常见曲线的参数方程

常见曲线的参数方程
常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程

一椭圆的参数方程

1、中心在坐标原点,焦点在x 轴上,标准方程是22

221(0)x y a b a b

+=>>的椭圆的参数方程

为cos (sin x a y b ?

??=??=?

为参数)

同样,中心在坐标原点,焦点在y 轴上,标准方程是22

221(0)y x a b a b

+=>>的椭圆的参

数方程为cos (sin x b y a ?

??=??=?

为参数)

2、椭圆参数方程的推导

如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。

设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有

cos cos ,sin sin x OA a y OB b ????==== 3

当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ?

??

=??=?为

参数)

这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ

θθ

=??

=?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆

的参数方程cos (sin x a y b ?

??

=??

=?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点

(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋

转角,通常规定[)0,2?π∈ 4、椭圆参数方程与普通方程的互化

可以借助同角三角函数的平方关系将普通方程和参数方程互化。 ①由椭圆的参数方程cos (sin x a y b ???

=??

=?为参数,0)a b >>,易得cos ,sin x y

a b ??==,可以

利用平方关系将参数方程中的参数?化去得到普通方程22

221(0)x y a b a b

+=>>

②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x y

a b

??==,从而将普通方程

化为参数方程cos (sin x a y b ?

??=??

=?

为参数,0)a b >>

注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2?π∈

②对于不同的参数,椭圆的参数方程也有不同的呈现形式。

二、双曲线的参数方程

1、以坐标原点O 为中心,焦点在x 轴上,标准方程为22

221(0,0)x y a b a b

-=>>的双曲线的

参数方程为sec (tan x a y b ?

??

=??

=?为参数)

同样,中心在坐标原点,焦点在y 轴上,标准方程是22

221(0,0)y x a b a b

-=>>的双曲线

的参数方程为tan (sec x b y a ?

??

=??

=?为参数)

2、双曲线参数方程的推导

如图,

以原点O 为圆心,,(0,0)a b a b >>为半径分别作同心圆

12,C C ,设A 为圆1C 上任一点,作直线OA ,过点A 作圆1C 的切线'AA 与x 轴交于点'A ,

过圆2C 与x 轴的交点B 作圆2C 的切线'BB 与直线OA 交于点'B 。过点','A B 分别作y 轴,

x 轴的平行线','A M B M 交于点M 。

设Ox 为始边,OA 为始边的角为?,点(,)M x y ,那么点'(,0),'(,)A x B b y 因为点A 在圆1C 上,由圆的参数方程的点A 的坐标为(cos ,sin )a a ??。

所以(cos ,sin )OA a a ??=u u u r ,'(cos ,sin )AA x a a ??=--u u u r

,因为'OA AA ⊥u u u r u u u r ,所以'0OA AA ?=u u u r u u u r ,从而2cos (cos )(sin )0a x a a ???--=,解得cos a x ?=

,记

1

sec cos ??

= 则sec x a ?=。

因为点'B 在角?的终边上,由三角函数的定义有tan y

b

?=

,即tan y b ?=? 所以点M 的轨迹的参数方程为sec (tan x a y b ?

??=??=?

为参数)

这是中心在原点O ,焦点在x 轴上的双曲线的参数方程。

3、双曲线的参数方程中参数?的意义

参数?是点M 所对应的圆的半径OA 的旋转角,成为点M 的离心角,而不是OM 的旋转角,通常规定[)0,2?π∈,且2,2

3

π

π

??≠

4、双曲线的参数方程中参数?的意义

因为222

1sin 1cos cos ???

-=,即22

sec tan 1??-=,可以利用此关系将普通方程和参数方程互化

① 由双曲线的参数方程sec (tan x a y b ???

=??=?为参数)

,易得sec ,tan x y

a b ??==,可以利用平方关系将参数方程中的参数?化去,得到普通方程22

221(0,0)x y a b a b -=>>

② 在双曲线的普通方程22221(0,0)x y a b a b -=>>中,令sec ,tan x y

a b

??==,从而将普

通方程化为参数方程sec (tan x a y a ?

??

=??=?为参数)

三、抛物线的参数方程

1、以坐标原点为顶点,开口向右的抛物线2

2y px =(0)p >的参数方程为2

2(2x pt t y pt ?=?

=?

为参数)

同样,顶点在坐标原点,开口向上的抛物线2

2(0)x py p =>的参数方程是2

2(2x pt t y pt

=??

