Pichia酵母表达系统使用心得

Pichia酵母表达系统使用心得
Pichia酵母表达系统使用心得

Pichia酵母表达系统使用心得

摘要:Pichia酵母表达系统广泛应用于外源基因表达。

生物通编者按:甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。

+ 表示优胜于;- 表示不如;= 表示差不多

EasySelect Pichia Expression System

产品性能:

优点——使用简单,表达量高,His-tag便于纯化

缺点——酵母表达蛋白有时会出现蛋白切割问题

全面产品报告及心得体会:

巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。

毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。

第一步构建载体

Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。

红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K 无法比拟的。

leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。

基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因

为我的蛋白是人源的,表达出来用于酵母双杂,因此需要有完备的糖基化修饰)。这样我的DNA片段由于较长,所以在做克隆的时候也要非常小心,需要注意的是:

①酶切位点不能出现在目的DNA片段中——如果片段长无法避免,可以采用平末端连接;

②虽然α-factor可以自动切除,但是在设计表达的时候,如果在N端不能出现任何多余的aa(比如药物蛋白表达),需要特别留意(说明书上有详细说明:P13);

③有三种不同的读码框(对于pPICZα系列来说就是对上α-factor序列),在设计克隆的时候要反复确定自己的读码框是否正确,这可是致命的问题;

④无论pPICZ还是pPICZα都有TGA(终止密码子),但是pPICZ系列没有ATG(起始密码子),有人认为酵母启动子与外源基因的ATG之间的距离越短对于表达的该基因越有利;

⑤如果不希望有c-myc和His-tag,可以在基因片段末尾加入终止密码子;

⑥Pichia的密码子与酿酒酵母的相似,有关基因表达偏好密码子的问题有人认为没有必要更换,有人认为一定要换,个人认为以产量为主要目的的可以考虑更换基因密码子,而如果片段过长就比较麻烦,不过有许多真核保守蛋白其实是和酵母密码子相似的;

⑦克隆菌株需要有recA,endA,试剂盒带有的TOP10挺好用的(其它像是DH5α都行),但是要注意带有筛选抗生素Zeocin的培养基要用低盐培养基(NaCl减半),这主要是因为怕影响到抗生素作用(Zeocin平板要避光保存);

⑧测序引物可以用α-factor信号引物,也可以用5'AOX1引物;

⑨如果需要高量表达,可以考虑做克隆的时候串联基因片段进行表达,另外也可以在转化酵母的时候重复转化。

⑩目的基因中最好不要含有pro-glu-ser-thr这样的序列,因为这个序列是激活蛋白水解酶的作用底物,会影响表达,另外也不要含有x-phe-x-arg-gln和gln-arg-x-phe-x这样的序列(x=任何氨基酸),因为这些序列容易受到容酶体的切割,而且目的蛋白末端最好是ala,asp,val,ser这样的氨基酸。除此之外许多高A+T含量的基因通常会由于提前终止而不能有效转录,也需要多加注意。

第二步线性化的DNA转化入Pichia酵母

Xiang Yang:EasySelect试剂盒准备了三种菌株:X33,GS115和KM71H。我倾向于选择X33,因为这个菌株转化率和表达量相对而言较高,如果你有电转仪(electroporator),可以尝试一下。如果没有的话,EasySelect 也准备了化学转化试剂——EasyComp Transformation,但是由于转化率的缘故,我建议使用电转仪。leslie:在得到了正确的序列之后就可以准备转化毕赤酵母了,试剂盒携带有的是X-33,GS115和KM71H这三

种毕赤酵母(另外常用的还有SMD1168),每种酵母的特点有些不尽相同(Manual上写的很清楚),其中X-33由于是野生型,因此耐受性比较好,如果担心转化率的话可以考虑这种酵母菌,而GS115与X33一样都是属于MUT+表现型,也就是说可以在含甲醇的培养基中快速生长,但是据说会对外源基因表达有影响,KM71是MUT-型酵母,在甲醇培养基中生长缓慢,但是也有利于翻译后加工,比如形成二硫键,糖基化等等,另外SMD1168则是基因组中的Pep4基因发生突变,造成蛋白水解酶活性的丧失,可以保护表达产物免受降解,促进表达量的提高。

一般来说,如果是胞内表达,应尽量用Mut-细胞,这样得到的蛋白产物中醇氧化酶蛋白量较少而目的蛋白量相对较多(约占Pp总分泌蛋白量的30-90%,如人乙酰胆碱酯酶B变异链的含量占到90%,使下游纯化更易进行。而对于分泌蛋白的表达,无论是甲醇利用慢(Mut-)还是甲醇利用快(Mut+)的细胞都可应用,如在人血清白蛋白(HSA)(为分泌型蛋白)的表达中就看不出两种类型的细胞之间有什么明显差别。

所以一般手册都会建议同时在这几种菌株中进行转化,这主要是因为不同的基因在不同的酵母菌中可能表达量截然不同,因此在最开始的时候建议多用几种酵母菌实验。

另外有个保存问题,原始酵母菌一定要保存好,因为酵母在传代多次后会影响其转化率和表达量,所以一方面分多管分装保存于-80℃,另一方面如果出现了转化或者表达的问题,在其它方面都没有出错的前提下可以考虑重新取出新菌液(每次都要涂平板挑菌)。

在准备酵母菌的同时也需要准备质粒,由于酵母菌转化对转化质粒的要求较高,量也较大(5-10ug),因此许多时候都会用PEG大提质粒,或者用大提试剂盒,总而言之要准备好足够量的质粒,并且不要忘记也要同时准备空载体以做对照。在转化前质粒需要进行线性化,这主要是为了增加重组率(EasySelect试剂盒表达量高的一个重要原因也就在于其原理是将目的片段整合到载体上,大大的增加了目的片段的表达)。线性化位点个人认为也会影响到表达量,对于基因片段不大的蛋白可以考虑用几个线性化位点同时进行转化筛选,但是如果片段大,就有可能供选择的机会少,而且也有可能遇上没有合适的线性化位点的情况,这个时候也不是说不能进行表达,但是准备的质粒就要增加10倍,另外也可以进行部分酶切(即先进行预实验,掐定时间和酶量保证被切开的质粒有部分是在线性化位点切开而基因片段保存完好)。

在线性化之后的质粒就可以酒精沉淀回收了——中间步骤需要使酶失活,说明书建议是热失活或者EDTA,个人认为前者比较好,主要是担心EDTA对于转化的影响,另外这三种酶失活的温度都是65℃/20min。沉淀回收之后是离心10分钟,用80%的酒精洗涤后风干,这一步需要多加注意保证风干完全,因为有实验证明残留的酒精对于转化的影响颇大。

接下来就是酵母转化了,这是令许多人头疼的一步,也是影响实验决定表达的关键步骤。转化方法有不少,

例如电转,化学转化,原生质体转化,其方法的难易程度和转化率高低呈反向递减的,也就是说电转最容易,转化率较高(但要求有电转仪),而原生质体最麻烦,而且效果不好(比较传统),因此不建议使用,EasySelect 说明书上这么建议,并且也详细说明了电转,化学转化(EasyComp和LiCl)方法的过程,可以按部就班。需要注意的是:

(电转过程)

①最好每次都从平板上挑酵母菌,用培养过的酵母放置时间不要超过一个星期;

