高速铁路路基结构时变系统耦合动力分析

高速铁路路基结构时变系统耦合动力分析
高速铁路路基结构时变系统耦合动力分析

第28卷第5期铁 道 学 报Vol.28 No.5 2006年10月J OU RNAL OF T H E CHINA RA IL WA Y SOCIET Y October2006

文章编号:100128360(2006)0520065206

高速铁路路基结构时变系统耦合动力分析

马学宁1, 梁 波2

(1.兰州交通大学土木工程学院,甘肃兰州 730070;2.重庆交通大学土木建筑学院,重庆 400074)

摘 要:在车辆的走行过程中,上部与下部是相互作用和影响的,因此,轨道交通问题实际上就是线路上下部结

构和车辆系统的体系匹配问题。本文针对列车走行的实际情况,将轨道2路基作为参振子结构纳入车辆计算模

型,建立了包含车辆、钢轨、轨枕、道床和路基作为一体的二系垂向耦合动力分析模型。作为模型的验证,结合京

秦线提速改造工程进行了列车2路基动力仿真计算,得出在不同行车速度条件下,机车车辆通过路基段加固前后

状态下的车体加速度、动轮载、轮重减载率及道床和路基主要动力性能指标,并与实车试验进行对比。试验测试

结果验证了理论模型和分析方法的有效性,为高速铁路路基的动力特性分析和设计提供一些参考。

关键词:车辆;路基;时变;耦合;动力响应

中图分类号:U211.5 文献标识码:A

A Time2varying Coupling Model for Dynamic Analysis

of High Speed R ail w ay Subgrade

MA Xue2ning1, L IAN G Bo2

(1.School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou730070,China;

2.School of Civil Engineering and Architect ure,Chongqing Jiaotong University,Chongqing400074,China)

Abstract:Track t ransportation can be divided into t he t rack system above and t he t rack system below.While t he t rain is moving,t he part s above and below are interacted and mut ually influenced.Therefore,t he p roblem of t rack t ransportation is act ually t he matching between t he vehicle and t he railway line system.In t his paper, keeping to t he conditions of t rain running and taking t he t rack2subgrade as a part of t he vibration st ruct ure of t he vehicle mode1,a vehicle2subgrade model of t he secondary suspension vertically coupled system including t he vehicle,rail,sleeper,ballast and subgrade is established.Dynamic comp uter simulation of t he vehicle2subgrade system is performed in combination wit h speed raising reconst ruction project of t he Jingqin Railway Line as t he verification of t he model.Regarding t he t rain t ravelling at different speeds and t hrough subgrade sections ahead of and subsequent to strengt hening,dynamic responses such as t he acceleration of t he vehicle,dynamic wheel load and rate of wheel load reduction and t he main dynamic characters of ballast and subgrade are calculated and compared wit h t he experimental result s.The effectiveness of t he t heoretical model and simulation analysis are verified by t he test result s.Reference is made to analysis of t he dynamic characters and design of t he subgrade of high2speed railways.

K ey w ords:vehicle;subgrade;time varying;coupling;dynamic response

高速、重载已成为当今铁路发展的趋势,列车速度的提高导致机车车辆对路基结构动力作用明显增大,收稿日期:2006204205;修回日期:2006206227

基金项目:甘肃省自然科学基金资助项目(ZS0312B2520052G);

重庆市教委科学技术研究项目(K J060404);

重庆市自然基金资助项目;

兰州交通大学“青蓝工程”基金资助项目

作者简介:马学宁(1974—),男,宁夏中卫人,讲师,博士研究生。

E2m ail:mxn1974@https://www.360docs.net/doc/3a11589535.html, 因而对其提出了更高的要求。近年来对路基结构动力特性的研究,出现了各种计算模型[1~6],分别从不同角度进行了研究,在模型描述方面对机车车辆较为详细,而对轨道、路基部分较为简单,没有将车辆、轨道、路基作为一个系统来加以考虑,大多是在模拟动荷载的基础上分析轨下基础的应力、变形等问题,不能充分反映车2路体系在行进中的动力特性。文献[7,8]对于一系

悬挂系统条件下的车2路垂向耦合系统的动力模型进

行了探讨;文献[9,10]对车桥耦合系统的一系悬挂和二系悬挂进行了分析研究,但研究重点在于车辆2轨道2桥梁体系。本文将针对车辆走行的实际情况,从理论上研究车辆2轨道2路基体系的动力相互作用,建立二系悬挂条件下的车辆2轨道2路基系统的垂向耦合动力分析模型,并与京秦线提速改造工程的实车试验进行了对比。