=?为

参数)

2、抛物线参数方程的推导:如图

设抛物线的普通方程为2

2y px =(0)p >,其中p 表示焦点到准线的距离。设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角为α。当α在(,)22

ππ

-

内变化时,点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的点M 与之对应,故可取

α为参数来探求抛物线的参数方程。

由于点M 在α的终边上,根据三角函数的定义可得

tan y

x

α=,即tan y x α=,代入抛物线普通方程可得22tan (2tan p x p y ααα?=???

?=??

为参数) 这就是抛物线2

2y px =(0)p >(不包括顶点)的参数方程。如果令

1

,(,0)(0,)tan t t α=∈-∞+∞U ,则有22(2x pt t y pt ?=?

=?

为参数) 当0t =时,由参数方程表示的点正好是抛物线的顶点(0,0),因此当(,0)(0,)t ∈-∞+∞U 时,参数方程就表示整条抛物线。

3、抛物线参数方程中参数t 的意义是表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数。 四、例题:

例1、已知椭圆的参数方程为2cos (4sin x y ???

=??

=?为参数)

,点M 在椭圆上,对应的参数3π

?=,点O 为原点,则直线OM 的斜率为____________.

解:当3π?=时,2cos 13

4sin 23

3x y ππ?

==????==??

故点M 的坐标为(1,23),所以直线OM 的斜率为

23。

例2、已知椭圆的参数方程为4cos (4sin x y θ

θθ=??=?

为参数,R θ∈)

,则该椭圆的焦距为________.

解:由参数方程得cos 4

sin 5

x

y θθ

?=????=??将两式平方相加得椭圆的标准方程为

2211625x y +=

所以焦距为6= 例3、O 是坐标原点,P 是椭圆3cos 2sin x y ??

=??

=?(?为参数)上离心角为6π

-所对应的点,那么

直线OP 的倾斜角的正切值是_________ 解;把?=6π

-

代入椭圆参数方程3cos 2sin x y ??

=??=?(?为参数)

,可得P

点坐标为(1)2-,所以直线OP

的倾斜角的正切值是tan 9?=

=- 例4、已知曲线14cos :(3sin x t C t y t =-+??=+?为参数),28cos :(3sin x C y θ

θθ=??=?

为参数)

化12,C C 的方程为普通方程,并说明它们分别表示什么曲线;

解:2

2

1:(4)(3)1C x y ++-=,2:

C 22

1649

x y +=,1C 为圆心是(4,3)-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆。

例5、设M 为抛物线2

2y x =上的动点,定点0M (1,0)-,点P 为线段0M M 的中点,求点P 的轨迹方程。

解:设点(,)P x y ,令2y t =,则22

22y x t ==,得抛物线的参数方程为222x t y t

?=?=?,则动点2(2,2)M t t ,定点0M (1,0)-,由中点坐标公式知点P 的坐标满足方程组

2

1(12)2

1(02)2

x t y t ?=-+????=+?? 即212x t y t ?=-+??

?=?(t 为参数) 这就是P 点的轨迹的参数方程。 消去参数化为普通方程是2

12y x =+

,它是以x 轴为对称轴,顶点为1

(,0)2

-的抛物线。

例6、在椭圆

22

1

94

x y

+=上求一点M,使点M到直线2100

x y

+-=的距离最小,并求

出最小距离。

解:因为椭圆的参数方程为

3cos

(

2sin

x

y

?

?

?

=

?

?

=

?

为参数),所以可设点M的坐标为

(3cos,2sin)

??

由点到直线的距离公式,得到点M到直线的距离为:

d=

=

)10

??

=--

其中

?满足于

00

34

cos,sin

55

??

==

由三角函数的性质知,当

??

-=时,d

9

3cos3cos

5

??

==,

8

2sin2sin

5

??

==,因此,当点M位于

98

(,)

55

时,点M与直线2100

x y

+-=

例7、已知抛物线22(0)

y px p

=>,O为坐标原点,,

M N

是抛物线上两点且MN=

若直线,

OM ON的倾斜角分别为

2

,

33

ππ

,求抛物线方程。

解:设(,)

M x y,由抛物线参数方程可知

2

2cot

3

2cot

3

x p

y p

π

π

?

=

??

?

?=

??

,即

2

3

x p

y p

?

=

??

?

?=

??

2

()

3

p

M p

,同理知

2

(,)

3

N p p

,因为MN=

所以

1

6

p=,得抛物线方程为2

1

3

y x

=

例8、

已知两曲线的参数方程分别为

sin

x

y

θ

θ

?=

?

?

=

??

(0)

θπ

≤<和

2

5

()

4

x t

t R

y t

?

=

?

?

?=

?

,它们的交点坐标为___________.

