0

D.b >0

2、(2008合肥)|x-2|+|x-1|+|x-3|的最小值是( )

A .1

B .2

C .3

D .4

3、(2009常州)绝对值大于或等于1,而小于4的所有的正整数的和是( )

A. 8

B.7

C. 6

D.5

4、数轴上表示数5-和表示14-的两点之间的距离是__________.

5、(2010曲阳)若|x-3|=3-x ,则x 的取值范围是____________ .

6、(2009南通)若|a-2|=2-a ,求a 的取值范围.

【课后作业】

1、下列代数式中,值一定是正数的是( )

A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+1

2、若a 为任意实数,则下列式子中一定成立的是( ).

A .|a|>0

B .|a|>a C. a

a 1> D. 01>+a 3、若 |x+1|+|2-x|=3,则x 的取值范围是________.

4、 |x -2|-| x -5| 的最大值是_______,最小值是_______.

5、绝对值大于2.1而小于4.2的整数有多少个?

6、设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?

7、求满足关系式|x-3|-|x+1|=4的x的取值范围.

8. 已知a<-2<0<b<2,去掉下列三式的绝对值符号:

【参考答案】

【经典例题】

1、D

2、D

3、C

4、D

5、5或-1

6、 2.5

±7、1 8、0,±1,±2,±3,和为0 9、2或10 10、(1)当x=2时,x+2得最大值2+2=4;(2)当x=2时,6-x得最小值6-2=4

【课堂练习】

1、C

2、B

3、C

4、9

5、x≤3

6、a≤2

【课后作业】

1、C

2、D

3、-1≤x≤2

4、3,-3

5、±3,±4,有4个

6、有最小值9

7、x≤-1

8、

2

a

-,()

a b

-+,

2

b

a b

+

绝对值几何意义和绝对值方程

绝对值几何意义和绝对值方程 Ⅰ重点突破 重点针对复习 【重点知识点1】绝对值的几何意义 [针对训练1] (南雅-15)1.阅读材料,回答下列问题: 数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2; 在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7; 在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5; 在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;…… 如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|. (1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于; (2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x. ①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=; ②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.

2.先阅读,后探究相关的问题 【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离. (1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为; (3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等; (4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是. 3.结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=. (2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为; (3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是. (4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

初 绝对值化简 知识点经典例题及练习题带答案

环球雅思教育学科教师讲义 讲义编号:副校长/组长签字:签字日期: 【考纲说明】 1、能够根据绝对值的意义、性质及非负性进行绝对值的化简; 2、灵活运用绝对值的性质进行化简和方程的解决。 【趣味链接】 由于研究的需要,人类创造了了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展.在中学数学中,常见的数学符号有以下八种:数量符号、运算符号、关系符号、结合符号、性质符号、简写符号、逻辑符号、集合论符号,其中,绝对值符号属于性质符号中的一种,常见的性质符号还有正号(+)和负号(-)。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。我国宋朝科学家沈括说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。 【知识梳理】 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即

也就是说,|x|表示数轴上坐标为x 的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 【经典例题】 【例1】(2012毫州)若0|2|)1(2=++-b a ,则b a +=_________. 【例2】(2012曲阜)(1)已知x 是有理数,且|x|=|-4|,那么x=____; (2)已知x 是有理数,且-|x|=-|2|,那么x=____; (3)已知x 是有理数,且-|-x|=-|2|,那么x=____. 【例3】(2012徐州)若|a|=b ,求|a+b|的值. 【例4】(2012淮北)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求 y xy x 4312--的值. 【例5】(2012商丘)|m+3 |+|n-2 7|+|2p-1|=0,求p+2m+3n 的值.

初一数学绝对值知识点与例题

绝对值的性质及化简 【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性) 【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根 据性质去掉绝对值符号. ② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0. ③ 绝对值具有非负性,取绝对值的结果总是正数或0. ④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负 号,绝对值是5. 【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:|a|≥0 如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 【绝对值的其它重要性质】 (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b| a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