②扩大培养的浓度一定要控制好,个人认为不需要OD600达到1.3-1.5,1.0-1.3的就好,这个时候的酵母比较新鲜,转化率比较高;

③整个感受态制作过程中一定要在冰上操作,离心最好也用冷冻离心机,这是影响转化的关键——为了进一步保证这一点,无菌水可以是冰水混合物,另外山梨醇和电转杯都要预冷;

④电转仪需要预热,所以准备感受态的时候就可以把电转仪打开了,电转后山梨醇的加入要快,曾有人做实验证明晚一秒就会降低转化的数量级,虽然不一定可信,但是我个人也认为这个过程要快,电转后可以看看时间,如果时间过短(比如〈4)就可能说明杂质较多,会影响转化率;

⑤转化后温育是个增加同源重组,增加存活率的过程,需要注意不要感染了大肠杆菌,再加入培养基30℃摇一段时间,可以取部分涂板(不同浓度抗生素),或者也有人将菌短暂离心,弃去上清,剩余全部涂板以保证转化率。

(化学转化)

如果没有电转仪,LiCl转化是一种可供选择的方法,转化率是102到103cfu/ug。

主要过程为:取过夜活化培养的菌液按1:1000接种于15ml新鲜的YPD液体培养基,30℃培养至OD600达到0.8-1.0;4℃,4500rpm离心5分钟,用8ml冰预冷的无菌水洗涤菌体,倾除洗涤液,用1mL ,4℃,4500rpm 离心5分钟,沉淀用50μl冰预冷的100mmol/L LiCl悬浮,最后定容至80-90ml。

LiCl转化取适量单链鲑精DNA(2mg/mL)煮沸5min,立即置于冰上备用,取上述制备好的感受态细胞12 000rpm,离心15s,吸弃LiCl溶液,按顺序依次加入

50%PEG 240ml

1mmol/L LiCl 36 ml

单链鲑精DNA 25ml

线性化质粒DNA 10 ml (约10mg)

用吸头反复吹打,使细胞沉淀与加入的溶液混匀,30℃静置温育30min,42℃热击20-25min,4500rpm离心

10min,吸弃转化液,细胞沉淀加1ml YPD培养基于30℃200 rpm培养2-4hr,取转化混合液100ml涂布含100μg/mL ZeocinTM 的YPDS平板,30℃培养2-3天。

第三步——挑克隆筛选

Xiang Yang:在protocol中用了许多篇幅来指导这一步,包括如何去通过平板筛选,观测生长速率来确定Mut 表现型等。这个过程需要3到5天,而我一般只用了4个小时进行PCR(AOX引物)筛选。

leslie:完成转化后就是克隆鉴定的过程了,包括高拷贝筛选,PCR鉴定和表型鉴定的过程,其中我做的比较多的是PCR鉴定(因为比较快),具体过程protocol上说的很清楚,其实也很简单,就是冻融破菌进行菌落PCR,但是其中许多具体细节问题也挺让人头痛的,第一就是破壁的问题,许多人用PCR方法进行鉴定都无法得到结果,甚至在表达出了以后还是无法得到这张鉴定图片,主要原因之一就是无法正常释放酵母基因组,一般通过培养菌然后进行沸水和-20℃冷冻循环过程裂解细胞在目的蛋白片段比较合适的范围以内是可以得到好的结果的,但是有时候片段过长,模壁就会阻碍扩增,所以我们实验室会用蜗牛酶(很便宜的酶来的)来帮助溶菌,我看许多实验室也会这么做,不过加入的时间不同而已,其次也有奢侈的用试剂盒的。

第二就是是模板量,个人建议模板真的不要加太多了,按照说明书的上的5ul我觉得还是多了,而且建议总体积不用这么大,当然加入模板的量也与自己培养菌的浓度以及用来冻融的菌数量有关。其次是假阳性和假阴性结果,在Mut-和Mut+情况是不一样的,如果用的是5'AOX引物,KM71H会出现3.6kb的片段,而Mut+则会出现AOX1基因原本长度的片段——大约长2.2kb,因此如果的基因片段长度相似,要注意区分。建议PCR 过程中使用多对引物进行反应,包括自己基因的,α-factor的,5'AOX的,都可以,反正各种对照多了有利于比较——当然前提是你不能晕了头。

掉了毛的鸵鸟:巴斯德毕赤酵母包含醇氧化酶-1(AOX1)基因的启动子的转录终止子(5’AOX1和3’AOX1),他们被多克隆位点分开,外源基因可在此插入,此外,载体中还包含组氨酸脱氢酶基因(HIS4)选择标记(HIS4区的整合方式为位点特异性单交换引起的基因插入,整合后使组氨酸缺陷型宿主(his4)恢复野生型.HIS4区或AOX1区位点的整合都使转化子具有HIS4基因,因而可利用表型差异进行筛选,酵母GS115具有组氨醇脱氢酶缺陷型基因his4,可接受含HIS4的载体而具有HIS+表型以筛选转化子.)及3’AOX1区,当整合型载体转化受体菌感受态细胞时,他的5’AOX1和3’AOX1能与染色体上的同源基因重组,从而使整个载体和外源基因插入到受体菌染色体上,在加入甲醇作为唯一碳源的培养基中,外源基因在5’AOX1启动子的控制下表达.在载体中引入Tn903Kanr基因(抗G418)有助于筛选高拷贝转化子,转化子的拷贝数与抗G418的能力有关,通过筛选抗G418能力强的酵母即可获得高拷贝转化子.外源基因是以同源重组的方式插入到酵母菌的染色体中,因此不易丢失,多

次传代后酵母仍能稳定表达外源蛋白,具有良好的遗传稳定性.

第四步——表达

Xiang Yang:将你的克隆在YPD培养基中培育到OD600值达到6.0,就可以离心收菌。用表达培养基(比如BMMY)重悬沉淀,在30oC培育过夜。

leslie:筛选鉴定出自己的重组子可以说什么都不能证明,还是要看这一步的酵母表达,有许多人在酵母表达上花费了大量的时间——不同于大肠杆菌的两天出结果,一次毕赤酵母的表达就需要起码一周的时间,筛选了上百上千的克隆,但是仍然是竹篮打水一场空,我个人建议如果在筛选完3批以上就可以放弃这一批转化的酵母菌,另外调整进行重新转化。

另外刚开始的时候可以用小量表达,可以用5ml:生长慢型,生长快型,阴性对照(空质粒),阳性对照(可以是曾经表达成功的重组子)和没有进行转化的酵母菌的单克隆,BMGY中培养到OD值2-6,离心收菌(如果怕污染或者麻烦,可以放置酵母菌一段时间,一半为20-30分钟,让菌沉淀下来,小心倾倒去上清培养基获得菌),转入BMMY中诱导表达,这些步骤都需要在超净工作台里进行,如果要区分是否染菌,可以取一些到显微镜下观察,或者闻气味(酸甜的是酵母),观颜色(乳白色的是酵母)。除此之外,如果是小量表达,有可能会在没有达到4天的时间培养基就干了,所以可以适当补充一些,以及在摇床里放置盛有无菌水的深口瓶,来保持摇床里湿度。

