二次函数的图象和性质对称性

二次函数的图象和性质对称性
二次函数的图象和性质对称性

1.2.8 二次函数的图象和性质——对称性

教学目标:

1.能从数和形两个角度认识函数的奇偶性,掌握判断函数是奇函数还是偶函数的方法;

2.理解函数的奇偶性将有助于函数图象的绘制简化函数性质研究的工作量;

3.通过代数推理手段理解二次函数图象的对称性,提高抽象、概括、推理能力;

4.进一步领悟数形结合的思想方法。

教学重点:

1.函数的奇偶性定义的形成与应用;

2.认识二次函数图象的对称轴,以及二次函数的对称性的应用。

教学难点:

1. 用数量关系刻画函数奇偶性与二次函数的对称性;

2. 综合利用函数的奇偶性与单调性研究函数。

教学过程:

一. 复习提问

1. 叙述函数单调性的定义,以及描述二次函数单调性与最值的定理。(口头提问)

2. 课本53页练习(三位同学上黑板练习)

(1)写出函数232-=x y 的图象的开口方向,顶点坐标,并作出草图;

(2)写出函数2)3(--=x y 的图象的开口方向,顶点坐标,并作出草图;

(3)已知函数m x x x f +-=

42)(2,当m 在什么范围内变化时,函数的定义域为全

体实数?

二.二次函数的图象和性质——对称性。(板书)

我们接着上次研究二次函数的图象和性质。两个内容:从解析式看函数的奇偶性;二次函数图象的对称性。

1. 从解析式看函数的奇偶性。

从练习(1),我们看到函数232-=x y 的图象关于y 轴对称。想想看,可以把图象具有这种性质的函数叫什么函数?(偶函数)

让我们看看二次函数n m x a x f +-=2)()(),0(R x a ∈≠在什么情况下是偶函数?二

次函数c bx ax x f ++=2)(),0(R x a ∈≠。通过计算机演示,把m 调到0,得到n ax x f +=2)(的图象。把b 调到0,得到c ax x f +=2)(的图象。

由图象看,它关于y 轴对称,此函数为偶函数。现在问,不画图能不能从函数的解析式看出一个函数是偶函数?类似地,我们知道,如果一个函数的图象关于原点对称,这个函数叫奇函数。能不能从函数的解析式看出一个函数是奇函数?如果能,函数图象画出

了一半,另外一半也就清楚了。知道了函数在x 正半轴的变化情况,也就能知道函数在x 负半轴的变化情况。因此,有必要研究怎样从从解析式看函数的奇偶性。

先考虑如何从解析式看函数是偶函数。这需要从轴对称图形的特征来探索。

什么叫图象关于y 轴对称?所谓图象关于y 轴对称就是指如果在图象上任意取一点(例如

A ),则它关于y 轴的对称点(点C )也在函数图象上。这个条件从函数的解析式上怎么看出呢?让我们分析如何把“形”的特征转化到与之等价的“数”的特征。

“形”的特征(对照上图):y 轴是 AC 的垂直平分线→AC 被y 轴平分、AC ∥x 轴

→“数”的特征:A 、C 两点的横坐标互为相反数,A 、C 两点的纵坐标相等。因为A 点在函数)(x f y =的图象上,可设A 点的坐标为))(,(x f x ,于是C 点的坐标为))(,(x f x -,如果C 点在函数)(x f y =的图象上,因C 点的横坐标为x -,故纵坐标为)(x f -,于是)(x f -=)(x f 。

反之,如果对于函数)(x f y =定义域内任意的x ,都有)(x f -=)(x f ,就说明点A ))(,(x f x 关于y 轴的对称点))(,(x f x C -可改写为))(,(x f x --,这标志着点C 在函数图象上。

这样一来,函数图象关于y 轴对称的条件可等同于)(x f -=)(x f 。

类似地,函数图象关于原点对称的条件等价于)(x f -=)(x f -。

例如:c ax y +=2

,||x y =,211x y +=,112-=x y ,421x x y +=等都是偶函数。 kx y =,x y 1=,x x y 1+=,21x x y +=,x

x y ||=为奇函数。(让学生验证) 阅读课本54页—55页的课文与例题, 提问

谁能说出奇(偶)函数定义中的两个条件?为什么在这两个定义中都有这样的条件“如果对于一切使)(x f 有定义的x ,)(x f -也有定义”?没有这个条件行不行?试举出反例。 ()(x f =2x ,),2[+∞-∈x ;x

y 1=,+∈R x ,配合图象说明。) 总结判断函数奇偶性的步骤:先看定义域,再看是否满足条件)(x f -=)(x f 或)(x f -=)(x f -。

做课本55页的练习:判断下列函数的奇偶性

(1)10553x x x y -+=;(2)332

x y -=;(3)4233x x y +=;(4)321x x y +-=

(在黑板上给出规范的解题过程,在找对应的函数图象时先找出此题中唯一一个非奇非偶函数,唯一一个奇函数的图象,剩下两个偶函数其中一个是二次函数,指出它的开口方向、顶点、对称轴。至于函数4233x x y +=