1 车路动力分析模型的建立

车辆与路基的动力相互作用模型是由路基模型、车辆模型并考虑一定的轮轨关系组成的系统。这里首

先分析车路的动力相互作用,研究路基设计参数与车辆运行品质的相互关系,然后根据计算出的轮轨作用力,再具体计算某一选定路基断面的动力性质。1.1 模型建立及假定每节车辆是由车厢体、转向架、轮对及二系弹簧2阻尼悬挂装置组成的多自由度振动系统。模型采用如下假定:①每节车辆的车厢体、转向架和轮对均视为刚体,即不考虑振动过程中车厢体、转向架构架和轮轴的弹性变形;②通过线路的列车由多辆相同或不同形式的机车车辆(以下统称车辆)组成,以速度v 通过线路;③假设在行驶过程中车辆轮对始终与轨面保持密贴。第i 个车体考虑浮沉Z ci 和点头φci 两个自由度,第i 节第j 个转向架考虑浮沉Z tij 和点头φtij 两个自由度,第i 节第j 转向架第l 轮对考虑浮沉Z wij l 一个自由度。因此,对于具有两个转向架的6轴车和4轴车,总的计算自由度分别为12和10。以6轴车为例的动力分析和计算简化模型见图1

第i

节车体的运动方程可写成矩阵形式

M ci 00

J ci

¨

Z ci ¨φci

+

C czi 00C c φi

Z ci

φ

ci

+

K czi 0

0K c φ

i

Z ci

φci

-

C 2i C 2i C 2i l

ci -C 2i l ci

Z ti 1 Z ti 2

-K 2i

K 2i

K 2i l c

-K 2i l c

Z ti 1Z ti 2

=0

(1)

式中,M ci 、J ci 分别为第i 车体的质量和惯矩;K czi 、C czi 分别为第i 车体浮沉的总刚度和总阻尼;K c φi 、C c φi 分别为第i 车体点头总弹簧刚度和总阻尼;K 2i 为转向架一侧二系悬挂垂向刚度;C 2i 为转向架一侧二系悬挂竖向阻尼,令K 2i =K 2i 1=K 2i 2,C 2i =C 2i 1=C 2i 2,且有K czi =

2K 2i ,K c

φi =2K 2i l 2ci ,C czi =2C 2i ,

C c φi =2C 2i l 2

ci ;l ci 为车辆定距之半,m ;Z ti

1、Z ti 2分别为前后转向架质心处的竖向位移。见图1。

第i 节车体第j 个转向架的运动方程可写成矩阵形式

M ti

j

J tij

¨Z tij

¨φti j +C tzij 0

C t φi j

Z ti j

φtij

+K tzij

0K t φij

Z tij

φti j -

C 2i ηj C 2i l ci

Z ci

φci

-K 2i ηj K 2i l ci

Z ci

φci

=

6N k

l =1[(K 1i

Z wi jl +C 1i Z wij l )]

6N k

l =1

2ηl l

w

(K 1i Z wi jl +C 1i Z wijl )

(2)

式中,M ti j 、J ti j 分别为第i 车第j 转向架的质量和惯矩;K tzij 、C tzi j 分别为第i 车体第j 转向架浮沉的总刚度和总阻尼,C tzij =C 2i +N k C 1i ,K tzi j =K 2i +N k K 1i ;

K t φij 、C t φij 分别为第i 车体第j 转向架点头总弹簧刚度

和总阻尼,C t φij =N k C 1i l 2wi ,K t φij =N k K 1i l 2

wi ;K 1i 、

C 1i 分别为前后转向架一侧一系悬挂垂向刚度和阻尼;N k 为每一转向架的轮对数量,即N k =0.5N w ,N w 为每一车

体的轮对数量;Z ti j 、φtij 分别为第j 个转向架质心处的竖向位移和转角;Z wi jl 为轮对的竖向位移;l w 为转向架

固定轴距之半;ηj 为转向架符号函数,对前转向架,ηj =1,对后转向架,ηj =-1;ηl 为轮对符号函数,当轮对

l 位于转向架前位时ηl =1,位于转向架中间时ηl =0,

位于转向架后位时ηl =-1;其余符号意义同上。1.2 轨道及路基模型[11]