诱导物甲醇注意要在超净台中打开,可以分装到灭过菌的瓶子中——当然甲醇是不能灭菌的,而且也要注意在用酒精灯过甲醇瓶口的时候要小心,如果真的引起爆炸那可就损失大了。另外如果觉得每天添加甲醇麻烦,也有人用一次性注射器透过纱布添加甲醇,这个方法可能会造成染菌,慎选。说到纱布就想到了通气性问题,酵母在无氧和有氧的情况下都可以存活,但是在甲醇诱导的情况下毕赤酵母用的是醇氧化酶,自然氧气量对于这一基因的表达影响重大,但是由于害怕感染大肠杆菌,纱布裹的也不能太少,最好专辟出一个摇床进行三十度酵母表达,这样可以考虑将纱布减少到3—5层,同时需要注意的是摇瓶内菌液体积不要超过10-30%。

每天取样出来进行SDS-PAGE电泳鉴定,能这样最好,不过每天做胶跑胶染色真的很麻烦,可以汇集一批同时跑,不过样品一定要煮过冻存,而且每次取样不要反复冻融,最好分装保存——因为蛋白经煮沸变性会不稳定,容易降解。另外为了防止蛋白在分泌出来的过程就降解了(特别是小分子蛋白),也可以通过调节培养基pH值抑制蛋白水解酶的活性(这一方面说明书讲解得详细),还可以加入酪蛋白氨基酸等保护物质,竞争性抑制蛋白水解酶的活性来防止表达产物降解。

如果使用的是分泌型培养基,按道理收集培养基上清就可以进行下一步分析了,但是由于培养基中的蛋白浓度PAGE胶一般是检测不出来的——除非你的表达蛋白量非常大。所以需要进行浓缩,方法有TCA法,硫酸氨盐析,PEG沉淀,透析,超滤等等,当然最简单的就是煮沸蒸发水分浓缩了。另外跑胶的时候同时对照酵母胞内蛋白,以防没有分泌出来。SDS-PAGE的配置参见分子克隆,注意你的蛋白大小与胶的浓度的对应性,如果小到20kD以下,可以考虑用tricine胶,不过是个需要全盘重新准备的过程,要考虑清楚。如果选用的载体是带有信号肽的,虽说是分泌表达好纯化,但实际上毕赤酵母本身还是有本底表达的,而且有时候会造成假阳性,所以最后表达过程需要用Western blot或者Elasa,通常都是用WB,具体的细节可见Western Blotting 前传:想成为高手吗?系列文章,另外要提一句的是,如果本身蛋白没有合适抗体(如果是利用从大肠表达出来的蛋白做出的抗体也有可能与用真核系统表达出来的蛋白无法发生免疫作用),可以选用anti-myc或者anti-his的,前提当然是你的蛋白没有提前终止。

其它在表达中可能出现的情况包括表达量低,没有分泌表达(针对pPICZa系列),头两天蛋白量较大,无法重复,表达出来的蛋白偏大等等,需要分各个方面分析原因,比如蛋白明明加上了信号肽,但是就是无法分泌出来,这可能是蛋白结构在通过细胞膜的时候受到了阻碍,可能需要重新转化,更换线性化位点或者更换菌株;如果蛋白表达第一天较高,但是之后越来越少,这很有可能是蛋白降解了或者产生了竞争表达;毕赤酵母无法重复的问题比较严重,许多情况下在第一次获得了高量表达之后就再怎么也重复不了这个结果,遇到这种情况真是令人非常痛苦,可是除了重新摸索条件还能怎么样呢?而表达出来的蛋白分子量偏大则是个正常现象,除了糖基化以外还有其它原因,比如二聚体,这些需要进行WB或进一步实验验证。

第五步——发酵和产物纯化

Xiang Yang:我用的是HisTraP Columns(GE Healthcare),经过简单的纯化之后我可以得到90%的目的蛋白。我的目的蛋白是一个大小为45kDa,可以通过二硫键形成反向平行二聚体(antiparallel homodimer)的糖蛋白,经过纯化,我通过一个细胞增殖实验(cell proliferation assay)检测了其活性,结果表明表达出来的蛋白在体外有完全的活性。并且我也在体外利用受体分析了蛋白结合活性,与对照(通过大肠杆菌和Bacular细胞未带tag的蛋白)相比,his-tag有一点副作用。

伊可丽:由于在摇瓶培养中巴斯德毕赤酵母表达外源蛋白的水平往往不能准确地反映罐发酵中的表达情况,使之成为令人头痛的问题。主要原因是在摇瓶培养中,培养液的pH值无法控制,培养物通气不充分及无法控制添加碳源的最适速率。但是为了避免对每一个表达菌株进行繁琐的发酵罐培养条件的实验,仍需摸索表达菌株的摇瓶培养条件,使其产物的表达量与预期的发酵罐培养结果相近。

总而言之,EasySelect系统是一个便于操作的酵母表达系统,我已经使用这一系统表达过15个类似物了,每一个我都获得了超过1mg/1升培养液的纯化蛋白。(生物通:亚历)

酵母表达系统使用心得

Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 甲醇酵母部分优点: 1.属于真核表达系统,具有一定的蛋白质翻译后加工,有利于真核蛋白的表达; 2.AOX强效启动子,外源基因产物表达量高,表达产物可以达到每升数克的水平; 3.酵母培养、转化、高密度发酵等操作接近原核生物,远较真核系 统简单,非常适合大规模工业化生产; 4.可以诱导表达,也可以分泌表达,便于产物纯化; 5.可以甲醇代替IPTG作为诱导物,部分甲醇酵母更可以用工业甲醇替代葡萄糖作为碳源,生产成本低。 产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以分泌表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步——构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K无法比拟的。 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的

酵母表达系统的特点 大肠杆菌表达系统是常用的外源基因表达系统

1.酵母表达系统的特点大肠杆菌表达系统是常用的外源基因表达系统,人们已利用该系统表达了多种蛋白。大肠杆菌基因结构简单,易于进行基因操作,而且它生长迅速,周期短,营养需求简单,适于工业化生产。但同时该系统还存在很多缺陷。它是原核表达系统,缺少真核生物的翻译后加工过程,产生的外源基因产物往往无活性,它表达的蛋白多以包含体形式存在,需要经过复性,过程复杂,它产生的杂蛋白较多,不易纯化,所以产物中有可能会含有原核细胞中的有毒蛋白或有抗原性的蛋白。昆虫细胞表达系统和哺乳动物细胞表达系统都是真核细胞表达系统,它们可以进行多种蛋白的转录后加工,很适合于真核基因的表达。但是,它们遗传背景复杂,操作困难,易污染,生产成本高,所以并不利于实际应用[2,3] 2.核生物基因和制备有功能的表达蛋白质。某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化[4]。所以近年来,酵母表达系统已广泛应用于工业生产,为社会创造了极大的经济效益 3.酵母一般可分成三大类:(1) 酿酒酵母(Saccharomyces cerevisiae),又称面包酵母;(2) 粟酒裂殖酵母(Schizosaccharomyces pombe);(3) 非常规酵母(Nonconventional yeast),是指除酿酒酵母和粟酒裂殖酵母外的酵母统称 4.酿酒酵母(Saccharomyces cerevisiae)又名面包酵母,它是单细胞真核微生物,一直以来酿酒酵母被称为真核生物中的―大肠杆菌‖。它是最早应用于酵母基因克隆和表达的宿主菌。自1981年Hitzemom等用酿酒酵母表达人干扰素获得成功后,人们还用酿酒酵母表达了多种原核和真核蛋白,目前科学家对酿酒酵母表达系统的研究已非常深入。 5.2.1.2 用于基因表达的宿主菌——酿酒酵母在遗传学方面,人们对酿酒酵母进行了广泛的研究,酿酒酵母基因组序列(约1.2×107bp)早在1996年就完成,它有16条染色体,约6000个ORF,仅4%的酵母基因有内含子。由于人们对酿酒酵母的遗传背景十分清楚,因此酿酒酵母是很理想的真核表达宿主菌。