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

极坐标和参数方程知识点总结大全

极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的 函数,即 ?? ?==) () (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习 1.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ) A . 23 B .23- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在 圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是 转过的角度(称为旋转角)。 圆心为,半径为的圆的普通方程是, 它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为 其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但 当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

空间曲线的参数化

一、 空间曲线的参数化 若积分曲线Γ的参数方程 ],[)(),(),(βα∈===t t z z t y y t x x Γ,:,则曲线积分的计算公式为 ??'=++β α)())(),(),(({d d d t x t z t y t x P z R y Q x P Γ }d )())(),(),(()())(),(),((t z t z t y t x R t y t z t y t x Q '+'+ ],[d )()()())()()((d )(222βαβ α ∈'+'+'=?? t t t z t y t x t ,z t ,y t x f s x,y,z f Γ , 曲线积分计算的关键是如何将积分曲线Γ参数化。下面将给出积分曲线参数化的某些常用方法。 1. 设积分曲线???==0 ),,(0),,(z y x G z y x F Γ:,从中消去某个自变量,例如z ,得到Γ在 xoy 平面的投影曲线,这些投影曲线常常是园或是椭圆,先将它们表示成参数方程),(),(t y y t x x ==然后将它们代入0),,(0),,(==z y x G z y x F 或中,解出)(t z z =由此得到Γ的参数方程:],[)(),(),(βα∈===t t z z t y y t x x ,。 例1将曲线???==++y x a z y x Γ2222:,(其中0>a )用参数方程表示。 解:从Γ的方程中消去y ,得到xoz 平面上的投影曲线2 222a z x =+,这是椭圆, 它的参数方程为]2,0[,sin ,cos 2 π∈== t t a z t a x ,将其代入Γ的方程,得到第七讲 曲线积分与曲面积分

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程与普通方程的互化

空间曲线方程不同形式间的转化技巧

空间曲线方程不同形式间的转化技巧 李晶晶 摘要:空间曲线的参数方程和一般方程是空间曲线方程的两种非常重要的形式, 它们表示同一条曲线,因此可以相互转化.两种形式相互转化的方法有很多,本文主 要介绍了常用的几种.在转化的过程中要保证方程的等价性和同解性. 关键词:一般方程;参数方程;互化;等价性;同解性 Transformation Techniques for Different Forms of Inter-space Curve Equation Li Jingjing (20102112052, Class 4 Grade 2010, Mathematics & Applied Mathematics ,School of Mathematics & Statistics) Abstract:Space curve parameter equation and general equation are two very important form of the equation of space curve.They represent the same curve, so they can be transformed into each other.There are many methods for the conversion between these two kinds of forms.This paper mainly introduces several methods commonly used.During the transformation process to ensure that equation equivalence and the same solution. Key words: The general equation; parameter equation; interaction; equivalence; the same solution 1引言 空间解析几何的首要问题是空间曲线的方程的求解.空间曲线方程主要包含两种形式,即一般方程(普通方程)与参数方程.空间曲线的一般方程反映的是空间曲线上点的坐标x,y,z之间的直接关系.空间曲线的参数方程是通过参数反应坐标变量之间的间接关系.在求空间曲线的弧长以及空间曲线上的第一类与第二类曲线积分等方面都用到了空间曲线的参数方程.由于任何一种曲线方程的求解方法都不能适用于所有方程的求解,因此如何完成空间曲线方程不同形式的互化便成了一个基本问题.[1] 空间曲线的方程是建立在平面曲线方程的基础之上的,研究空间曲线方程不同形式之间的转化依赖于平面曲线不同形式之间的转化.我们首先回顾之前所学的平面曲线方程的形式以及不同形式间的相互转化.

【原创教案】二、《曲线的参数方程》教案

二、《曲线的参数方程》教案 时间:2 授课班级:高二(8)班 一、教学目标: 理解参数方程的概念;掌握参数方程化为普通方程的几种常见 的方法;会选取适当的参数化普通方程为参数方程。 二、重点、难点:能选择适当的参数写出曲线的参数方程,参数方程与普通方程 的互化和互化的等价性。 三、课时安排:1课时 四、教学过程 (一)创设情境 一架救援飞机在离灾区地面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物资准确落于灾区指定的地面(不计空气阻 力),飞行员应如何确定投放时机呢? 即求飞行员在离救援点的水平距离多远时,开始投放物 资? (二)探索研究导出新概念 1、参数方程的定义: 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的 函数② ???==) ()(t g y t f x , 并且对于t 的每一个允许值,由方程组②所确定的点),(y x M 都在这条曲线上,那么方程②就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 例1 已知曲线C 的参数方程是???+==1 232t y t x (t 为参数). (1)判断点)1,0(1M ,)4,5(2M 与曲线C 的位置关系; (2)已知点),6(3a M 在曲线C 上,求a 的值; (3)将参数方程化为普通方程,并判断曲线C 表示什么图形。 2、参数方程和普通方程的互化: (1)参数方程通过消元法消去参数化为普通方程 例2 把下列参数方程化为普通方程,并说明它们各表示什么曲线:

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

(完整版)第四节空间曲线及其方程教案

重庆科创职业学院授课教案 课名:高等数学(上)教研窒:高等数学教研室班级:编写时间:

课题: 第四节 空间曲线及其方程 教学目的及要求: 介绍空间曲线的各种表示形式。为重积分、曲面积分作准备的,学生应知道各种常用立体的解析表达式,并简单描图,对投影等应在学习时特别注意。 教学重点: 1.空间曲线的一般表示形式 2.空间曲线在坐标面上的投影 教学难点: 空间曲线在坐标面上的投影 教学步骤及内容 : 一、空间曲线的一般方程 空间曲线可以看作两个曲面的交线,故可以将两个曲面联立方程组形 式来表示曲线。 ? ? ?==0),,(0 ),,(z y x G z y x F 特点:曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的 点不能同时满足两个方程。 二、空间曲线的参数方程 将曲线C 上的动点的坐标表示为参数t 的函数: ?? ? ??===)()()(t z z t y y t x x 当给定1t t =时,就得到曲线上的一个点),,(111z y x ,随着参数的变化可得到曲线上的全部点。 旁批栏:

三、空间曲线在坐标面上的投影 设空间曲线C 的一般方程为 ? ? ?==0),,(0 ),,(z y x G z y x F (1) 消去其中一个变量(例如z )得到方程 0),(=y x H (2) 曲线的所有点都在方程(2)所表示的曲面(柱面)上。 此柱面(垂直于xoy 平面)称为投影柱面,投影柱面与xoy 平面的交线叫做空间曲线C 在xoy 面上的投影曲线,简称投影,用方程表示为 ?? ?==0 ),(z y x H 同理可以求出空间曲线C 在其它坐标面上的投影曲线。 在重积分和曲面积分中,还需要确定立体或曲面在坐标面上的投影,这 时要利用投影柱面和投影曲线。 例1:设一个立体由上半球面224y x z --=和锥面)(322y x z -=所围 成,见下图,求它在xoy 面上 的投影。 解:半球面与锥面交线为 ?????+=--=) (34:2 222y x z y x z C 消去z 并将等式两边平方整理得投影曲线为: ?? ?==+0 1 22z y x 即xoy 平面上的以原点为圆心、1为半径的圆。立体在xoy 平面上的投影为圆所围成的部分: 122≤+y x 旁批栏:

空间曲线参数方程(第五讲)

第五讲 空间曲线参数方程 一、求空间曲线(,,)0(,)0 F x y z G x y =ìG í=?:的参数方程 方法1;若把(,)0G x y =看做xoy 平面上的曲线方程,其参数方程已知,再将他们代入方程(,,)0F x y z =中,解出z ,就可以得到空间曲线G 的参数方程. 例1.设空间曲线2222 222x y z a x y b ì++=G í+=?:,()0a b 3>,求其参数方程. 解:空间曲线是球面2222x y z a ++=与圆柱222x y b +=的交线,由圆周222x y b +=的参数方程得到 cos sin x b t y b t =ìí=?,(02)t p ££ 将222x y b +=代入球面方程得到222z a b =-, 于是交线方程为 cos sin x b t y b t z =ì?=í?=?. 方法2:把变量x ,y 之一看作参数,如另x t =,由(,)0G x y =解出y ,再将它们代入方程(,,)0F x y z =,解出z 即可得到空间曲线G 的参数方程. 例2.设空间曲线2222259 x y z x y ì++=G í+=?:,求其参数方程. 解:空间曲线是球面2225x y z ++=与平面429x y +=的交线,它是空间平面429x y +=上的一个圆周. 以t 为参数,令x t =,则由平面方程得到 922y t =-, 将x ,y 代入球面方程得 22229615(2)18524 z t t t t =---=--, 即 z =U n R e i s t e r e d

