两个随机变量和的分布

独立同分布随机变量序列的顺序统计方法(2019)

独立同分布随机变量序列的顺序统计方法 设有限长度离散随机变量序列12,,...,n x x x ,对其按从小到大的顺序排列,得到新的随机序列12,,...,n y y y ,满足:12...n y y y ≤≤≤;假设12,,...,n x x x 是独立同分布的连续取值型随机变量,每个变量的概率分布函数及概率密度分布函数分别为(),()F x f x 。 (1)求(1)k y k n ≤≤的概率密度分布函数()k y f y 解:k y 在y 处无穷小邻域取值的概率()k y f y dy 可以等效为这样一些事件发生的概率之 和:12,,...,n x x x 这n 个随机变量中有任意一个在y 处无穷小邻域取值,而剩余的n -1个随机变量中有任意k -1个的取值小于等于y ,对应的另外n -k 个变量的取值大于等于y 事件的个数(变量的组合数)为111n n k -???? ???-???? ,每个事件的概率为1[()]()[1()]k n k f y dy F y F y ---,则 11()()()[1()]11k k n k y n n f y dy f y dyF y F y k ---????=- ???-???? => 1!()()[1()]() (1)(1)!()! k k n k y n f y F y F y f y k n k n k --= -≤≤-- (2)求随机变量,(1)k l y y k l n ≤<≤的联合概率密度分布函数(,)k l y y f u v 解:(,) ()k l y y k l <在平面上的点(,) ()u v v u ≥处无穷小邻域取值的概率

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

随机变量的函数的分布

8.随机变量的函数的分布 【教学容】:高等教育大学盛骤,式千,承毅编的《概率论与数理统计》 第二章第五节的随机变量的函数的分布 【教材分析】:本节课主要是在学生学习了随机变量的概念和随机变量的分布的基础上进行的教学;本节从随机变量的分布入手引入随机变量的函数的随机性特征, 即由自变量X 的统计规律性出发研究因变量Y 的统计性规律的问题;本节课的教学先讲授离散型随机变量的函数的分布接着讲连续型随机变量的函数的分布。让学生掌握两种不同的随机变量的分布的求解方法。其中,离散型随机变量的函数的分布是比较容易求得而连续型随机变量的函数的分布学生往往束手无策,因此,我在本次教学中,先复习分布函数和概率密度函数的关系,后通过简单例子来讲解,最后归纳总结 ,再研究连续型随机变量的函数的一种特殊情形的分布问题。最后导出一个重要的定理。 【学情分析】: 1、知识经验分析 学生具有一定的随机变量及其分布相关理论知识及微分学相关知识,通过前两次课的学习已具备一定的解题方法,本节课通过让学生观察、思考,教师启发、引导等教学方式,让学生自然过渡到随机变量的函数的分布的学习中。 2、学习能力分析 学生虽然具备一定的微积分的知识和随机变量的理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】:掌握随机变量的函数的概率分布的求法。 【教学重点、难点】: 重点:离散型随机变量的函数的分布;连续型随机变量的函数的分布。 难点:连续型随机变量的函数的分布。 【教学方法】:讲授法 启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 在实际中,人们常常对随机变量 X 的函数()Y g X =所表示的随机变量Y 更感兴趣。

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

1多维随机变量及其联合分布

3.1多维随机变量及其分布 教学目标:本节讲解的是多维随机变量及其分布.通过本节的教学,要求学生正确理解多维随机变量及其分布,掌握多维随机变量及其分布的计算方法,运用定义和性质解决有关问题. 教学重点:多维随机变量及其分布的定义与性质. 教学难点:多维随机变量及其分布的证明与计算. 二维随机变量 定义1 设E 是随机试验,则由定义在E 的样板空间Ω上的随机变量X 与Y 构成的有序对),(Y X 称为二维随机变量(或二维随机向量)。 定义2 对任意实数y x ,,二元函数 },{)}(){(),(y Y x X P y Y x X P y x F ≤≤≡≤≤= 称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数。 若把二维随机变量),(Y X 看成平面上随机点),(Y X 的坐标,则分布函数 ),(y x F 就表示随机点落在以点),(y x 为顶点的左下方的无限矩形域内的概率。 ),(),(),(),(},{111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤< 分布函数具有以下基本性质: (1)1),(0≤≤y x F ,且 对任意固定的y ,0),(=-∞y F , 对任意固定的x ,0),(=-∞x F , 0),(=-∞-∞F ,1),(=∞∞F 。 (2)),(y x F 分别是x 和y 的不减函数。 (3)),(),0(y x F y x F =+,),()0,(y x F y x F =+,即),(y x F 关于x 或y 均右连续。