pPIC9k-His酵母表达载体说明

pPIC9k-His 编号 载体名称 北京华越洋生物VECT2430 pPIC9k--‐His 载体基本信息 出品公司: Invitrogen 载体名称: pPIC9k--‐His 质粒类型: 酵母表达载体 高拷贝/低拷贝: --‐--‐ 启动子: --‐--‐ 克隆方法: 多克隆位点,限制性内切酶 载体大小: --‐--‐ 5' 测序引物及序列: --‐--‐ 3' 测序引物及序列: --‐--‐ 载体标签: --‐--‐ 载体抗性: Ampicillin 筛选标记: --‐--‐ 备注: --‐--‐ 产品目录号: --‐--‐ 稳定性: --‐--‐ 组成型: --‐--‐ 病毒/非病毒: --‐--‐ 载体质粒图谱和多克隆位点信息

其他酵母表达载体: p416GFD pPIC9 p53blue pPIC9K pACT2-AD pPIC9k-His pAD-GAL4-2.1 pPICZA pADH2 pPICZB pAUR123 pPICZC pBridge pPICZαA pCL1 pPICZαB pDEST32 pPICZαC pDisplay pPICZαD pDR195 pPICZαFC pESC-His pPICZαGB pESC-Leu pPink-HC pESC-TRP pPink-LC pESC-URA pPinkα-HC pFA6a-FGP(S65T)-kanMX6 pRS316 pFLD pRS403 pFLD/CAT pRS405 pFLDαpRS406 pGADT7-T pRS414 pGAG424 pRS415 pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3 pHIC-PI pSos pHIL-D2 pSos-MAFB pHIL-S1 pUG66 pHis2 pYC2/CT pHisSi-1 pYC2/NTA

酵母表达体系

毕赤酵母是甲醇营养型,甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛和过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在过氧化物酶体里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2 的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 毕赤酵母含有两种醇氧化物酶,AOX1 AOX2。细胞中大多数的醇氧化酶是AOX1 基因产物。甲醇可紧密调节、诱导 AOX1 基因的高水平表达,为Mut+菌株,可占可溶性蛋白的 30%以上。AOX2 基因与 AOX1 基因有 97%的同源性,但在甲醇中带 AOX2 基因的菌株比带 AOX1 基因菌株慢得多,通过这种甲醇利用缓慢表型可分离 Muts 菌株。 毕赤酵母表达外源蛋白:分泌型和胞内表达。利用含有α因子序列的分泌型载体即可。 翻译后修饰:酿酒酵母与毕赤酵母大多数为 N-连接糖基化高甘露糖型,毕赤酵母中蛋白转录后所增加的寡糖链长度(平均每个支链 8-14 个甘露糖残基)比酿酒酵母中的(50-150 个甘露糖残基)短得多。 菌株:GS115 ( Mut+, Muts)和 KM71(Muts) 分泌型载体: pPICZα A,B,and C (5’AOX1启动子,紧密型调节,甲醇诱导表达,α分泌信号介导的分泌表达,Zeocin抗性基因,C端含有6XHis标签) 胞内表达型载体: pPICZ A,B,and C,

一:分子克隆 1.设计引物 分泌型载体图谱: 见酵母表达说明书(p13-pPICZ A,p14-pPICZ B,p15-pPICZ C) 2.PCR扩增基因 PCR反应体系(50μl) 模板DNA 1μl Forward Primer(10μM)1μl Reverse Primer(10μM)1μl dNTP Mixture(各2mM): 4μl 5×PrimerSTAR buffer(Mg2+ plus)10μl PrimerSTAR DNA Polymerase 0.5μl ddH O up to 50μl 2 PCR 反应流程 预变性98℃ 2min 变性98℃ 10sec 退火56℃ 10sec 30个循环 延伸72℃ 30sec 完全延伸72℃ 10min 保存4℃ 3.双酶切及其回收 双酶切反应体系(40μl) DNA(空载体或目的基因) 30μl BamHⅠ 1.5μl XholⅠ 1.5μl 10×Buffer K 4.0μl 4.酶连接 首先利用1%的琼脂糖电泳将双酶切后的PCR产物和载体进行分离,并通过胶回收试剂盒回收,按照目的基因和空载体的碱基摩尔比在1:3--1:9之间,一共吸取目的基因和空载体的总体积为5μl,在加入等量的5μl DNA快速连接试剂盒SolutionⅠ,16℃连接4-6h。 转化到克隆型感受态(DH5α和Top10),使用低盐LB培养基,加入25 μg/ml

酵母表达系统使用心得

精心整理 Pichia酵母表达系统使用心得 甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会 这个 是来中心( 1. 3. 4. 5. 产品性能:优点——使用简单,表达量高,His-tag便于纯化;缺点——酵母表达蛋白有时会出现蛋白切割问题。 巴斯德毕赤酵母(Pichiapastoris)是一种能高效表达重组蛋白的酵母品种,一方面由

于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-mycepitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alphafactor(α-factor)用以 的是系 PIC9K G418无 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微

镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等 有 的 余的 (起始密码子),有人认为酵母启动子与外源基因的ATG之间的距离越短对于表达的该基因越有利; ⑤如果不希望有c-myc和His-tag,可以在基因片段末尾加入终止密码子;

酵母表达系统步骤

毕赤酵母表达系统步骤 (参考Invitrogen公司说明书): 一、pPICZαA、B、C质粒以及DH5α菌株的保存 1取0.5μl pPICZα A、B、C质粒,热击转化DH5α,在低盐LB(含有25μg/ml Zeocin)的平板上37℃培养过夜。 2挑取转化子,甘油保存。 二、载体构建 1将目的基因构建到pPICZα载体上,转化DH5α,用Zeocin筛选转化子。 2提质粒酶切鉴定或PCR鉴定 3载体测序 测序可用α-Factor引物或5’AOX1引物,3’AOX1引物 三、线性化DNA 1提取足够量的质粒DNA(一次转化至少需要5-10μg质粒) 2 酶切线性化10μg构建好的载体,同时酶切空载体做对照,根据载体选择线性化酶切位点(样品分管酶切),pPICZα载体在5’AOX1区域有三个酶切位点可选择:SacI、PmeI、BstXI 3 取1-2μl酶切产物跑电泳,确定是否酶切完全; 4 过柱纯化线性化质粒(用50μl EB洗脱); 四、线性化DNA的去磷酸化处理 线性化质粒43μl CIAP Buffer 5μl