绝对值的意义及应用

绝对值的意义及应用 绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|. 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即 也就是说,|x|表示数轴上坐标为x的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A.2a+3b-c B.3b-c C.b+c D.c-b (第二届“希望杯”数学邀请赛初一试题) 解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0. 所以原式=-a+b+a+b-b+c=b+c,故应选(C). 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 四. 含绝对值问题的有效处理方法 1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0, 求:(1)x+2的最大值;(2)6-x的最小值。 解:∵|x-2|+x-2=0,∴|x-2|=-(x-2) 根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零, ∴x-2≤0,即x≤2,这表示x的最大值为2 (1)当x=2时,x+2得最大值2+2=4; (2)当x=2时,6-x得最小值6-2=4 2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。 例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值. 解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0 令|x-2|=0,得x=2,令|x|=0,得x=0 以0,2为分界点,分为三段讨论: (1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。 (2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0 (3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0 综合(1)、(2)、(3)知x≤0,所以x的最大值为0 3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。 例4. 若|a-2|=2-a,求a的取值范围。 解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2 4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算. 例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围. 解:原式可化为|x-3|-|x-(-1)|=4 它表示在数轴上点x到点3的距离与到点-1的距离的差为4 由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

绝对值经典练习题精编版

绝对值专项训练 一、基础题 1、(绝对值的意义) 1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________. 2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________. (2006年贵阳)(1)2-的绝对值等于( )A 、2 1 - B 、2 C 、2- D 、2 1 (2006年连云港)(2)3-等于 ( ) A 、3 B 、-3 C 、3 1 D 、 3 1- (2005年梅州)(3)设a 是实数,则|a|-a 的值( ) A 、可以是负数 B 、不可能是负数 C 、必是正数 D 、可以是正数也可以是负数 2、(绝对值的性质)(1)任何数都有绝对值,且只有________个. (2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______. (3)绝对值是正数的数有_____个,它们互为_________. (4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________. (2006年资阳)(4)绝对值为3的数为____________ 3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小. (2005年无锡)(5)比较4 1,31,21 --的大小,结果正确的是( )

A 、413121 <-<- B 、314121-<<- C 、213141-<-< D 、4 12131<-<- 二、[典型例题] 1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________. 2、(易错题)化简(4)--+的结果为___________ 3、(教材变型题)如果22a a -=-,则a 的取值范围是 ( ) A 、0a > B 、0a ≥ C 、0a ≤ D 、0a < 4、(创新题)代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、5 5、(章节内知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( ) A 、a b b a <-<<- B 、b a b a -<<<- C 、a b b a -<<-< D 、b b a a -<<-< 三、[自主练习题] 一、选择题 1、有理数的绝对值一定是 ( ) A 、正数 B 、整数 C 、正数或零 D 、自然数 2、下列说法中正确的个数有 ( ) ①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个 3、如果甲数的绝对值大于乙数的绝对值,那么 ( )

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0);

(7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b| 【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

初中数学 绝对值的化简和几何意义

模块一 绝对值的基本概念 (1)非负性:||0a ≥(补充:20a ≥). 对应题型:绝对值的化简. 方法:判断“||”里面整体的正负性. 易错点:求一个多项式的相反数. 对应策略:求一个多项式的相反数即求多项式中每个单项式的相反数. ①a b -的相反数是a b -+; ②a b c ++的相反数是a b c ---; ③132a b -+的相反数132a b -+-. (2)双解性:||(0)a b b =≥,则a b =±. (3)绝对值的代数意义:(0)||0(0)(0)a a a a a a >?? ==??-?=? -≤? 变式结论:①若||a a =,则0a ≥; ②若||a a =-,则0a ≤. 模块二 零点分段法(目的:去无范围限定的绝对值题型) 零点:使绝对值为0的未知数值即为零点. 方法: ①寻找所有零点,并在数轴上表示; ②依据零点将数轴进行分段; ③分别根据每段未知数的范围去绝对值. 易错点:分类不明确,不会去绝对值. 化简:|1||2|x x -+-. ①零点为1,2,故将数轴分为3个部分, 即1x <,12x ≤<,2x ≥. ②当1x <时,原式23x =-+; 当12x ≤<时,原式(1)(2)1x x =---=; 当2x ≥时,原式23x =-. 模块三 几何意义 ||x 的几何意义:数轴上表示数x 的点与原点 的距离; ||x a -的几何意义:数轴上表示数x 的点与数a 的点之间的距离; ||||x a x b -+-的几何意义:数轴上表示数x 的点与数a 、b 两点的距离之和. 举例: ①|1|=|(1)|x x +--表示x 到1-的距离. ②|1||2|x x +++表示x 到1-和x 到2-的距离之和. ③|1||2|x x +-+表示x 到1-和x 到2-的距离之差. 基本结论:令123n a a a a ≤≤≤≤…, 123||||||+||n x a x a x a x a -+-+-+-… . 方法:直接套用几何意义画数轴. ①当n 为奇数时,当1 2 n x a +=时取最小值; ②当n 为偶数时,当1 2 2 n n a x a +≤≤时取最小 值. 常见变形: ①|1|2|3|3|4|x x x -+-+-在34x ≤≤时取得最小值. ②()111 113|2|2|3|236x x x x -+-=-+-在2x =时取得最小值. ③|1||2|x x ---既有最小值也有最大值.