(4)若2121,y y x x <<,则 0),(),(),(),(11122122≥+--y x F y x F y x F y x F 如果二维随机变量),(Y X 可能取的值是有限对或可列无限对,则称),(Y X 是二维离散型随机变量。),(Y X 的分布律或X 和Y 的联合分布律为 ij j i p y Y x X P ===},{, ,2,1,=j i 。 其中 ij p 满足 (1) ; 0≥ij p (2) 111 =∑∑∞=∞ =i j ij p 。 X 和Y 的联合分布律也可用表格表示: ij j j j i i i p p p y p p p y p p p y x x x X Y 2122212212111121\ X 和Y 的联合分布函数为 ∑∑≤≤= x x y y ij i j p y x F ),(。 【例1】吴书p.66.例1。 一箱子装有5件产品,其中2件正品,3件次品.每次从中取1件产品检验质量,不放回地抽取,连续抽取两次.定义随机变量X 和Y 如下: 试求),(Y X 的分布律和分布函数。 解 10X ?=? ?,第一次取到次品,第一次取到正品10Y ?=? ?,第二次取到次品 ,第二次取到正品

§4随机变量函数的分布

§3.4 随机变量函数的分布 对离散型随机变量,我们讨论过随机变量函数的分布问题,对一般的随机变量当然也存在同样的问题。例如,若ξ是N (2 ,σμ)分布的随机变量,为了解决计算中的查表问题, 在中曾经引入变换 η=σ ξa - 这个新出现的随机变量η就是原来的随机变量ξ的一个函数。现在来讨论连续型随机变量函数的分布问题,先介绍一个便于应用的定理。 定理3.1 设ξ是一个连续型随机变量,其密度函数为p (x),又y =)(x f 严格单调,其反函数)(x h 有连续导数,则=η)(ξf 也是一个连续型随机变量,且其密度函数为 ? ? ?<<*=其他,0|],)(|)([)('β α?y y h y h p y (3.51) 其中 α=min{)(-∞f ,)(+∞f } β=min{)(-∞f ,)(+∞f } (证明 略) 例3.11(略) 例3.12(略) 2χ—分布 我们先给出下述一个式子: p (x,y)=? ? ???≤>Γ-0,00,)2(212x x x n y n 我们通常把以上述(3.53)式(其中n 是参数)为密度函数的分布称为是自由度为n 的 2χ—分布(2χ读作“卡方”),并记作)(2 n χ,它是数理统计中一个重要的分布。 (一)和的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x,y),现在来求ηξζ+=的分布,按定义为 F ζ(y)= P (ζ