轨道及路基模型在文献[2,6]研究中,均将其考虑成多层轨下基础支承模型,轨道按弹性支承Euler 梁

考虑,轨枕质量集中在钢轨单元的节点上,每一轨枕下为一离散支承体系,将道床考虑成松散介质体,不考虑

各支承点下道床垂向振动的相互影响,因而变成集总

参数模型。这一模型最大的优点在于简化了数值分析

66 铁 道 学 报第28卷

的计算工作量。此外,未能考虑路基和地基参振是上述模型的主要缺陷。

本文对轨道与路基模型进行分析时,依然按常规方法将结构离散为有限元模型。将钢轨离散成梁单元(或四边形单元),轨枕及以下介质包括路基和地基均离散成四边形单元,这样就充分考虑了轨道2路基模型在动力下互相联系、相互协调的工作性质以及参数变化的影响,见图2。其动力方程为

M ¨X b +C X b +KX b =F b

(3)

式中,M 、C 和K 分别为路基的质量、阻尼和刚度矩阵;X b 、 X b 、¨X b 分别为路基结点的位移、速度和加速度向量;F b 为作用在路基结点的力向量

由于轨道2路基模型作为有限元模型,直接与车辆振动方程组合计算整个体系的动力响应,则计算工作量非常可观。因此,这里的钢轨2路基模型按子结构法原理建立。由于结构的振动反应主要由最先几个低阶振型起控制作用,所以只需取前几阶振型进行计算,从而使计算工作量大为减少。在实际计算中,由于车辆荷载是通过轨道作用于路基的,而整个结构的振动又是通过轨道影响车辆的,因此,根据需要各阶振型取轨道对应于轮对位置处或轨面节点的部分即可。

轨道2路基任一横截面处的竖向位移Z r (x )可由几个振型函数叠加而成。若取前N 阶振型计算,则

Z r (x )=

6

N

n =1

A n Φn (x )(4)

式中,Φn (x )为某一位置处第n 阶振型函数;A n 为对应的广义坐标(即某一时步下的广义位移);x 为某一横截面处的水平位置。

由振型分解可得对应n 阶振型的模态方程为

¨A n +2ξn ωn A n +ω2

n A n =F n

(5)式中,F n 为作用于第n 阶振型的广义力;ωn 为第n 阶振型的圆频率;ξn 为归一化后的阻尼系数。

对于广义力F n ,其确定方法如下:当第i 车体第j 转向架第l 轮对通过所分析的钢轨长度时,通过该轮对作用于轨道的力有轮对的惯性力和从转向架弹簧、阻尼器传来的竖向力,则竖向力为

P ijl =P is +K 1i (Z tij +2ηl l wi

φti j -Z wi jl )+C 1i ( Z tij +2ηl l wi φtij - Z wi jl )-m wij l ¨Z wi jl (6)

式中,P is 为车辆静轮重,P is =[(0.5M ci +M ti )/N k +

m ijl ]g n ,m ij l 为第i 车体第j 转向架第l 个轮对质量;Z wi jl 、 Z wi jl 和¨Z wi jl 分别为第i 车体第j 转向架第l 个轮对的竖向位移、速度和加速度;其余符号同上。

若所分析运行段上有N v 节车辆,每节车辆有N L

个转向架,每一转向架有N k 个轮对,则对应于第n 阶振型的广义力F n 为

F n =

6N v i =16N L j =16

N k

l =1

P ij l Φn (x ij l )(7)

式中,x ij l 为第i 车体第j 转向架第l 个轮对在轨面上的位置。1.3 动力方程的解耦

以往轮轨动力耦合作用主要是通过赫兹非线性接触理论[2]即轮轨接触力来实现的。而本文则依据车2路振动的位移相容条件进行解耦或求解。

按前述假定,列车运行时,轮对的竖向位移与钢轨运动的位移协调方程为

Z wi jl =Z r (x ijl )+Z s (x ijl )

(8)式中,Z s (x ijl )为轨面x ij l 处轨道垂直不平顺值,为一模拟值。

将式(4)代入式(8)可得

Z wijl =

6

N

n =1

A n Φn (x ijl )+Z s (x ij l )(9)

