P-Q分解法潮流计算方法改进综述

P-Q分解法潮流计算方法改进综述
P-Q分解法潮流计算方法改进综述

P-Q分解法潮流计算方法改进综述

摘要:本文介绍了P-Q分解法潮流计算方法的数学模型,简化假设及特点,总

结了P-Q分解法在低压配电网络中,随着支路R/X比值的增大所带来的迭代次数

增大和不收敛性的解决方法,及该方法在不同假设条件下收敛性,并提出了自己

的见解。

关键词: P-Q分解法;收敛性;大R/X比支路

1 潮流计算的数学模型

P-Q分解法又称为快速解耦法,是基于牛顿-拉夫逊法的改进,其基本思想是:把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,把有功功率误差作

为修正电压向量角度的依据,把无功功率误差作为修正电压幅值的依据,把有功

功率和无功功率迭代分开进行【1】。

对一个有 n 个节点的系统,假定第1个为平衡节点,第 2~m+1号节点为PQ

节点,第m+2~n号节点为PV节点,则对于每一个PQ或PV节点,都可以在极坐

标形式下写出一个有功功率的不平衡方程式:

这些假设密切地结合了电力系统的某些固有特点,作为电力系统潮流计算广泛使用的一

种算法,P-Q分解法无论是内存占用量还是计算速度方面都比牛顿-拉夫逊法有了较大的改进,主要反映在以下三点:

① 在修正方程式中,B’和B’’二者的阶数不同。B’为n-1 阶,B ‘’为m阶方阵,简化了牛

顿法的一个n+m-1的方程组,显著减少了方程组的求解难度,相应地也提高了计算速度。

②用常系数矩阵B’和B’’代替了变系数雅可比矩阵,而且系数矩阵的元素在迭代过程中

保持不变。系数矩阵的元素是由导纳矩阵元素的虚部构成的,可以在进行迭代过程以前,对

系数矩阵形成因子表,然后反复利用因子表对不同的常数项△P/V 或△Q/V进行前代和回代

运算,就可以迅速求得电压修正量,从而提高了迭代速度,大大地缩短了每次迭代所需的时

间【2】。

③用对称的B’和B’’代替了不对称的雅可比矩阵,因此只需要存储因子表的上三角部分,这样减少了三角分解的计算量和内存【2】。

3 P-Q分解法的收敛性改进

在各种文献中,都有对P-Q分解法从不同方面提出了讨论和改进,有些是对硬件的改进,如使用并行算法和相应的并行软件来替代原来的串行处理,有些是对算法程序做出了改进,

方法众多,不在此累述。但是我注意到,在实际应用中,由于理论与实际复杂多变的差别,

一些网络如果不满足P-Q分解法的前提假设,可能会出现迭代次数增加或不收敛的情况,而

一些病态系统或重负荷系统,特别是放射状电力网络的系统,也会出现计算过程的振荡或不

收敛的情况。针对此类异常网络,从网络参数改进的角度出发,对此做出了总结。

3.1 大R/X比支路的处理

一般来说,110KV以上的高压电力网中,输电线支路易满足R<

线截面越大,越能满足。而P-Q分解法在低压配电网络中,随着支路R/X比值的增大,迭代

次数明显会增加。当R/X比较大时,可能出现不收敛的情况,限制了分解法程序在低压配电

网的推广发展。

①文献【3】中通过加进支路以截断来克服比值的影响,即在程序中自动将rij,xij支路

分解为两条或者多条的支路参与计算。以两条支路为例,rij,xij为原支路的电阻和电抗,则

有以下计算公式:

③文献【5】中则采用了BX方案,在(4)式形成B'时采用精确的导纳矩阵虚部,不考

虑对地并联导纳和理想变压器的变比,即B’的非对角和对角元素为

,式中rij和xij分别为支路ij的电阻和电感。

数值分析综述-《数值分析与算法》徐士良

第2章矩阵与线性代数方程组 一般的线性代数方程组,A非奇异可根据Cramer法则求解方程唯一解但是它的计算量很大。 高斯消元法的算法时间复杂度是O(n3),可以解一系列的线性方程;所占数据空间符合原地工作的原则。但是算法对数值计算不稳定(当分母为0或很小时)。可以用在计算机中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。 解决高斯法中的不稳定性,在每次归一化前增加选主元(列选主元、全选主元)过程。但是列选主元法仍不稳定,不适求解大规模线性代数方程组。全选主元的高斯消去法,则在复杂度降低的同时能够避免舍入误差,保证数值稳定性。 高斯-约当消去法算法产生出来的矩阵是一个简化行梯阵式,而不是高斯消元法中的行梯阵式。相比起高斯消元法,此算法的效率比较低,却可把方程组的解用矩阵一次过表示出来。线性代数方程组的迭代解法 简单迭代法:迭代格式发散但迭代值序列不一定发散,但收敛格式收敛,迭代值序列收敛于方程组的准确解与选取迭代初值无关。 雅可比迭代法: 计算公式简单,且计算过程中原始矩阵A始终不变,比较容易并行计算。但是收敛速度较慢,而且占据的存储空间较大,所以工程中一般不直接用雅克比迭代法,而用其改进方法。 高斯-赛德尔迭代法:较上面的迭代复杂,但是矩阵的条件相对宽松。 松弛法:需要根据经验去调整,收敛速度依赖松弛参数的选择,收敛条件的要求更宽松。共轭梯度法:是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 第3章矩阵特征值 乘幂法计算绝对值最大的特征值:其收敛速度受限于最大与次大特征值比值绝对值的大小,实际应用中采用加速技术。 求对称特征值的雅克比方法96:每进行一次选装变换钱都需要在飞对角线的元素中选取绝对值最大的元素,很费时间,雅克比过关法对此做了改进。 QR方法求一般实矩阵的全部特征值98下100下:重复多次进行QR分解费时,计算工作量很大。一般先进行相似变换然后进行QR分解。但是这样仍然收敛速度慢,一般是线性收敛。实际应用中使用双重步QR变换将带原点的QR算法中相邻两步合并一步,加速收敛避免复数运算。 第4章非线性方程与方程组 二分法:每次运算后,区间长度减少一半,是线形收敛。优点是简单,但是不能计算复根和重根。 简单迭代法:直接的方法从原方程中隐含的求出x,从而确定迭代函数 (x),这种迭代法收敛速度较慢,迭代次数多。 埃特金迭代法113中:对简单迭代进行改进,使在其不满足收敛条件下迭代过程也收敛,在其收敛时加快收敛速度,减少迭代次数降低时间复杂度。 牛顿迭代法:其最大优点是在方程f(x) = 0的单根附近具有平方收敛,收敛速度快。而且该法还可以用来求方程的重根、复根。缺点:初值的选择会影响收敛结果。 牛顿下山法:保证函数值稳定下降,且有牛顿法的收敛速度。

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

潮流计算(matlab)实例计算

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新

的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值分析综述报告

淮阴工学院 《数值分析》考试 ──基于Matlab的方法综合应用报告 班级:金融1121 姓名:姚婷婷 学号:1124104129 成绩: 数理学院 2014年6月7日

《数值分析》课程综述报告 前言: 数值分析也称计算方法,它与计算工具的发展密切相关。数值分析是一门为科学计算提供必需的理论基础和有效、实用方法的数学课程,它的任务是研究求解各类数学问题的数值方法和有关的理论。 正文: 第一章 近似计算与误差分析 1、产生误差的原因:①模型误差;②观测误差;③截断误差;④舍入误差。 2、四则运算的误差: ①加减法运算 ()()()****x y x y δδδ±=+ ②乘法运算 ()()() ****** *** ******xy x y xy xy xy x y x y y y x x x y x y y x δδδ-=-+-≤-+-?=+ ③ 除法运算: ()()() () () ***** ******* * * ** * * ** * *2 ** x x xy x y y y yy xy x y x y x y yy x x y y y x yy x y y x x y y δδ δ--=-+-=-+-= +?? ?≈ ??? 3、科学表示法、有效数字、近似值的精度 任何一个实数都可以表示成如下的形式: 其中:是正整数,是整数, 如果是数的近似值 并且 则称该近似值具有位有效数字(significant digit )。

此时,该近似值的相对误差为 另一方面,若已知 ()() *111 1021n r x a δ-≤ + 那么, ()()***1112110.10 211 102 r m n n m n x x x x a a a a δ----≤?=+≤ 即:*x 至少有n 位有效数字。 例: 3.141592653589793...π= 取其近似值如下: x*=3.14 x * =3.14159 x*=3.1415 x*=3.141 **213 100.314 110.0016...0.005101022 x x π--=?-=<=?=? **516 100.314159 110.0000026...0.00000510102 2 x x π--=?-=<=?=? **314 100.31415 110.000092...0.0001101022 x x π--=?-=<