初一奥数 绝对值练习题

绝对值综合练习题一 1、有理数的绝对值一定是() 2、绝对值等于它本身的数有()个 3、下列说法正确的是() A、—|a|一定是负数 B只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数 D、若一个数小于它的绝对值,则这个数为负数 4.() A、a>|b| B、a|b| D、|a|<|b| 5、相反数等于-5的数是______,绝对值等于5的数是________。 6、-4的倒数的相反数是______。 7、绝对值小于2的整数有________。 8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。 9、实数a_______。 10、已知|a|+|b|=9,且|a|=2,求b的值。 11、已知|a|=3,|b|=2,|c|=1,且a0, n<0, m<|n|,那么m,n,-m, -n的大小关系() 13、如果,则的取值范围是() A.>O B.≥O C.≤O D.<O 14、绝对值不大于11.1的整数有()

A .11个 B .12个 C .22个 D .23个 15、│a │= -a,a 一定是( ) A 、正数 B 、负数 C 、非正数 D 、非负数 16、有理数m ,n 在数轴上的位置如图, 17、若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______. 18、如果,则,. 19、已知│x+y+3│=0, 求│x+y │的值。 20、│a -2│+│b -3│+│c -4│=0,则a+2b+3c= 21、如果a,b 互为相反数,c,d 互为倒数,x 的绝对值是1, 求代数式x b a ++x 2+cd 的值。 22、已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。 23.如果 a,b 互为相反数,那么a + b = ,2a + 2b = . 24. a+5的相反数是3,那么, a = . 25.如果a 和 b 表示有理数,在什么条件下, a +b 和a -b 互为相反数? 26、若X 的相反数是—5,则X=______;若—X 的相反数是—3.7,则X=_______ 27、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|X —4|+|Y+2|=0,求2X —|Y|的值。 30.若)5(--=-x ,则=x ________,42=-x ,则=x ________

(完整版)关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a π和0φa 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: a 很多同学无法理解,为什么0πa 时,开出来的时候一定要添加一个“负号”呢?a -。因为此时0πa ,也就是说a 是一个负数,负数乘以符号就是正号了。如2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0πb a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) a 0φa 0 0=a a - 0πa

(2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 【1】已知a 、b 为有理数,且0πa ,0πb ,b a φ,则 ( ) A :a b b a --πππ; B :a b a b --πππ; C :a b b a πππ--; D :a a b b πππ-- 这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。

关于《绝对值》典型例题

《绝对值》典型例题 例1 求下列各数的绝对值,并把它们用“>”连起来. 87-,9 1+,0,-1.2 分析 首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.18 7->-,其他数的比较就容易了. 解 .2.12.1,00,9191,8787=-==+=- .2.18 7091->->>+ 说明: 利用绝对值只是比较两个负数. 例2 求下列各数的绝对值: (1)-38;(2)0.15;(3))0(b b ; (5))2(2<-a a ;(6)b a -. 分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论. 解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a <0,∴|a |=-a ; (4)∵b >0,∴3b >0,|3b|=3b ; (5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ; (6)?? ???<-=>-=-).();(0);(b a a b b a b a b a b a 说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论. 例3 一个数的绝对值是6,求这个数. 分析 根据绝对值的意义我们可以知道,绝对值是6的数应该是6±. 说明:互为相反数的两个数的绝对值相等.

绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 例题精讲 绝对值的性质及化简

绝对值的性质及运用

基本要求:借助数轴理解绝对值的意义,会求实数的绝对值 略高要求:会利用绝对值的知识解决简单的化简问题 【知识点整理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离. 【例题精讲】 模块一、绝对值的性质 【例1】到数轴原点的距离是2的点表示的数是( ) A .±2 B .2 C .-2 D .4 【例2】下列说法正确的有( ) ①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相绝对值

初一数学绝对值经典练习题.doc

绝对值经典练习 1、判断题: ⑴、|-a|=|a|. ⑵、-|0|=0. ⑶、|-3 |=-3 . ⑷、-(-5)-|-5|. ⑸、如果 a=4,那么 |a|=4. ⑹、如果 |a|=4, 那么 a=4. ⑺、任何一个有理数的绝对值都是正数. ⑻、绝对值小于 3 的整数有 2, 1,0. ⑼、-a 一定小于 0. ⑽、如果 |a|=|b|,那么a=b. ⑾、绝对值等于本身的数是正数. ⑿、只有 1 的倒数等于它本身 . ⒀、若 |-X|=5 ,则 X=-5. ⒁、数轴上原点两旁的点所表示的两个数是互为相反数. ⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数. 2、填空题: ⑴、当 a_____0 时, -a0; ⑵、当 a_____0 时, 0; ⑶、当 a_____0 时, - 0; ⑷、当 a_____0 时, |a|0; ⑸、当 a_____0 时, -aa; ⑹、当 a_____0 时, -a=a; ⑺、当 a0 时, |a|=______; ⑻、绝对值小于 4 的整数有 _____________________________; ⑼、如果 mn0,那么 |m|____|n|; ⑽、当 k+3=0 时, |k|=_____; ⑾、若 a、b 都是负数,且 |a||b|,则a____b; ⑿、|m-2|=1, 则 m=_________; ⒀、若 |x|=x, 则 x=________; ⒁ 、倒数和绝对值都等于它本身的数是 __________; ⒂、有理数 a、b 在数轴上的位置如图所示,则|a|=___;|b|=____; ⒃、-2 的相反数是 _______,倒数是 ______,绝对值是 _______; ⒄、绝对值小于10 的整数有 _____个,其中最小的一个是_____; ⒅、一个数的绝对值的相反数是,这个数是_______;

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求 y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

七年级数学绝对值专项练习题集

绝对值综合练习题一 姓名___________ 1、有理数的绝对值一定是( ) A 、正数 B 、整数 C 、正数或零 D 、自然数 2、绝对值等于它本身的数有( ) A 、0个 B 、1个 C 、2个 D 、无数个 3、下列说法正确的是( ) A 、—|a|一定是负数 B 只有两个数相等时它们的绝对值才相等 C 、若|a|=|b|,则a 与b 互为相反数 D 、若一个数小于它的绝对值,则这个数为负数 4、比较 2 1、3 1、4 1 的大小,结果正确的是( ) A 、2 1 <3 1 <4 1 B 、2 1 <4 1 <3 1 C 、4 1<2 1<3 1 D 、3 1<2 1<4 1 5、( ) A 、a>|b| B 、a|b| D 、|a|<|b| 6、判断。 (1)若|a|=|b|,则a=b 。 (2)若a 为任意有理数,则|a|=a 。 (3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )

(4) |3 1_ |和3 1_ 互为相反数。( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。 8、-4的倒数的相反数是______。 9、绝对值小于∏的整数有________。 10、若|-x|=2,则x=____;若|x -3|=0,则x=______;若|x -3|=1,则x=_______。 11、实数的大小关系是_______。 12、比较下列各组有理数的大小。 (1)-0.6○-60 (2)-3.8○-3.9 (3)0 ○|-2| (4)43-○54- 13、已知|a|+|b|=9,且|a|=2,求b 的值。 14、已知|a|=3,|b|=2,|c|=1,且a

初一数学绝对值典型例题

绝对值 绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。 绝对值的定义及性质 绝对值 简单的绝对值方程 化简绝对值式,分类讨论(零点分段法) 绝对值几何意义的使用 绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b|

[例1] (1) 绝对值大于2.1而小于4.2的整数有多少个? (2) 若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 (3) 下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 (4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少? 分析: (1) 结合数轴画图分析。绝对值大于2.1而小于4.2的整数有±3,±4,有4个 (2) 答案C 不完善,选择D.在此注意复习巩固知识点3。 (3) 选择D 。 (4) 根据绝对值的非负性可以知道|a+b|≥0,则|a+b|≥9,有最小值9 [巩固] 绝对值小于3.1的整数有哪些?它们的和为多少? <分析>:绝对值小于3.1的整数有0,±1,±2,±3,和为0。 [巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( ) A.a >b B.a=b C.a

相关文档
最新文档