CIAP酶2μl 四、总体积为50μl的样品37℃ 1h,过柱纯化,用30μl ddH2O洗脱; 五、感受态细胞的制备 实验前准备:无抗性YPD平板一个、无抗生素液体YPD培养基,100μg/ml Zeocin YPD 平板和液体、50ml离心管两个、500ml预冷的无菌水、20ml 1M 山梨醇(灭菌预冷的),0.2cm预冷的电击杯; 1YPD平板划线培养菌,30℃培养2-3d; 250ml三角瓶中,加入5ml YPD,挑取酵母单菌落,30℃培养过夜;3吸取0.5ml菌液,加入至含有200ml新鲜YPD的1L三角瓶中,30℃,225rpm/min培养至OD值1.3-1.5; 41500g,4℃离心5min收集菌体; 540ml冰预冷的无菌水重悬沉淀; 61500g,4℃,5min; 730ml无菌水重悬; 81500g,4℃,5min; 910ml 1M 山梨醇重悬; 101500g,4℃,5min; 11加入1ml山梨醇,重悬冰上放置,直接做转化,或加入灭菌甘油每管80ul分装,冻存于-80℃(长时间保存会影响转化效率); 六、电击转化 15-10μg线性化DNA(20μl<)与80ul上述感受态细胞混合,转移

毕赤酵母实验操作手册

毕赤酵母表达实验手册 大肠杆菌表达系统最突出的优点是工艺简单、产量高、生产成本低。然而,许多蛋白质在翻译后,需经过翻译后的修饰加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等过程才能转化成活性形式。大肠杆菌缺少上述加工机制,不适合用于表达结构复杂的蛋白质。另外,蛋白质的活性还依赖于形成正确的二硫键并折叠成高级结构,在大肠杆菌中表达的蛋白质往往不能进行正确的折叠,是以包含体状态存在。包含体的形成虽然简化了产物的纯化,但不利于产物的活性,为了得到有活性的蛋白,就需要进行变性溶解及复性等操作,这一过程比较繁琐,同时增加了成本。 与大肠杆菌相比,酵母是低等真核生物,具有细胞生长快,易于培养,遗传操作简单等原核生物的特点,又具有真核生物时表达的蛋白质进行正确加工,修饰,合理的空间折叠等功能,非常有利于真核基因的表达,能有效克服大肠杆菌系统缺乏蛋白翻泽后加工、修饰的不足。因此酵母表达系统受到越来越多的重视和利用。 大肠杆菌是用得最多、研究最成熟的基因工程表达系统,当前已商业化的基因工程产品大多是通过大肠杆菌表达的,其主要优点是成本低、产量高、易于操作。但大肠杆菌是原核生物,不具有真核生物的基因表达调控机制和蛋白质的加工修饰能力,其产物往住形成没有活性的包涵体,需要经过变性、复性等处理,才能应用。近年来,以酵母作为工程菌表达外源蛋白日益引起重视,主更是因为酵母是单细胞真核生物,不但具有大肠杆菌易操作、繁殖快、易于工业化生产的特点,还具有真核生物表达系统基因表达调控和蛋白修饰功能,避免了产物活性低,包涵体变性、复性等等间题[1]。 与大肠杆菌相比,酵母是单细胞真核生物,具有比较完备的基因表达调控机制和对表达产物的加工修饰能力,人们对酿酒酵母(Saccharomyces.Cerevisiae)分子遗传学方面的认识最早,酿酒酵母也最先作为外源基因表达的酵母宿主.1981年

CHO细胞表达系统与酵母细胞表达系统比较

CHO细胞表达系统与酵母细胞表达系统比较 CHO细胞表达系统与毕赤酵母表达系统是当前发展前景看好的两个表达系统,为了能够更加直观地对两个表达系统有一定的认识,特意在此篇中对两个表达系统作一定的比较,从而能够更进一步的对两个表达系统有更深的了解 1.CHO细胞表达系统 (1)优点 CHO细胞属于成纤维细胞,既可以贴壁生长。也可以悬浮生长。目前常用的CHO细胞包括原始CHO和二氢叶酸还原酶双倍体基因缺失型(DHFR-)突变株CHO。近年来,为降低生产成本和减少血制品带来的潜在危害性,动物细胞生产开始使用无血清培养基(SFM),但SFM往往导致细胞活力差,贴壁性差,分泌外源蛋白的能力差等缺点。另有研究者尝试将类胰岛素生长因子IGF基因和转铁蛋白基因转入CHO细胞获得能自身分泌必需蛋白的“超级CHO”,无需在培养基中转铁蛋白和胰岛素,细胞可在SFM 中生长良好。与其他表达系统相比,CHO表达系统具有以下的优点: (1)具有准确的转录后修饰功能,表达的蛋白在分子结构、理化特性和生物学功能方面最接近于天然蛋白分子; (2)既可贴壁生长,又可以悬浮培养,且有较高的耐受剪切力和渗透压能力; (3)具有重组基因的高效扩增和表达能力,外源蛋白的整合稳定; (4)具有产物胞外分泌功能,并且很少分泌自身的内源蛋白,便于下游产物分离纯化; (5)能以悬浮培养方式或在无血清培养基中达到高密度培养。且培养体积能达到1000L以上,可以大规模生产。 (2)存在的问题 在过去的几十年里,人类对动物细胞的培养技术进行了大量的研究开发,取得了很大进展,但是利用CHO细胞表达外源基因的技术水平尚不能满足生物药品的开发和生产的要求,目前上游工作中主要存在以下问题: ①构建的重组CHO细胞生产效率低,产物浓度亦低; ②某些糖基化表达产物不稳定,不易纯化; ③重组CHO细胞上游构建与下游分离纯化脱节,主要表现在上游构建时着重考虑它的高效表达,而对高教表达的产物是否能有效地提取出来,即分离纯化过程考虑较少; ④重组细胞培养费用昂贵,自动化水平低下。 2.毕赤酵母细胞表达系统 (1)特点 自1987年Gregg等首次在毕赤酵母中表达乙型肝炎表面抗原(HBsAg)到1995年,已有四十多种外源蛋白在毕赤酵母宿主菌中获得表达。而最近几年每年报道的在毕赤酵母中表达的外源基因就有几十种,且一年比一年多,与其它表达系统相比,毕赤酵母表达系统具有以下优势: 1)含有特有的强有力的AOX(醇氧化酶基因)启动子,用甲醇可严格地调控外源基因的表达; 2)表达水平高,即可在胞内表达,又可分泌型表达。毕赤酵母中,报道的最高表达量为破伤风毒素C为12g/l,一般大于1g/l。绝大多数外源基因比在细菌、酿酒酵母、动物细胞中表达水平高。一般毕赤酵母中外源基因都带有指导分泌的信号肽序列,使表达的外源目的蛋白分泌到发酵液中,有利于分离纯化; 3)发酵工艺成熟,易放大。已经有大规模工业化高密度生产的发酵工艺,且细胞干重达100g/l 以上,表达重组蛋白时,已成功放大到10000升; 4)培养成本低,产物易分离。毕赤酵母所用发酵培养基十分廉价,一般碳源为甘油或葡萄糖及甲

Pichia酵母表达系统使用心得

Pichia酵母表达系统使用心得 摘要:Pichia酵母表达系统广泛应用于外源基因表达。 生物通编者按:甲醇酵母表达系统有不少优点,其中以Invitrogen公司的Pichia酵母表达系统最为人熟知,并广泛应用于外源蛋白的表达。虽然说酵母表达操作简单表达量高,但是在实际操作中,并不是每个外源基因都能顺利得到高表达的。不少人在操作中会遇到这样那样的问题,生物通编者特地收集了部分用户在使用EasySelect Pichia Expression System这个被誉为最简单的毕赤酵母表达的经典试剂盒过程中的心得体会。其中Xiang Yang是来自美国乔治城大学(Georgetown University)Lombardi癌症中心(Lombardi Cancer Center),部分用户来自国内。 + 表示优胜于;- 表示不如;= 表示差不多 EasySelect Pichia Expression System