可以指出它的定义域,图象过原点,函数值非负等特

点。

顺便指出,函数可以是奇函数,可以是偶函数,可以是非奇非偶函数,还可以同时是奇函数与偶函数。

有条件的学校可以现场画奇(偶)函数图象:(1)整条画,(2)画一半后另外一半利用对称点轨迹跟踪的方法画。)

我们知道二次函数2)(x x f =,在区间]0,(-∞上递减,在),0[+∞上递增。其实有它是偶函数的特性,从在区间]0,(-∞上递减就可以推出它在),0[+∞上递增。推广开来

例1. 已知定义在R 上的偶函数)(x f ,它在区间]0,(-∞上递增,那么在),0[+∞上递增还

是递减?证明你的结论。

(分析:任意取012>>x x ,判断)(2x f 与)(1x f 的大小。因为012>>x x ,所以012<-<-x x 。又因为)(x f 在区间]0,(-∞上递增,所以)()(12x f x f -<-。考虑到)(x f 是偶函数,因此)()(22x f x f =-,)()(11x f x f =-,于是有)()(12x f x f <,所以函数)(x f 在),0[+∞是减函数。)

由这个题你还能想到有什么结果?(对奇函数的情况)通过展示212)(x x x f +=或x

x x f 1)(+=的图象举例说明。

例2. 已知定义在R 上的偶函数)(x f ,它在区间]0,(-∞上递增,比较)2(-f ,)3(f ,)

4(f

的大小。()3(f =)3(-f ,)4(f =)4(-f ,由此,)4(f <)3(f <)2(-f )

2. 讨论二次函数c bx ax x f ++=2)(),0(R x a ∈≠图象的对称性

上节课我们已经得出二次函数n m x a x f +-=2)()(图象的顶点与对称轴方程分别是(m ,n )和x = m , 二次函数c bx ax x f ++=2)(图象的顶点与对称轴方程分别是

)44,2(2

a

b a

c a b --和x = a b 2-。 一般地考虑,如果函数)(x F 的图象有一条平行于y 轴的对称轴,对称轴与x 轴的交点坐标为(s ,0),则对于任意的h ,有)()(h s F h s F -=+,反之亦然。如下图。

对于二次函数则有

c h s b h s a ++++)()(2c h s b h s a +-+-=)()(2

整理后得到 a

b s 2-= a b m 2-=,由

c n am =+2,得到224a b a c n -==a

b a

c 442

-。 这又一次证明了二次函数的图象的轴对称性,并找到了对称轴方程。

例3. 已知:c bx x x f ++=2)(,对任意实数t 都有)2()2(t f t f -=+成立,那么( )

(A ))4()1()2(f f f <<; (B ))4()2()1(f f f <<;

(C ))1()4()2(f f f <<; (D ))1()2()4(f f f <<.

提问 :条件对任意实数t 都有)2()2(t f t f -=+成立说明函数图象有什么特征?

图象的开口方向如何?画出草图看看。(函数图象的对称轴为直线x =2,故选(A )) 如果把条件改为对任意实数t 都有)4()(t f t f -=,函数图象的对称轴在哪里?你能猜出一般规律吗?(函数图象的对称轴依然为直线x =2)

例4.求函数542+--=x x y ,]4,[+∈t t x 的最大值。

题示:1、函数542+--=x x y 图象的对称轴是什么?(直线x =-2)

2、表示此题图象的抛物线弧段该怎么画?(界于区间]4,[+t t 的部分)

3、利用课件展示当t 变动时抛物线弧段变化的情况。

(分三种情况讨论:(1)当)6,(--∞∈t 时,最大值为27122

---t t ;(2)当

]2,6[--∈t 时,最大值为9;(3))当),2(+∞-∈t 时,最大值为542+--t t 。) 三、小结:

1.函数的单调性与奇偶性是函数的重要性质,从数与形两方面认识函数的奇偶性

2.掌握函数奇偶性的判别方法;