1.4 车2路耦合系统动力学

将车辆方程、路基方程组合在一起,并考虑轮轨关系方程的联系,

整理后得车2

路体系竖向振动方程组

M ci 00J ci ¨Z ci ¨φci +C czi

00C c φi Z ci

φci

+

K czi

K c φi

Z ci

φci

-

C 2i C 2i

C 2i l ci -C 2i l ci

Z ti 1 Z

ti 2

-

K 2i K 2i

K 2i l c

-K 2i l

c Z ti 1Z ti 2

=0

M ti j

J tij

¨Z

tij

¨φti j +C tzij 0

0C t φi j

Z ti j

φtij

+K tzij

K t φij

Z tij

φti j

-

C 2i ηj C 2i l ci

00

Z ci

φci

-K 2i ηj K 2i l ci 0

Z ci

φci

=

6

N k

l =1

[

6N

n =1

Φn

(x

ijl

)(K 1i A n +C 1i A n )+

K 1i Z s (x ijl )+C 1i Z s (x ij l )]

[

6N

n =1

Φn

(x

ijl

)ηl l wi (K 1i A n +C 1i A n )+

ηl l wi (K 1i Z s (x ij l )+C 1i

Z s (x ijl ))](10)

7

6第5期高速铁路路基结构时变系统耦合动力分析 

M n¨

A n+C n

A n+K n A n=

6N v i=16N L j=16N k l=1Φn(x ijl){P is+

K1i(Z ti j+2ηl l wiφtij-Z wij l)+

C1i( Z tij+2ηl l wi

φti j- Z wi jl)-

m wi jl[6N n=1¨A nΦn(x ijl)+¨Z s(x ij l)]}(11) 其总方程数为[2×N v(1+N L)+N]个。N为轨道2路基模态方程组数。取有代表性的几组低阶振型叠加,比如N取10。振动方程数采用Newmark2β法进行求解。

2 轨面不平顺激励位移的模拟

由于轨面不平顺的存在,在机车车辆沿着轨道运行过程中,也会引起机车车辆和轨道的振动。轨面不平顺因为轨道结构、焊接、基床的变形等原因形成了不同类型的不平顺,但总括起来可以用随机不平顺来描述。

在测定轨道的竖向不平顺时,常采用弦测法,对应于不同频率,不平顺值为

Z t(x)=Z0sin(2πf s x)(12)式中,Z t(x)为任一给定位置处的不平顺值;Z0为振幅;f s为对应的频率。

从这一概念出发,本文根据轨道不平顺养护维修管理目标[10],将轨面不平顺模拟为

Z s(x)=A s sin(2πv

L s

t+η)(13)

式中,v为车速;L s为目标管理对应的波长;A s为不平顺目标管理值;η为相应于不同位置的随机数(0~1.0)。

3 路基的动力分析

前述车2路垂向耦合动力模型主要从舒适度、减载率、轨面动变形来评价列车运行的品质和安全程度,尤其是分析了路基设计参数对这些指标的影响,这些工作为确定车体和路基等设计参数提供了依据。如何能够同时考虑路基本体某一断面诸如加速度、应力等动力性质,又是路基仿真计算的另一课题。

3.1 计算模型

首先,确定荷载模型。列车荷载是通过钢轨传递到轨枕再传递下去的,完全可以用一简单的、能够反映其特点的随机激励形式的力来表达。车2路耦合动力分析模型分析中所得到的轮轨作用力正是合适的动荷载模型,但根据轨枕分担规律要做适当折减。

其次,确定几何离散模型。在匹配关系适当的情况下,沿纵向作用在基床表面上的应力可近似视为均匀的;另一方面,从随机角度而言,每根轨枕受到相同振动荷载的概率是相等的,加之主要由于线路本身的半无限几何性质,于是,线路沿纵向可假定为平面应变问题,加之结构对称,可以取线路某一横断面之半进行二维动力分析。

3.2 材料的本构模型

采用弹塑性本构模型,在塑性屈服以前遵从弹性应力2应变关系。塑性屈服后应力增量dσ和应变增量dε之间的关系为

dσ=[D ep]dε(14)式中,[D ep]为理想弹塑性本构矩阵,采用Mohr2Cou2 lomb屈服准则。

根据虚功原理可建立起体系的运动方程,采用纽马克(Newmark)隐式时间直接积分法求解并采用预估2修正法计算。其中阻尼矩阵按瑞利(Raylrigh)线性组合法确定。