产品性能: 优点——使用简单,表达量高,His-tag便于纯化 缺点——酵母表达蛋白有时会出现蛋白切割问题 全面产品报告及心得体会: 巴斯德毕赤酵母(Pichia pastoris)是一种能高效表达重组蛋白的酵母品种,一方面由于其是属于真核生物,因此表达出来的蛋白可以进行糖基化修饰,另一方面毕赤酵母生长速度快,可以将表达的蛋白分泌到培养基中,方便蛋白纯化。 毕赤酵母表达载体pPICZ在多克隆位点(MCR)3'端带有his-tag和c-myc epitopes,这些tag有利于常规检测和纯化,而且在MCR5'端引入了alpha factor(α-factor)用以增加表达,并且在表达后α-factor可以自动被切除。在进行克隆的时候,如果你选择的是EcoRI,那么只需在目标蛋白中增加两个氨基酸序列即可完成。另外pPICZ系列选用的是Zeocin抗生素作为筛选标记,而诱导表达的载体需要甲醇——甲醇比一般用于大肠杆菌表达诱导使用的IPTG便宜。 第一步构建载体 Xiang Yang:pPICZ系列有许多克隆位点可供选择,同时也有三种读码框以便不用的用户需要。 红叶山庄:有关是选择pPIC9K还是pPICZ系列?pPIC9K属于穿梭质粒,也可以在原核表达,而pPICZ系列比较容易操作,大肠和毕赤酵母均用抗Zeocin筛选(PIC9K操作麻烦一点,大肠用amp抗性,而毕赤酵母先用His缺陷筛选阳性克隆,在利用G418筛选多拷贝),而且对于大小合适(30—50KD)的蛋白在产量上是pPIC9K 无法比拟的。 leslie:要做毕赤酵母表达实验,首先当然就要了解这个可爱的酵母了(椭圆形,肥嘟嘟的,十分可爱),她和大肠杆菌长得有较大区别(大肠杆菌是杆状的),因此在培养的过程中要区别这两种菌体,除了气味,浓度,颜色以外,也可以取样到显微镜中观测。大家做毕赤表达的时候应该都遇过这种情况吧,表达过程中染菌(我们实验室曾经污染过各种颜色形状的细菌,那真是一段可怕的经历),如果在不知情的情况下继续做下去,那可以就是浪费大把的时间了。 基本熟悉了毕赤酵母,了解了她生长的喜好(多糖偏酸环境),生长的周期等等情况后,当然更多的精力还是应该花在表达的目的蛋白上,我的表达蛋白有些恐怖,有100KD,本来当然应该放在大肠杆菌中表达,但是为了分泌表达(其实后来发现大肠杆菌pET系列分泌表达系列也不错)和糖基化修饰(主要是这个方面,因

2020年毕赤酵母表达系统资料整理

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 毕赤酵母表达系统 Mut+和Muts 毕赤酵母中有两个基因编码醇氧化酶——AOX1及AOX2,细胞中大多数的醇氧化酶是AOX1基因产物,甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码外源蛋白的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带AOX2基因的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株。在YPD(酵母膏、蛋白胨、葡萄糖)培养基中,不论是Mut+还是Muts其在对数期增殖一倍的时间大约为2h。Mut+和Muts菌株在没有甲醇存在的情况下生长速率是一样的,存在甲醇的情况下,Mut+在对数期增殖一倍的时间大约为4至6个小时,Muts在对数期增殖一倍的时间大约为18个小时。 菌株GS115、X-33、KM71和SMD1168的区别 GS115、KM71和SMD1168等是用于表达外源蛋白的毕赤酵母受体菌,与酿酒酵母相比,毕赤酵母不会使蛋白过糖基化,糖基化后有利于蛋白的溶解或形成正确的折叠结构。GS115、KM71、SMD1168在组氨酸脱氢酶位点(His4)有突变,是组氨酸缺陷型,如果表达载体上携带有组氨酸基因,可补偿宿主菌的组氨酸缺陷,因此可以在不含组氨酸的培养基上筛选转化子。这些受体菌自发突变为组氨酸野生型的概率一般低于10-8。GS115表型为Mut+,重组表达载体转化GS115后,长出的转化子可能是Mut+,也可能是Muts(载体取代AXO1基因),可以在MM和MD培养基上鉴定表型。SMD1168和GS115类似,但SMD1168基因组中的Pep4基因发生突变,是蛋白酶缺陷型,可降低蛋白酶对外源蛋白的降解作用。 其中X-33由于是野生型,因此耐受性比较好,如果担心转化率的话可以考虑这种酵母菌,而X33与GS115一样都是属于MUT+表现型,也就是说可以在含甲醇的培养基中快速生长,但是据说会对外源基因表达有影响, KM71的亲本菌在精氨酸琥珀酸裂解酶基因(arg4)有突变,在不含精氨酸的培养基中不能生长。用野生型ARG4基因(约2kb)插入到克隆的野生型AOX1基因的BamHI(AOX1基因15/16密码子)及SalI(AOX1基因227/228密码子)位点,取代了AOX1基因16-227密码子,此结构转化至KM71亲本菌(arg4his4)中,分离产生KM71 MutsArg+His-菌株,Arg+转化子遗传分析显示野生型AOX1被aox1::ARG4结构所取代,所以KM71所有转化子都是Muts 表型。AOX1位点没有被完全缺失,理论上可用你的目的结构通过基因取代方法替换

毕赤酵母表达操作手册(精译版)