3.函数的单调性与奇偶性的简单综合应用;

4.二次函数图象的对称性。

带着以上问题,阅读课本,整理笔记。

七、布置作业:

课本58页习题11的1-2题,70页第12题、72页第23题。

二次函数的图象和性质

二次函数的图象和性质 教学目标 1、知道二次函数的意义; 2、会用描点法画出二次函数的图象; 3、掌握二次函数的两种表达形式:一般式和顶点式. 会用配方法将一般式转化为顶点式; 4、能利用图象或通过配方确定抛物线的开口方向及对称轴、顶点的位置和最值; 5、会根据已知条件求出二次函数的解析式. 知识讲解 1、二次函数的一般形式为y=ax2+bx+c (a、b、c是常数,a≠0)其特点是:解析式是自变量的整式表达式,自变量最高次数是二次,二次项系数必须不为零。当b=c=0时,就是一个特殊的二次函数y=ax2(a≠0),我们首先学习的就是这类最简单的二次函数,y=ax2的图象是一条顶点在原点,对称轴为y轴的抛物线.当a>0时抛物线开口向上,函数有最小值当x=0时,最小值是0;当a<0时,抛物线的开口向下,函数有最大值当x=0时,最大值是0。 2、二次函数的顶点式为y=a(x-h)2+k (a≠0),顶点的坐标为(h,k),对称轴为x=h,当 a>0时,抛物线开口向上,此时,当x=h时y有最小值为k;当a<0时,抛物线开口向下,此时当x=h时y有最大值k.。 例题讲解

例3、根据下列条件,分别求二次函数的解析式: ⑴顶点为(2,3),图象经过点(0,1) ⑵当x=4时,函数有最小值-3,且图象经过点(1,0) ⑶对称轴为x=2,图象经过(1,4),(5,0) ⑷形状与y=3x2相同,当x=-1时,y有最大值2

巩固练习: 1.二次函数y=2x 2-4x+3通过配方化为顶点式为y=______. 2.将函数y=-2x 2 +8x -7,写成y=a (x -h )2 +k 的形式为_______,其顶点坐标是______,对称轴是_______. 3.已知抛物线y=x 2-6x+5的部分图象如图1,则抛物线的对称轴为直线x=_______.?满足y<0的x 的取值范围是________,将抛物线y=x 2-6x+5向________平移______?个单位,可得到抛物线y=x 2 -6x+9. 4.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质: 甲:函数的图像经过第一、二、四象限;乙:当x <2时,y 随x 的增大而减小. 丙:函数的图像与坐标轴... 只有两个交点. 已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________. 5.不论x 为何值,函数y=ax 2+bx+c(a≠0)的值恒大于0的条件是 . 6.如图,如果抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,? 与y 轴交于C 点,且OB=OC= 12 OA ,那么b= _______________. 7.以下画抛物线y=ax 2 +bx+c (a ≠0)的步骤,顺序正确的是( ) ①利用函数的对称性列表;②确定抛物线的开口方向;③描点画图;?④将y=ax 2+bx+c 配方成y=a (x -h )2+k 的形式 A .③②①④ B .④②①③ C .②④①③ D .③②④① 8.把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x+5,则有( ) A .b=3,c=7 B .b=-9,c=-15 C .b=3,c=3 D .b=-9,c=21 9.抛物线y=ax 2 +bx+c 的图象如图2,则下列结论:①abc>0;②a+b+c=2;③a> 12 ;④b<1.其中正确的结论是( ) A .①② B .②③ C .②④ D .③④ 10.满足a<0,b>0,c=0的函数y=ax 2 +bx+c 的图象是图中的( )

巧用二次函数图象的对称性解题解析

巧用二次函数图象的对称性解题解析 新盈中学王永升 2010-6-29 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式 来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题 目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此 我们可以依据二次函数的对称性,求出抛物线所过的x轴上的另一 个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的

交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数 y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。