4 分析实例

针对京秦既有线路基状态和试验加固地段路基状态,分别计算不同级别提速条件下路基动力响应以及机车车辆运行品质。具体计算动力指标主要包括基床表面压力σf、道床顶面压力σs、轮轨作用力P、轮重减载率ΔP/P、乘坐舒适度指标或平稳性指标———车体垂向加速度a c等。根据机车车辆运行安全性与舒适性评定标准以及路基和轨道动力性能指标限值,对所分析的各种方案与工况提出评价意见。

4.1 线路基本状况[12]

京秦既有线轨道结构采用60kg/m钢轨,II型混凝土轨枕,普通碎石道床,计算路基地段的实际道床厚度为0.60m,计算地段的既有路基状态及加固方案见表1。仿真计算用轨道及路基结构参数见表2。

表1 京秦试验堤段路基状态及加固方案

里程路堤基底

路堤高

度/m

路基加固方案

桩长

/m

K113+

200~

+400

人工

填筑

砂黏

砂黏

土,

粉砂

2.5

布置直径0.3m的混凝

土挤密桩;纵向间距

0.575m,横向间距0.6

m

1.0

4.2 列车类型

仿真计算中采用的列车类型与提速试验列车相同,为“神州号”内燃动车组,其中机车为大连机车厂

86 铁 道 学 报第28卷

生产的6轴内燃动车,轴重22.5t;拖车为四方车辆厂生产的4轴双层客车,轴重16.5t。列车编组方式为2动3拖。机车车辆动力分析参数见文献[12]。

表2 京秦线200km/h提速改造工程动力仿真计算条件轨道路基条件参数

轨道钢轨:弹性模量2.059×1011N/m2,截面惯性矩3. 217×10-5N/m4,轨下垫层刚度120MN/m;混凝土轨枕:质量258.66kg,弹性模量2.1×1010N/m2,间距0.575m,轨枕平均底宽0.275m;碎石道床:密度1800kg/m3,变形模量110MPa,厚度:0.6m(路基段)

路基路堤高度:h=2.5m;基床模量:100MPa/m(加固前),180MPa/m(加固后);路堤模量:80MPa/m;地基模量:40~50MPa/m

轨道不平顺随机不平顺;郑武线实测不平顺样本

4.3 计算方案

5种车速160、180、200、220、250km/h和普通路基段加固与未加固2种条件组合共计10个仿真计算工况。

4.4 列车与线路动力性能评定标准

本次仿真计算采用的评定标准主要依据《铁道机车动力学性能试验鉴定方法及评定指标》(TB/T2360 -93),同时也参照了国内外在提速和高速试验中的评定指标,见表3[12]。

表3 京秦线提速改造工程动力仿真计算

采用的安全性与舒适性标准

评价指标车体垂向加速度

a c/(m?s-1)

轮重

减载

轮轨垂向

力P2/kN

道床顶面

压力/

MPa

基床表面

压力/

MPa

评定标准

0~1.5 优

1.5~

2.5 良

2.5~

3.5 合格

≤0.62500.5

0.15

既有线

4.5 主要计算结果和测试结果

通过仿真计算得出了“神州号”内燃动车组以160~250km/h速度通过加固前后普通路基地段时系统各种动力响应指标最大值与实测值,见图3~图5。

由图3和图4可见:①无论是动车还是拖车,加固后的列车运行品质都要好于未加固条件。②路基未加固条件下,动车的车体加速度在v>180km/h速度范围内已超出其舒适性良好标准2.5m/s2,且随着速度的提高,超限量迅速增大。加固后,各种速度下的车体加速度均明显减小,但250km/h时略微低于良好标准。动车的车体加速度明显大于拖车的车体加速度,96

第5期高速铁路路基结构时变系统耦合动力分析 

这说明拖车的舒适度好于动车。计算结果与实车试验结果吻合较好。③随车速增大,轮轨力增大,动车的轮轨力略大于拖车,均满足动强度限值要求。④轮重减载率计算结果为0.20~0.50,表明无论动车还是拖车均能满足轮重减载率安全标准0.6。计算结果小于实车试验结果,但趋势一致。

关于线路响应,由图5可知:①加固后的道床最大顶面压力小于未加固条件,且满足安全标准。②加固后的基床表面压力大于未加固条件。最大值均小于70kPa,满足基床对动应力的要求。计算结果与实车试验结果吻合很好。③加固后的基床表面加速度小于未加固条件,与实车试验结果吻合较好。

5 结论

(1)建立了车辆、钢轨、轨枕、道床和路基作为一体来考虑的车辆、轨道、路基时变耦合动力系统分析模型,为各种不平顺条件下路基动力分析提供了手段。

(2)本文提出的车2路系统分析模型和计算机仿真方法可较好地模拟列车高速通过时路基和车辆的动力特性,对实际工程具有参考意义。现场试验结果[12]验证了理论模型和分析方法的有效性。

(3)作为算例的京秦线提速改造工程,计算结果表明,当试验列车以200~220km/h速度运行于路基段轨道时,无论路基加固与否,能够满足舒适性及路基强度要求。加固后的列车运行品质比未加固的要好。

参考文献:

[1]李军世,等.高速铁路路基动力反应的有限元分析[J].铁

道学报,1995,17(1):66—75.