由26118504t t --3,得到 18181010 t +££, 因此空间曲线参数方程为922x t y t z ì?=??=-í??=?? . 例3.设空间曲线2229x y z y z ì++=G í=? :,求其参数方程. 解:将y z =代入方程222 9x y z ++=中,得 2229x z += 该椭圆参数方程为 x t =,3sin z t =,(02)t p ££ 于是空间曲线的参数方程为 3sin x t y t z t ì=???=í??=??, (02)t p ££. 例4. 设空间曲线222(1)(1)40x y z z ì+++-=G í=?:,求其参数方程. 解:因为0z =,则22(1)3x y ++=, 令1x t =- ,y t =,于是得参数方程为 10x t y t z ì=-+??=í?=?? (02)t p ££, 例5.设空间曲线22290 x y z x y z ì++=G í++=?:,求其参数方程. U n R e g i s t e r e d

2知识讲解 曲线的参数方程

曲线的参数方程 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

曲线的参数方程知识讲解

曲线的参数方程 编稿:赵雷审稿:李霞 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

空间曲线及其方程

§7.6 空间曲线及其方程 一空间曲线的一般方程 空间曲线可看作两曲面的交线,设 F x y z (,,)=0和G x y z (,,)=0 是两曲面的方程,它们的交线为C。曲线上的任何点的坐标x y z ,,应同时满足这两个曲面方程,因此,应满足方程组 F x y z G x y z (,,) (,,) = = ? ? ? (1) 反过来,如果点M不在曲线C上,那么它不可能同时两曲面上。所以,它的坐标不满足方程组(1)。由上述两点可知:曲线C可由方程组(1)表示。 方程组(1)称作空间曲线的一般方程。 二空间曲线的参数方程 对于空间曲线C,若C上的动点的坐标x y z ,,可表示成为参数t的函数x x t y y t z z t = = = ? ? ? ? ? () () () (2) 随着t的变动可得到曲线C上的全部点,方程组(2)叫做空间曲线参数方程。【例1】如果空间一点M在圆柱面x y a 222 +=上以角速度ω绕z轴旋转,同时又以线速度v沿平行于z轴的正方向上升(其中:ω,v均为常数),那未点M 的轨迹叫做螺旋线,试建立其参数方程。 解:取时间t为参数。 设当t=0时,动点与x轴上的点A a(,,) 00重合,经过时间t,动点由A a(,,) 00运动到M x y z (,,)。记M在xoy面上的投影为' M,它的坐标为' M x y (,,)0。

由于动点在圆柱面上以角速度ω绕z 轴旋转,经过时间t ,∠'=?AoM t ω 从而 x a t y a t ==???cos sin ωω 又由于动点同时以线速度v 沿平行于z 轴正方向上升,所以 z vt = 因此,螺旋线的参数方程为 x a t y a t z vt ===???? ?cos sin ωω 或令θω=?t ,则方程形式可化为 x a y a z b b v ===???? ?=cos sin (,)θθθωθ为参数 螺旋线有一个重要性质: 当θ从θ0变到θα0+时,z 由b θ0变到b b θα0+;这表明当oM '转过角α时,M 点沿螺旋线上升了高度h b =α; 特别地,当oM '转过一周,即απ=2时,M 点就上升固定的高度为 h b =2π,这个高度在工程技术上叫螺距。 空间曲线的一般方程也可以化为参数方程,下面通过例子来介绍其处理方法。 【例2】将空间曲线C x y z x z 222921 ++=+=????? 表示成参数方程。 解:由方程组消去z 得

高中数学参数方程大题(带答案)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题:坐标系和参数方程. 分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 解答: 解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=,

人教课标版高中数学选修4-4《曲线的参数方程》教案-新版

第二讲 参数方程 2.1 曲线的参数方程 一、教学目标 (一)核心素养 通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标 1.通过实例,了解参数方程的含义,体会参数的意义. 2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点 1.参数方程与普通方程的互化的等价转化. 2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务 (1)读一读:阅读教材第21页至第26页,填空: 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数: ???==) ()(t g y t f x ① 且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.

(2)想一想:参数方程与普通方程如何转化? 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一 个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程. (3)写一写:圆的一般参数方程是什么? ①圆心在原点,半径为r 的圆的参数方程为(θ为参数); ②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数). 2.预习自测 (1)方程??? x =1+sin θ y =sin 2θ(θ是参数)所表示曲线经过下列点中的( ) A.(1,1) B.)2 1,23( C.)2 3,23( D.)2 1 ,232( -+ 【知识点】参数方程的定义 【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C . (2)下列方程:①??? x =m ,y =m .(m 为参数) ②??? x =m ,y =n .(m ,n 为参数) ③??? x =1, y =2.④x +y = 0中,参数方程的个数为( ) A .1 B .2 C .3 D .4 【知识点】参数方程的定义 【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A (3)参数方程??? x =cos α, y =1+sin α (α为参数)化成普通方程为_______________.

相关文档
最新文档