二次函数的对称性

(一)、教学内容 1. 二次函数的解析式六种形式 ① 一般式 y=ax 2 +bx+c(a ≠0) ② 顶点式 2 ()y a x h k =-+(a ≠0已知顶点) ③ 交点式 12()()y a x x x x =--(a ≠0已知二次函数与X 轴的交点) ④ y=ax 2 (a ≠0) (顶点在原点) ⑤ y=ax 2+c (a ≠0) (顶点在y 轴上) ⑥ y= ax 2 +bx (a ≠0) (图象过原点) 2. 二次函数图像与性质 对称轴:2b x a =- 顶点坐标:2 4(,)24b ac b a a -- 与y 轴交点坐标(0,c ) 增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 ☆ 二次函数的对称性 二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴:12 2 x x x += 与抛物线y=ax 2 +bx+c(a ≠0)关于 y 轴对称的函数解析式:y=ax 2 -bx+c(a ≠0) 与抛物线y=ax 2 +bx+c(a ≠0)关于 x 轴对称的函数解析式:y=-ax 2 –bx-c(a ≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数的对称轴 1、 二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。 2、 二次函数c bx x y ++=2的图像上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) (A )1x =- (B )1x = (C )2x = (D )3x = 3、 y=2x 2-4的顶点坐标为___ _____,对称轴为__________。 4、 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对 称轴为x =-1.求它与x 轴的另一个交点的坐标( , ) y x O

二次函数的性质与图像

第二章二次函数 1.二次函数所描述的关系 一、学生知识状况分析 学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。 学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础;同时在以前的学习中学生经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学任务分析 本课的具体学习任务:本节课要学习的内容是二次函数所描述的关系,重点是通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系,并能利用尝试求值的方法解决实际问题.让学生通过 分析实际问题(探究橙子的数量与橙子树之间的关系),从学生感兴趣的问题入手,并广泛联系多学科问题,使学生好奇而愉快地感受二次函数的意义,感受数学的广泛联系和应用价值.在教学中,让学生通过观察、思考、合作,交流,归纳出二次函数的概念,并从中体会函数的建模思想。 教学目标 (一)知识与技能 1.探索并归纳二次函数的定义. 2.能够表示简单变量之间的二次函数关系. (二)过程与方法 1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系. 3. 能够利用尝试求值的方法解决实际问题. (三)情感态度与价值观 1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲. 2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用. 3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.

二次函数的图像与性质知识点及练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2,y=a(x-h)2 ,y =a(x-h)2 +k 和c bx ax y ++=2图象,能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质:

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左 加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 六、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

高中数学《二次函数的性质与图象》教案

§2.2.2 二次函数的性质与图象(教案) 一、教学目标 1、知识目标 (1)使学生掌握研究二次函数的一般方法——配方法 (2)进一步掌握二次函数2(0) =++≠的性质及图象的画法。 y ax bx c a 2、能力目标 (1)培养学生的观察分析能力,引导学生学会用数形结合的方法研究问题; (2)培养学生由特殊事例发现一般规律的归纳能力。 3、情感目标 (1)通过新旧知识的认识冲突,激发学生的求知欲; (2)通过合作学习,培养学生团结协作的思想品质。 二、教学重点、难点 运用配方法研究二次函数的性质。 三、教学方法 采用“问题引导——合作探究”的教学方式,通过创设一个个问题情境,引导和激发学生对知识进行思考、探索,从而完成新知识的建构,用学案提高课堂效益,用多媒体辅助教学,以增强直观性。 四、教学过程 1、问题引入 问题1:二次函数的定义,二次函数的图象是一条抛物线。 2、研究函数2(0) y ax a =≠的性质 请同学们拿出预习时所做的8个二次函数图象,对照图象填写下表。 函数2 y ax =的性质

目的:由特殊到一般,同时为配方法打下基础。 3、配方法的引入 问题2:(1)函数2(1)(0)y a x a =-≠的图象可看作是函数2y ax =的图象怎样变换得到?平移后哪些性质将会发生改变?哪些性质没变? (2)函数2(1)2(0)y a x a =-+≠的图象可看作是函数2y ax =的图象怎样变换得到? 将2(1)2y a x =-+展开得2222y ax ax a =-++即二次函数的一般形式了。 因此要研究一般形式的二次函数2(0)y ax bx c a =++≠的图象及性质,我们可想法化为 2(1)y a x k =-+形式,那采用方法是: 配方法 4、实例演练 例1:(1)研究二次函数21()462 f x x x =++的性质和图象; (2)研究二次函数2()43f x x x =--+的性质和图象 先研究第一题 (1)配方:21()462 f x x x =++2211(8)6[(4)16]62 2 x x x =++=+-+ 21 (4)22 x =+- 图象开口方向向上,顶点(-4,-2)