L I J un2shi,et al.The finite element analysis about dynam2 ic response of subgrade of high speed railway[J].Journal of the China Railway Society,1995,17(1):66—75.

[2]翟婉明.车辆2轨道耦合动力学[M].第二版.北京:中国铁

道出版社,2001.

[3]Kennedy J C,et al.Development of Multilayer Analysis

Model for Tie/Ballast Track Structures[R].Washington D C:57th Transportation Research Board Annual Meeting.

1978.39—47.

[4]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版

社.2002:47—62.

[5]Toshikazu Hanazato,et al.Three2Dimensional Analysis of

Traffic2Induce Ground Vibration[J].J.of G eo2tecgh.

Eng.ASCE.1991,117(8):1133—1151.

[6]L I Ding2qing,et al.Wheel/Track Dynamic Interaction

Track Substructure Perspective[J].Vehicle System Dy2 namic Supplement,1995,(24):183—196.

[7]梁波,蔡英,等.车2路垂向耦合系统的动力分析[J].铁道

学报,2000,22(5).:65—71.

L IAN G Bo,CA I Y ing,et al.Dynamic Analysis on vehicle2 subgrade model of vertical coupled system[J].Journal of the China Railway Society,2000,22(5).:65—71.

[8]L IAN G Bo,et al.Dynamic Analysis of the Vehicle2Sub2

grade Model of Vertical Coupled System[J].Journal of Sound and Vibration,2001,(1):79—93.

[9]夏禾.车辆与结构动力相互作用[M].北京:科学出版社.

2002.

[10]张楠,夏禾,等.高速铁路铰接式列车车桥系统动力响应

分析[J].工程力学,2004,21(2):46—53.

ZHAN G Nan,XIA He,et al.Dynamic Analysis of Bridge2articulated High Speed Train System[J].Engi2 neering Mechanics,2004,21(2):46—53.

[11]梁波.二系悬挂条件下的车2路垂向耦合系统的动力模型

[R].兰州:兰州交通大学,2003.

[12]西南交通大学,兰州铁道学院.京秦客运通道提速改造工

程动力仿真研究报告[R].成都:西南交通大学,兰州:兰州铁道学院,2000.

(责任编辑 安鸿逵)

07 铁 道 学 报第28卷

《高速铁路路基工程施工质量验收标准》(tb10751-2010)

中华人民共和国行业标准TB TB 10751 -2010 J XXX- 2010 高速铁路路基工程施工质量验收标准Standard for constructional quality acceptance of high speed railway subgrade engineering (报批稿) 2010—12—08 发布 实施 2010—XX — XX 中华人民共和国铁道部发布

中华人民共和国行业标准 高速铁路路基工程施工质量验收标准Standard for constructional quality acceptance of high speed railway subgrade engineering TB 10XXX -2010 J XXX-2010 主编单位:中铁十二局集团有限公司批准部门:中 华人民共和国铁道部施行日期:2010 年XX 月 XX 日 2010 年