电力系统分析潮流计算例题

电力系统的潮流计算 西安交通大学自动化学院 2012.10 3.1 电网结构如图3—11所示,其额定电压为10KV 。已知各节点的负荷功率及参数: MVA j S )2.03.0(2 +=, MVA j S )3.05.0(3+=, MVA j S )15.02.0(4+= Ω+=)4.22.1(12j Z ,Ω+=)0.20.1(23j Z ,Ω+=)0.35.1(24j Z 试求电压和功率分布。 解:(1)先假设各节点电压均为额定电压,求线路始端功率。 0068.00034.0)21(103.05.0)(2 2223232232323j j jX R V Q P S N +=++=++=?0019.00009.0)35.1(10 15.02.0)(2 2 224242242424j j jX R V Q P S N +=++=++=?

则: 3068.05034.023323j S S S +=?+= 1519.02009.024424j S S S +=?+= 6587.00043.122423' 12 j S S S S +=++= 又 0346 .00173.0)4.22.1(106587.00043.1)(2 2 212122'12'1212j j jX R V Q P S N +=++=++=? 故: 6933.00216.112'1212 j S S S +=?+= (2) 再用已知的线路始端电压kV V 5.101 =及上述求得的线路始端功率 12 S ,求出线 路 各 点 电 压 。

kV V X Q R P V 2752.05 .104.26933.02.10216.1)(11212121212=?+?=+=? kV V V V 2248.101212=?-≈ kV V V V kV V X Q R P V 1508.100740.0) (24242 2424242424=?-≈?=+=? kV V V V kV V X Q R P V 1156.101092.0) (23232 2323232323=?-≈?=+=? (3)根据上述求得的线路各点电压,重新计算各线路的功率损耗和线路始端功率。 0066.00033.0)21(12.103.05.02 2 223j j S +=++=? 0018.00009.0)35.1(15 .1015.02.02 2 224j j S +=++=? 故 3066.05033.023323j S S S +=?+= 1518.02009.024424j S S S +=?+= 则 6584.00042.122423' 12 j S S S S +=++= 又 0331.00166.0)4.22.1(22 .106584.00042.12 2 212j j S +=++=? 从而可得线路始端功率 6915.00208.112 j S +=

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

导数的数值计算方法[文献综述]

毕业论文文献综述 信息与计算科学 导数的数值计算方法 一、 前言部分 导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系.导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度.比如说,物理上考虑功随时间的变化率(称为功率),化学上考虑反应物的量对时间的变化率(称为反应速度),经济学上考虑生产某种产品的成本随产量的变化率(称为边际成本)等等,这些变化率在数学上都可用导数表示. 导数由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性的方法,导数是研究函数的切线、单调性、极值与最值等问题的有力工具;运用它可以简捷地解决一些实际问题,导数的概念是用来研究函数在一点及其附近的局部性质的精确工具,而对于函数在某点附近的性质还可以应用另一种方法来研究,就是通过最为简单的线性函数来逼近,这就是微分的方法.微分学是数学分析的重要组成部分,微分中值定理作为微分学的核心,是沟通导数和函数值之间的桥梁, Rolle 中值定理, Lagrange 中值定理, Cauchy 中值定理, Taylor 公式是微分学的基本定理, 统称为微分学的中值定理,这四个定理作为微分学的基本定理,是研究函数形态的有力工具 ] 1[.在微分学中,函数的导数是通过极限定义的,但 当函数用表格给出时,就不可用定义来求其导数,只能用近似方法求数值导数] 2[.最简单 的数值微分公式是用差商近似地代替微商,常见的有 [3] . ()()() 'f x h f x f x h +-≈ , ()()() 'f x f x h f x h --≈, ()()() '2f x h f x h f x h +--≈ . 需要注意的是微分是非常敏感的问题,数据的微小扰动会使结果产生很大的变化] 4[.