毕赤酵母多拷贝表达载体试剂盒 用于在含多拷贝基因的毕赤酵母菌中表达并分离重组蛋白 综述: 基本特征: 作为真核生物,毕赤酵母具有高等真核表达系统的许多优点:如蛋白加工、折叠、翻译后修饰等。不仅如此,操作时与E.coli及酿酒酵母同样简单。它比杆状病毒或哺乳动物组织培养等其它真核表达系统更快捷、简单、廉价,且表达水平更高。同为酵母,毕赤酵母具有与酿酒酵母相似的分子及遗传操作优点,且它的外源蛋白表达水平是后者的十倍以至百倍。这些使得毕赤酵母成为非常有用的蛋白表达系统。 与酿酒酵母相似技术: 许多技术可以通用: 互补转化基因置换基因破坏另外,在酿酒酵母中应用的术语也可用于毕赤酵母。例如:HIS4基因都编码组氨酸脱氢酶;两者中基因产物有交叉互补;酿酒酵母中的一些野生型基因与毕赤酵母中的突变基因相互补,如HIS4、LEU2、ARG4、TR11、URA3等基因在毕赤酵母中都有各自相互补的突变基因。 毕赤酵母是甲醇营养型酵母: 毕赤酵母是甲醇营养型酵母,可利用甲醇作为其唯一碳源。甲醇代谢的第一步是:醇氧化酶利用氧分子将甲醇氧化为甲醛,还有过氧化氢。为避免过氧化氢的毒性,甲醛代谢主要在一个特殊的细胞器-过氧化物酶体-里进行,使得有毒的副产物远离细胞其余组分。由于醇氧化酶与O2的结合率较低,因而毕赤酵母代偿性地产生大量的酶。而调控产生醇过氧化物酶的启动子也正是驱动外源基因在毕赤酵母中表达的启动子。 两种醇氧化酶蛋白: 毕赤酵母中有两个基因编码醇氧化酶-AOX1及AOX2。细胞中大多数的醇氧化酶是AOX1基因产物。甲醇可紧密调节、诱导AOX1基因的高水平表达,较典型的是占可溶性蛋白的30%以上。AOX1基因已被分离,含AOX1启动子的质粒可用来促进编码 的目的基因的表达。AOX2基因与AOX1基因有97%的同源性,但在甲醇中带 的菌株比带AOX1基因菌株慢得多,通过这种甲醇利用缓慢表型可分离Muts菌株表达: AOX1基因的表达在转录水平受调控。在甲醇中生长的细胞大约有5%的polyA+ RNA 来自AOX1基因。AOX1基因调控分两步:抑制/去抑制机制加诱导机制。简单来说,在含葡萄糖的培养基中,即使加入诱导物甲醇转录仍受抑制。为此,用甲醇进行优化诱导时,推荐在甘油培养基中培养。注意即使在甘油中生长(去抑制)时,仍不足以使AOX1基因达到最低水平的表达,诱导物甲醇是AOX1基因可辨表达水平所必需的。 AOX1突变表型: 缺失AOX1基因,会丧失大部分的醇氧化酶活性,产生一种表型为Muts的突变株(methanol utilization slow),过去称为Mut,而Muts可更精确地描述突变子的表型。结果细胞代谢甲醇的能力下降,因而在甲醇培养基中生长缓慢。Mut+(methanol utilization plus)指利用甲醇为唯一碳源的野生型菌株。这两种表型用来检测外源基因在毕赤酵母转化子中的整合方式。 蛋白胞内及分泌表达: 外源蛋白可在毕赤酵母胞内表达或分泌至胞外。分泌表达需要蛋白上的信号肽序列,将外源蛋白靶向分泌通路。几种不同的分泌信号序列已被成功应用,包括几种外源蛋白本身分

p416GFD酵母表达载体

p416GFD 编号 载体名称 北京华越洋生物VECT2740 p416GFD 载体基本信息 出品公司: --‐--‐ 载体名称: p416GFD 质粒类型: 酵母表达载体 高拷贝/低拷贝: --‐--‐ 启动子: --‐--‐ 克隆方法: 多克隆位点,限制性内切酶 载体大小: --‐--‐ 5' 测序引物及序列: --‐--‐ 3' 测序引物及序列: --‐--‐ 载体标签: --‐--‐ 载体抗性: --‐--‐ 筛选标记: --‐--‐ 备注: --‐--‐ 产品目录号: --‐--‐ 稳定性: --‐--‐ 组成型: --‐--‐ 病毒/非病毒: --‐--‐ 其他酵母表达载体: p416GFD pPIC9 p53blue pPIC9K pACT2-AD pPIC9k-His pAD-GAL4-2.1 pPICZA pADH2 pPICZB pAUR123 pPICZC pBridge pPICZαA pCL1 pPICZαB pDEST32 pPICZαC pDisplay pPICZαD pDR195 pPICZαFC pESC-His pPICZαGB pESC-Leu pPink-HC pESC-TRP pPink-LC pESC-URA pPinkα-HC pFA6a-FGP(S65T)-kanMX6 pRS316 pFLD pRS403

pFLD/CAT pRS405 pFLDαpRS406 pGADT7-T pRS414 pGAG424 pRS415 pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3 pHIC-PI pSos pHIL-D2 pSos-MAFB pHIL-S1 pUG66 pHis2 pYC2/CT pHisSi-1 pYC2/NTA pMETA pYC2/NTB pMETB pYCP211 pMETC pYEPlac112 pMETαA pYEPlac195 pMETαB pYES2 pMETαC pYES2-EGFP pMyr pYES2-kan pPIC3.5 pYES2-NTA pPIC3.5K pYES2-NTB pPIC6B pYES2-NTC pPIC6C pYES3/CT pPIC6αA pYES6/CT pPIC6αB pYES-DEST52 pPIC6αC pYIP211 pYX212 pYIP5 SUMOprotease pYRP7 Ycp22lac-EGFP Ycplac33

酵母表达系统概述及相关研究进展

酵母表达系统的研究进展和前景 ( XXXXXXXXXXXXXXXXXXXXXXXXXXXX学院) 摘要:酵母表达系统在表达真核生物蛋白方面已经得到广泛而成功的应用,表达出的重组蛋白表现出较高甚至比原物种体内的蛋白质更高的生物活性。近年来,利用酿酒酵母和毕赤巴斯德氏酵母表达人源蛋白或肽类活性物以及其它中间体取得了新的进展。本文主要从上游设计,重组表达,分离纯化和活性验证等方面进行了总结,并且对未来更好的利用酵母生产药物等活性物质作出展望。 关键词:酵母表达系统;蛋白分泌:异源基因;糖基化修饰;人源活性药物 引言 酵母作为一种表达外源基因的宿主菌, 既具有操作简单, 生长快等特点, 又具有真核细胞的翻译后修饰加工系统。在表达某些基因工程产品时, 可以大规模生产, 从而有效地降低成本。常用的酵母表达系统有酿酒酵母表达系统, 甲基营养型酵母表达系统和裂殖酵母表达系统。酿酒酵母(Saccharomyces. cerevisiae)在分子遗传学方面被人们的认识最早,也是最先作为外源基因表达的酵母宿主。但由于酿酒酵母的局限,1983 年美国Wegner 等人最先发展了以甲基营养型酵母(methylotrophic yeast)为代表的第二代酵母表达系统。其中毕赤酵母(P. pastoris)是继S. cerevisiae之后被迅速推广的一种外源基因表达的宿主菌。 酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。但是,可以通过基因敲除或改造用酿酒酵母表达亚单位疫苗(如HBV疫苗、口蹄疫疫苗等)或非蛋白活性物质及其中间体(如青蒿素,色素)。 与原核和其它真核表达系统相比,巴斯德毕赤酵母作为重组蛋白表达系统有以下优点[1]:(1)生长速率快,易于高密度培养(2)在几乎不含蛋白质的培养基中具有高水平产率(3)消除了内源毒性和噬菌体感染(4)易于对具有明确特征的酵母表达载体进行操作(5)对毕赤酵母的噬菌体对人没有病原性(6)具有多种翻译后修饰包括多肽折叠,糖基化,乙酰化,甲基化,蛋白质降解调控以及定位至亚细胞结构(7)能够构建分泌的蛋白,这样只需从生长培养基中提纯而不必收集酵母本身细胞。