F ζ(y)= ??<+y x x dx dx x x p 2121 2 1 ),( = dx dx x x p )),((221?? ∞∞ -∞ ∞ - (3.54) 如果ξ与η是独立的,由(3.48)知P ξ(x)·P η(y)是(ηξ,)的密度函数,用P ξ(x)·P η(y)代替(3.54)式中的p (x 1,x 2)便得 F ζ(y) = dx dx x p x p ))()((221?? ∞∞ -∞ ∞-ηξ =dx dz x z p x p y ))()((11? ?∞ ∞-∞--ηξ = dz dx x z p x p y ))()((11?? ∞ -∞∞ --ηξ 由此可得 ζ 的密度函数为 F ζ(y)= F ' ξ(y)= dx x y p x p ? ∞ ∞ --)()(ηξ (3.55) 由对称性还可得 F ζ(y)= dx x p x y p ? ∞ ∞ --)()(ηξ (3.56) 由(3.55)或(3.56)式给出的运算称为卷积,通常简单地记作 P ζ=P ξ* P η 例3.13(略) 我们已经知道某些分布具有可加性,其实还有一些其它分布,也具有可加性,其中2 χ—分布的可加性在数理统计中颇为重要,我们这里顺便证明这个结论。为此,可以讨论更一般形式的一个分布—Γ分布。如果随机变量ξ具有密度函数为 p (x,y)=?? ???≤>Γ--0,00 ,)(1x x e x x βαααβ (3.57) (其中α>0, β>0为两个常数),这时称ξ是参数为(α,β)的Γ分布的随机变量,相应的分布称作参数为(α,β)的Γ分布,并记作Γ(α,β). 例3.14(略) (二)商的分布 设),(ηξ是一个二维连续型随机变量,密度函数为p (x 1,x 2),现在来求η ξ ζ= 的分

随机变量及其分布列与独立性检验练习题附答案

随机变量及其分布列与独 立性检验练习题附答案 It was last revised on January 2, 2021

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A. 6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .5 3 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 2 3 ,乙在每局中获胜的概率为1 3,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( ) A .6 B . 395 C .41 5 D .9

7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A . 148 B . 124 C . 112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为1 3 ,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A . 4243 B .8243 C .40 243 D . 80 243 二、填空题 9.已知55104)1()1()1)(2(++???+++=-+x a x a a x x ,则=++531a a a ______. 10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________. 11.设ξ是离散型随机变量, 21 (),()33P a P b ξξ==== ,且a b <,又42 ,39E D ξξ== ,则a b +的值为______ _. 12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为 到站的时刻 8:10 9:10 8:30 9:30 8:50 9:50 概率 一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分) 三、解答题

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

连续型随机变量的分布与例题讲解

连续型随机变量的分布 (一)连续型随机变量及其概率密度函数 1.定义:对于随机变量X 的分布函数 F(X) ,若存在非负函数f(x), 使对于 任意的实数 x,有F ( x)x f(x) 称为 X f (t)dt ,则称X为连续性随机变量, 的概率密度函数,简称概率密度。 注: F(x)表示曲线下x 左边的面积,曲线下的整个面积为1。 2 .密度函数f(x) 的性质:注: f( x)不是概率。 1) f( x)≥ 0 + f ( x) dx = 1 2) ò-x 2 3)P{x 1 < X ? x 2 }òx1 f (x) dx = F (x 2 ) - F (x 1 ) 特别地,连续型随机变量在某一点的概率为零,即 P{ X = x} = 0. (但 { X=x} 并不一定是不可能事件) 因此P(a≤X ≤ b)= P(a< X

随机变量及其分布习题解答

第2章随机变量及其分布习题解答 一.选择题 1.若定义分布函数(){}F x P X x =≤,则函数()F x 是某一随机变量X 的分布函数的充要条件是( D ). A .0()1F x ≤≤. B .0()1F x ≤≤,且()0,()1F F -∞=+∞=. C .()F x 单调不减,且()0,()1F F -∞=+∞=. D .()F x 单调不减,函数()F x 右连续,且()0,()1F F -∞=+∞=. 2.函数()0 212021 0 x F x x x <-??? =-≤

5.设X 的分布律为 而(){}F x P X x =≤,则F =( A ). A .0.6. B .0.35. C .0.25. D .0. 6.设连续型变量X 的概率密度为()p x ,分布函数为()F x ,则对于任意x 值有( A ). A .(0)0P X ==. B .()()F x p x '=. C .()()P X x p x ==. D .()()P X x F x ==. 7.任一个连续型的随机变量X 的概率密度为()p x ,则()p x 必满足( C ). A .0( )1p x ≤≤. B .单调不减. C . ()1p x dx +∞ -∞ =?. D .lim ()1x p x →+∞ =. 8 .为使 x 1()0 1p x x ?=??≤? 是随机变量X 的概率密度,则常数c ( B ).

相关文档
最新文档