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

数值计算方法第4次作业

第四章 问题一 一、问题综述 在离地球表面高度为y处的重力加速度如下: 计算高度y=55000m处的重力加速度值。 二、问题分析 以高度y作为自变量,重力加速度的值为因变量。得到以下信息: f(0)=9.8100; f(30000)=9.7487; f(60000)=9.6879; f(90000)=9.6278; f(120000)=9.5682; 本题要求的就是f(55000)的值。 以下将采用课堂中学到的Lagrange插值多项式法、Newton插值多项式法、分段低次插值法和样条插值法求解该问题。 三、问题解决 1. lagrange插值多项式法 对某个多项式函数,已知有给定的k+ 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: 拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。 源程序lagrange.m function [c,f]=lagrange(x,y,a) % 输入:x是自变量的矩阵;y是因变量的矩阵;a是要计算的值的自变量; % 输出:c是插值多项式系数矩阵;f是所求自变量对应的因变量; m=length(x); l=zeros(m,m); % l是权矩阵 f=0; for i=1:m v=1; for j=1:m if i~=j v=conv(v,poly(x(j)))/(x(i)-x(j)); % v是l_i(x)的系数矩阵 end end l(i,:)=v; % l矩阵的每一行都是x从高次到低次的系数矩阵 end c=vpa(y*l,10); % 对应阶次的系数相加,乘以y,显示10位有效数字 for k=1:m f=f+c(k)*a^(m-k); end 输入矩阵 x=[0 30000 60000 90000 120000] y=[9.81 9.7487 9.6879 9.6278 9.5682] a=55000 再运行源函数,可得: c = [ -2.057613169e-23, 4.938271605e-18, -3.703703702e-14, -0.000002046111111, 9.81] f = 9.6979851723251649906109417384537

P-Q分解法潮流计算方法改进综述

P-Q分解法潮流计算方法改进综述 摘要:本文介绍了P-Q分解法潮流计算方法的数学模型,简化假设及特点,总 结了P-Q分解法在低压配电网络中,随着支路R/X比值的增大所带来的迭代次数 增大和不收敛性的解决方法,及该方法在不同假设条件下收敛性,并提出了自己 的见解。 关键词: P-Q分解法;收敛性;大R/X比支路 1 潮流计算的数学模型 P-Q分解法又称为快速解耦法,是基于牛顿-拉夫逊法的改进,其基本思想是:把节点功率表示为电压向量的极坐标方程式,抓住主要矛盾,把有功功率误差作 为修正电压向量角度的依据,把无功功率误差作为修正电压幅值的依据,把有功 功率和无功功率迭代分开进行【1】。 对一个有 n 个节点的系统,假定第1个为平衡节点,第 2~m+1号节点为PQ 节点,第m+2~n号节点为PV节点,则对于每一个PQ或PV节点,都可以在极坐 标形式下写出一个有功功率的不平衡方程式: 这些假设密切地结合了电力系统的某些固有特点,作为电力系统潮流计算广泛使用的一 种算法,P-Q分解法无论是内存占用量还是计算速度方面都比牛顿-拉夫逊法有了较大的改进,主要反映在以下三点: ① 在修正方程式中,B’和B’’二者的阶数不同。B’为n-1 阶,B ‘’为m阶方阵,简化了牛 顿法的一个n+m-1的方程组,显著减少了方程组的求解难度,相应地也提高了计算速度。 ②用常系数矩阵B’和B’’代替了变系数雅可比矩阵,而且系数矩阵的元素在迭代过程中 保持不变。系数矩阵的元素是由导纳矩阵元素的虚部构成的,可以在进行迭代过程以前,对 系数矩阵形成因子表,然后反复利用因子表对不同的常数项△P/V 或△Q/V进行前代和回代 运算,就可以迅速求得电压修正量,从而提高了迭代速度,大大地缩短了每次迭代所需的时 间【2】。 ③用对称的B’和B’’代替了不对称的雅可比矩阵,因此只需要存储因子表的上三角部分,这样减少了三角分解的计算量和内存【2】。 3 P-Q分解法的收敛性改进 在各种文献中,都有对P-Q分解法从不同方面提出了讨论和改进,有些是对硬件的改进,如使用并行算法和相应的并行软件来替代原来的串行处理,有些是对算法程序做出了改进, 方法众多,不在此累述。但是我注意到,在实际应用中,由于理论与实际复杂多变的差别, 一些网络如果不满足P-Q分解法的前提假设,可能会出现迭代次数增加或不收敛的情况,而 一些病态系统或重负荷系统,特别是放射状电力网络的系统,也会出现计算过程的振荡或不 收敛的情况。针对此类异常网络,从网络参数改进的角度出发,对此做出了总结。 3.1 大R/X比支路的处理 一般来说,110KV以上的高压电力网中,输电线支路易满足R<