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

初三二次函数的图像与性质

龙文教育学科导学 教师:学生:年级:日期: 星期: 时段: 学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。 课题二次函数的图像与性质 学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数; 2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法; 3、熟练的选用合适的解析式利用待定系数法求解析式。 学习重点图像的平移;待定系数法求解析式 学习方法讲练结合、师生讨论、启发引导 学习内容与过程 教学内容: 知识回顾 1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。其中,x 是自变量, a,b,c分别是函数解析式的二次项系数,一次项系数和常数项. 2.二次函数的解析式及其对称轴 (1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交 点式:。此时抛物线的对称轴为。其中,(x 1,0)(x 2 ,0)是抛 物线与X轴的交点坐标。显然,与X轴没有交点的抛物线不能用此解析式表示的 3.二次函数y=a(x-h) 2+k的图像和性质 4.二次函数的平移问题 5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系: 6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系

二次函数的常规解法: 一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。我们称y=ax2+bx+c(a≠0)为一般式(三点式)。 例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。 说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。 二、若已知二次函数的顶点坐标或对称轴或最值时,可选用y=a(x+m)2+k (a≠0)求解。我们称y =a(x+m)2+k (a≠0)为顶点式(配方式)。 例:若二次函数图像的顶点坐标为(-2,3),且过点(-3,5),求此二次函数的解析式。 说明:由于顶点式中要确定a、m、k的值,而已知顶点坐标即已知了-m、k的值。用顶点式只要确定a的值就可以求二次函数解析式。若已知这两点的坐标用一般式来解是不能确定a、b、c的值的,不妨让学生尝试一下加深印象。 三、若已知二次函数与X轴的交点坐标是A(x1,0) 、B(x2,0)时, 可选用y=a(x-x1)(x- x2 ) (a≠0)求解。我们称y=a(x-x1)(x- x2 ) (a≠0)为双根式(交点式)。 例:已知一个二次函数的图象经过点A(-1,0)、B(3,0)和C(0,-3)三点,求此二次函数的解析式。 说明:很多同学看到此例会想到使用一般式来解,将已知三点的坐标分别代入去求a、b、c的值来求此二次函数的解析式。往往忽略A、B两点的坐标就是二次函数图象与x轴的交点坐标,而用双根式来求解就相对比较简单容易。 四、若已知二次函数在X轴上截得的线段长为d时,可选用 或 例:抛物线y=2x2-mx-6在X轴截锝线段长为4,求此二次函数的解析式。 说明:对于此例主要让学生明白这两种二次函数解析式中线段长d的推导过程,记住公式套进去就行了。注意相互之间不要混淆。 总之,要求一个二次函数的解析式,可以根据不同的已知条件选择恰当的解题方法,使计算过程简单化,达到迅速解题的目的。当然,也只有在平时的练习中对基本解法的适用情况做到心中有数,才能在具体的问题中结合图形及二次函数的相关性质择优选取适当的解法,提高解题能力。 二次函数的概念 如果y=ax2+bx+c(a≠0,a,b,c为常数),那么y叫做x的二次函数 注意:二次函数的表达形式为整式,且二次项系数不为0,b ,c可分别为0,也可同时为0 自变量的取值范围是全体实数 练习:

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数的图像及性质

《二次函数的图像及性质》教学案例及反思 教师:同学们,我们上一节课一起研究了二次函数的表达式,那么我们一起来回忆一下表达式是什么? 学生齐答:y=ax2+bx+c(a,b,c是常数,a不为0) 教师:好,那么请同学们在黑板上写出一些常数较简单的二次函数表达式. (学生表现很踊跃,一下写出了十多个) 教师:黑板上这些二次函数大致有几个类型? 学生:(讨论了3分钟)四大类!有y=ax2+bx+c;y=ax2+bx;y=ax2+c;y=ax2! 教师:太棒了!同学们归纳的很好,今天我们就一起来研究比较简单的一种y=ax2的图像及性质! 教师在学生板书的函数中选了四个,并把复杂的系数换成简单的常数,找到如下函数:y=x2;y=-x2;y=2x2;y=-2x2.(教师在这里让学生自己准备素材!) 教师启发学生利用函数中的“列表,描点,连线”的方法,把画上述四个函数的任务分配给A,B,C,D小组,一组一个在已画好的坐标系的小黑板上动手操作.生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃.教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅. 教师:请同学们小组之间比较一下,你们画的图象位置一样吗? 学生;不一样. 教师:有什么不一样?(开始聚焦矛盾) 学生:开口不一样. 学生A:走向不一样. 学生B:经过的象限不一样. 学生C:我们的图象在原点的上方,他们的图象在原点的下方. 教师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的) 学生:是由二次项系数的取值确定的. 教师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏) 热烈讨论后,学生D回答并板书,当a>0时,图象在原点的上方,当a<0时,图象在原点的下方。 学生E:当a>0时,图象开口向上;当a<0时,图象开口向下. 学生A站起来补充:还有顶点,顶点坐标(0,0),对称轴为y轴! (这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出二次函数的性质呢?短暂停顿后,教师确定了思路) 教师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质? 看着学生茫然的目光,我在思考是不是我的问题---- 教师:请看同学们的板书,能揣摩图象“走向”的意思吗? 学生:(七嘴八舌)当a>0时,图象从左上向下走到原点后在向右上爬;当a<0时,图象从左下向上爬到原点后在向右下走(未出现教师所预期的结论) 教师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