毕赤酵母表达载体及宿主菌介绍

由于甲醇营养型酵母菌体内无天然质粒,所以携带外源基因的重组体必须整合于染色体中才能实现外源基因的表达。整合表达的优点在于保持外源基因稳定性并可产生多拷贝基因。典型的毕赤氏酵母表达载体含有醇氧化酶基因的调控序列,主要的结构包括:5’AOX1启动子片段、多克隆位点(MCS)、转录终止和polyA形成基因序列(TT)、筛选标记(His4或Zeocin)、3’AOX1基因片段,作为一个能在大肠杆菌中繁殖扩增的穿梭质粒,它还有部分pBR322质粒或COLE1序列。如果是分泌型表达载体,在多克隆位点的前面,外源基因的5’端和启动子的3’端之间插人了分泌作用的信号肽序列。在这个分泌信号的引导下,外源蛋白在内质网和高尔基体中经修饰和加工后能够由胞内转移至胞外,将成熟的蛋白质分泌到细胞外。为方 便于操作,通常表达载体都是穿梭质粒。 表达载体与酵母染色体有单交换和双交换整合2种方式,单交换整合时,或插入A0X1位点,或插入his位点。有文献报道,以his4作为整合位点时,染色体突变株与表达盒间存在基因转换,偶而可使Laz表达盒丢失,故AOX1位点更好。一般认为,单交换转化效率比双交换效率高,且易得到多拷贝整合,其发生机制可能是重复单交换引起的。 携带外源基因的表达载体可通过电穿孔、原生质体生成法或全细胞法转化酵母细胞。甲醇酵母转化和大肠埃希氏菌转化不同之处是前者较为复杂。对于大肠埃希氏菌而言,只要把重组表达载体导入细胞体内即可。因其载体上携带有自身复制原点,可随染色体复制而复制,重组表达载体能够稳定存在。在甲醇酵母系统中,所有的表达载体均不含酵母复制原点。这就是说,导入酵母体内的重组表达载体只有和酵母染色体上的同源区发生重组,整合到染色体上,外源基因才能够稳定存在,外源蛋白才能得到稳定表达,这种整合的转化子一旦形成就非常稳定。如果转化后的重组表达载体未能整合到染色体上,而是以游离的附加体形式存在,这种转化子就不稳定,重组表达载体极易丢失。所以,载体必须整合入酵母基因组中才能实 现异源蛋白的稳定表达。 多数情况下,外源基因多拷贝整合可提高表达水平。一般可采用如下3种方法建立多拷贝 表达株: ①在表达载体中插入首尾相连的多拷贝表达盒; ②在表达载体中插入细菌Tn903Kan基因,因G418抗性水平与载体拷贝数呈正相关;

pPIC ZαFC酵母表达载体说明

pPIC ZαFC 编号 载体名称 北京华越洋生物VECT2460 pPIC ZαFC 载体基本信息 出品公司: --‐--‐ 载体名称: pPIC ZαFC 质粒类型: 酵母表达载体 高拷贝/低拷贝: --‐--‐ 启动子: --‐--‐ 克隆方法: 多克隆位点,限制性内切酶 载体大小: --‐--‐ 5' 测序引物及序列: --‐--‐ 3' 测序引物及序列: --‐--‐ 载体标签: --‐--‐ 载体抗性: --‐--‐ 筛选标记: --‐--‐ 备注: --‐--‐ 产品目录号: --‐--‐ 稳定性: --‐--‐ 组成型: --‐--‐ 病毒/非病毒: --‐--‐ 其他酵母表达载体: p416GFD pPIC9 p53blue pPIC9K pACT2-AD pPIC9k-His pAD-GAL4-2.1 pPICZA pADH2 pPICZB pAUR123 pPICZC pBridge pPICZαA pCL1 pPICZαB pDEST32 pPICZαC pDisplay pPICZαD pDR195 pPICZαFC pESC-His pPICZαGB pESC-Leu pPink-HC pESC-TRP pPink-LC pESC-URA pPinkα-HC pFA6a-FGP(S65T)-kanMX6 pRS316 pFLD pRS403 pFLD/CAT pRS405

pFLDαpRS406 pGADT7-T pRS414 pGAG424 pRS415 pGAPZA pRS416 pGAPZB pRS41H pGAPZαB pRS426 pGAPZαC pRS426gal pGBKT7 pSEP1 pGBKT7-53 pSEP2 pGBKT7-Lam pSEP3 pHIC-PI pSos pHIL-D2 pSos-MAFB pHIL-S1 pUG66 pHis2 pYC2/CT pHisSi-1 pYC2/NTA pMETA pYC2/NTB pMETB pYCP211 pMETC pYEPlac112 pMETαA pYEPlac195 pMETαB pYES2 pMETαC pYES2-EGFP pMyr pYES2-kan pPIC3.5 pYES2-NTA pPIC3.5K pYES2-NTB pPIC6B pYES2-NTC pPIC6C pYES3/CT pPIC6αA pYES6/CT pPIC6αB pYES-DEST52 pPIC6αC pYIP211 pYX212 pYIP5 SUMOprotease pYRP7 Ycp22lac-EGFP Ycplac33

pYES2酵母表达载体说明

pYES2 编号 载体名称 北京华越洋生物VECT2980 pYES2 载体基本信息 出品公司: Invitrogen 载体名称: pYES2 质粒类型: 酿酒酵母蛋白表达载体 表达水平: 高拷贝 诱导方法: 半乳糖 启动子: GAL1 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5857 b p 5' 测序引物及序列: T7: T AATACGACTCACTATAGGG 3' 测序引物及序列: CYC1 T erminator: G TGACATAACTAATTACATGATG 载体标签: / 载体抗性: 氨苄 筛选标记: URA3 备注: 利用半乳糖诱导蛋白在酿酒酵母中表达。 产品目录号: --‐--‐ 稳定性: 稳定 Stable 组成型/诱导型: 诱导型 病毒/非病毒: 非病毒 载体质粒图谱和多克隆位点信息

pYES2多克隆位点 载体简介 pYES2的是一个5.9 kb的载体,设计用来在酿酒酵母(Saccharomyces cerevisiae)中诱导表达重组蛋白。载体的特点在于基因插入载体的构建简单,以及能够使用原养型尿嘧啶进行转化株的筛选。 该载体包含以下元素: 1. 酵母GAL1启动子,能够在酿酒酵母中被半乳糖高水平的诱导蛋白表达目的蛋白,同时能够被葡萄糖抑制表达 2.多克隆位点可以使用的很多限制酶切位点,便于基因插入。

3.CYC1终止子能够有效终止mRNA的转录。 4.能够利用URA3基因筛选带有ura3基因型的酵母宿主菌株转化子。 5.氨苄抗性基因能够方便在大肠杆菌中的进行载体筛选。 载体序列 LOCUS pYES2 5857 bp DNA circular SYN DEFINITION pYES2 ACCESSION KEYWORDS SOURCE ORGANISM other sequences; artificial sequences; vectors. COMMENT This file is created by Vector NTI FEATURES Location/Qualifiers source 1..5857 /organism="pYES2" /mol_type="other DNA" terminator complement(12..251) /label="CYC1_terminator" misc_feature 218..236 /label="pYESTrp_rev_primer" misc_feature 218..236 /label="CYC1_primer" promoter complement(368..386) /label="T7_promoter" promoter complement(410..861) /label="GAL1_promoter" misc_feature complement(424..447) /label="GAL1_primer" rep_origin complement(1402..2873) /label="2micron_origin" rep_origin 1404..2283 /label="2micron2_origin" promoter 2876..3101 /label="URA3_promoter" gene 3103..3903 /label="URA3" /gene="URA3" CDS 3103..3906 /label="ORF frame 1" CDS complement(3138..3614) /label="ORF frame 3"

相关文档
最新文档