数值分析学习方法

第一章 1霍纳(horner)方法: 输入=c + bn*c bn?1*c b3*c b2*c b1*c an an?1 an?2 ……a2 a1 a0 bn bn?1 bn?2 b2 b1 b0 answer p(x)=b0 该方法用于解决多项式求值问题=anxn+an?1xn?1+an?2xn?2+……+a2x2+a1x+a0 ? 2 注:p为近似值 p(x) 绝对误差: ?|ep?|p?p ?||p?p rp? |p| 相对误差: ?|101?d|p?p rp?? |p|2 有效数字: (d为有效数字,为满足条件的最大整数) 3 big oh(精度的计算): o(h?)+o(h?)=o(h?); o(hm)+o(hn)=o(hr) [r=min{p,q}]; o(hp)o(hq)=o(hs) [s=q+p]; 第二章 2.1 求解x=g(x)的迭代法用迭代规则 ,可得到序 列值{}。设函数g 满足 y 定义在得 。如果对于所有 x ,则函数g 在 ,映射y=g(x)的范围 内有一个不动点; 此外,设 ,存在正常数k<1,使 内,且对于所有x,则函数g 在 内有唯一的不动点p。 ,(ii)k是一个正常数, 。如果对于所有 定理2.3 设有(i)g,g ’(iii ) 如果对于所有x在

这种情况下,p成为排斥不动点,而且迭代显示出局部发散 性。波理 尔 查 . 诺 二 分 法 ( 二 分 法 定) <收敛速度较慢> 试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线l与 x轴的交点(c,0)> 应注意 越来越 小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法 . f(pk?1) 其中k=1,2,……证明:用 f(pk?1) 牛顿—拉夫森迭代函数:pk?g(pk?1)?pk?1? 泰勒多项式证明 第三章线性方程组的解法对于给定的解线性方程组ax=b a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2 ? an1x1 ? an2x2 ? ? ? annxn ? bn 一gauss elimination (高斯消元法第一步forward elimination 第二步 substitution 二lu factorization 第一步 a = lu 原方程变为lux=y ; 第二步令ux=y,则ly = b由下三角解出y;第三步 ux=y,又上三角解出x ; 三iterative methods(迭代法) a11x1 ? a12x2 ? ? ? a1nxn ? b1 a21x1 ? a22x2 ? ? ? a2nxn ? b2? ) back 初始值 0,x0,?,x0x1n2 四 jacobi method 1.选择初始值 2.迭代方程为 0,x0,?,x0x1n2 k?1? x1k?1 ? x2

第三章简单电力系统的潮流计算

第一章 简单电力系统的分析和计算 一、 基本要求 掌握电力线路中的电压降落和功率损耗的计算、变压器中的电压降落和功率损耗的计 算;掌握辐射形网络的潮流分布计算;掌握简单环形网络的潮流分布计算;了解电力网络的简化。 二、 重点内容 1、电力线路中的电压降落和功率损耗 图3-1中,设线路末端电压为2U 、末端功率为222~jQ P S +=,则 (1)计算电力线路中的功率损耗 ① 线路末端导纳支路的功率损耗: 222 2* 222~U B j U Y S Y -=?? ? ??=? ……………(3-1) 则阻抗支路末端的功率为: 222~~~Y S S S ?+=' ② 线路阻抗支路中的功率损耗: ()jX R U Q P Z I S Z +'+'==?2 2 22222 ~ ……(3-2) 则阻抗支路始端的功率为: Z S S S ~ ~~21?+'=' ③ 线路始端导纳支路的功率损耗: 2121* 122~U B j U Y S Y -=?? ? ??=? …………(3-3) 则线路始端的功率为: 111~ ~~Y S S S ?+'= ~~~图3-3 变压器的电压和功率 ~2 ? U (2)计算电力线路中的电压降落 选取2U 为参考向量,如图3-2。线路始端电压 U j U U U δ+?+=2 1 其中 2 2 2U X Q R P U '+'= ? ; 222U R Q X P U '-'=δ ……………(3-4) 则线路始端电压的大小: ()()2221U U U U δ+?+= ………………(3-5) 一般可采用近似计算: 2 2 2221U X Q R P U U U U '+'+ =?+≈ ………………(3-6)

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

相关文档
最新文档