二次函数的图象和性质对称性

1.2.8 二次函数的图象和性质——对称性 教学目标: 1.能从数和形两个角度认识函数的奇偶性,掌握判断函数是奇函数还是偶函数的方法; 2.理解函数的奇偶性将有助于函数图象的绘制简化函数性质研究的工作量; 3.通过代数推理手段理解二次函数图象的对称性,提高抽象、概括、推理能力; 4.进一步领悟数形结合的思想方法。 教学重点: 1.函数的奇偶性定义的形成与应用; 2.认识二次函数图象的对称轴,以及二次函数的对称性的应用。 教学难点: 1. 用数量关系刻画函数奇偶性与二次函数的对称性; 2. 综合利用函数的奇偶性与单调性研究函数。 教学过程: 一. 复习提问 1. 叙述函数单调性的定义,以及描述二次函数单调性与最值的定理。(口头提问) 2. 课本53页练习(三位同学上黑板练习) (1)写出函数232-=x y 的图象的开口方向,顶点坐标,并作出草图; (2)写出函数2)3(--=x y 的图象的开口方向,顶点坐标,并作出草图; (3)已知函数m x x x f +-= 42)(2,当m 在什么范围内变化时,函数的定义域为全 体实数? 二.二次函数的图象和性质——对称性。(板书) 我们接着上次研究二次函数的图象和性质。两个内容:从解析式看函数的奇偶性;二次函数图象的对称性。 1. 从解析式看函数的奇偶性。 从练习(1),我们看到函数232-=x y 的图象关于y 轴对称。想想看,可以把图象具有这种性质的函数叫什么函数?(偶函数) 让我们看看二次函数n m x a x f +-=2)()(),0(R x a ∈≠在什么情况下是偶函数?二 次函数c bx ax x f ++=2)(),0(R x a ∈≠。通过计算机演示,把m 调到0,得到n ax x f +=2)(的图象。把b 调到0,得到c ax x f +=2)(的图象。 由图象看,它关于y 轴对称,此函数为偶函数。现在问,不画图能不能从函数的解析式看出一个函数是偶函数?类似地,我们知道,如果一个函数的图象关于原点对称,这个函数叫奇函数。能不能从函数的解析式看出一个函数是奇函数?如果能,函数图象画出

初中数学二次函数的图象和性质

初中数学二次函数的图象和性质2019年4月9日 (考试总分:160 分考试时长: 120 分钟) 一、单选题(本题共计 12 小题,共计 48 分) 1、(4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论: ①2a+b=0; ②abc>0; ③方程ax2+bx+c=3有两个相等的实数根; ④抛物线与x轴的另一个交点是(-1,0); ⑤当1

,B ,P 是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax 2+bx+3=0的一个根,③△PAB 周长的最小值是 +3 .其中正确的是( ) A . ①②③ B . 仅有①② C . 仅有①③ D . 仅有②③ 5、(4分)两条抛物线25y x =和25y x =-在同一坐标系内,下列说法中不正确的是( ) A . 顶点坐标相同 B . 对称轴相同 C . 开口方向相反 D . 都有最小值 6、(4分)下列函数中,y 是x 的二次函数的是( ) A . y=2x ﹣1 B . y= C . y= D . y=﹣x 2+2x 7、(4分)已知抛物线y= 14 x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如 图,点M ,3),P 是抛物线y=14 x 2 +1上一个动点,则△PMF 周长的最小值是( ) A . 4 B . 5 C . D . 8、(4分)如图,在平面直角坐标系xOy 中,点A ,B ,C 满足二次函数2y ax bx =+的表达式,则对该二次函数的系数a 和b 判断正确的是( )

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

二次函数图像与性质总结

二次函数图像与性质总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。Array 3.()2 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 二、二次函数图象的平移 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后 者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中 2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴 对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ???,.当2 b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

相关文档
最新文档