、八 冃U 言 本标准是根据铁道部《关于印发2009年铁路工程建设标准编制计划的通知》(铁建设函[2009]34号)的要求,在《客运专线铁路路基工程施工质量验收暂行标准》(铁建设[2005]160号)的基础上,充分吸纳京津、武广、郑西、合宁、合武、石太等高速铁路的建设、运营经验以及京广、浙赣、胶济、郑徐线等第六次大面积提速工作经验编制而成的。 本标准的编制工作紧紧把握高速铁路总体技术路线,坚持高起点、高标准,通过原始创 新、集成创新和引进消化吸收再创新,形成了符合我国国情、路情,具有自主知识产权的中国咼速铁路路基工程施工质量验收标准。 本标准共分15章,主要内容包括:总则、术语、基本规定、地基处理、填料、基床以下路堤、基床表层以下过渡段、路堑、基床、路基支挡工程、路基排水、路基边坡防护、路基相关工程及设施、沉降变形观测、路基单位工程综合质量评定。 本标准的主要内容如下: 2?强调了工程施工质量必须达到设计要求的结构安全、使用功能和耐久性能,主体结构质量实现零缺陷,满足设计使用年限内正常运营的需要; 3?体现了对施工管理、技术、作业三个层次的有关要求,明确了建设各方在工程施工质量控制过程中的具体质量职责; 4 ?体现“四新”技术及机械化、工厂化、专业化、信息化等现代化手段,规定了工程施工应采用先进的技术、设备和工艺,保证质量,保障安全; 5?规定了质量检测应采用先进、成熟、科学的方法和手段,质量数据做到全面、真实、可靠; 6.突出源头控制、过程控制、细节控制。加强工程用原材料的检查验收,完善施工过 程中每一个环节、每一道工序、每一项作业的质量控制要求; 本标准以黑体字标志的条文为强制性条文,必须严格执行。 在执行本标准过程中,希望各单位结合工程实践,认真总结经验,积累资料。如发现需 要修改和补充之处,请及时将意见和有关资料寄交中铁十二局集团有限公司(太原市西矿街130号,邮编:030024),并抄送铁道部经济规划研究院(北京市海淀区北蜂窝路乙29号, 邮政编码:100038),供今后修订时参考。 本标准由铁道部建设管理司负责解释。 技术总负责人:。 主编单位:中铁十二局集团有限公司。 参编单位:中铁二局集团有限公司、中铁第五勘察设计院集团有限公司 主要起草人:吴波黄直久张晓波武常明王彩文李佐厉鹏陈济洲王俊华刘金成胡建万伟明刘卫

高速铁路路基工程试题

高速铁路路基工程试题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

吉图珲客专X X X标 路基专业考试题 姓名:单位:职务:专业类别: 答题时间:120分钟满分:100分 一、填空(每空1分,共计40分) 1、工序之间应进行交接检验,上道工序应满足下道工序的施工条件和技术要求。相关专业工序之间的交接检验应经(监理工程师)检查认可,未经检查或经检查不合格的不得进行下道工序施工。 2、路堤填筑材料基床底层填料的粒径应小于( 60)mm,基床底层以下路堤填料的粒径应小于( 75)mm,且应级配良好。 3、区间原地面处理、浆体喷射搅拌桩、CFG桩沿线路纵向连续路基长度每(≤200m)的单个工点为一个检验批;站场路基折合正线双线每(≤200m)的单个工点为一个检验批; 4、路基相关工程包括(电缆槽)、(接触网支柱基础)、(防护栅栏)、(过轨管线、综合接地)等分项工程。 5、路堤填筑应按(三阶段、四区段、八流程)的施工工艺组织施工。每个区段的长度应根据使用机械的能力、数量确定,一般宜在200m以上或以构筑物为界。各区段或流程内严禁几种作业交叉进行。 6、基床以下路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥ 110 ),碎石类及粗砾土K30 (MPa/m)(≥ 130 ),基床底层路堤压实标准:压实系数(≥),砂类土及细砾土地基系数K30 (MPa/m) (≥130 ),碎石类及粗砾土K30 (MPa/m)(≥ 150 ),动态变形模量Evd (MPa) (≥ 40 )。 7、路堤边坡宜采用加宽超填或专用边坡压实机械施工。当采用加宽超填方法时,

高速铁路路基施工及维护

路基排水设备施工 地面排水设备的类型?分别适用于什么条件? 地面排水设备主要有:排水沟、测沟、天沟、截水沟、矩形沟槽、跌水沟和急流槽等。 排水沟是设置于路堤护道的外侧,用以排除路堤范围内的地面水和截排从田野方向流向路堤的地面水的地面排水设备。 测沟是位于路堑路肩边缘的外侧,用以汇集和排除路堑范围内的地面水。在线 路不填不挖的地段亦应设置测沟。 天沟位于堑顶边缘以外,可设一道或几道,用以截排堑顶上方流向路堑的地面水。截水沟设置于路堑边坡平台上及排水沟、测沟、天沟所在部位以外的其他地方,用以截排边坡平台以上的坡面水或所在地区的部分地面水。 矩形水槽,当水沟所在地段土质不良或地质不良,水沟易于变形,以及受地形、地物或建筑限界的限制,不能设置占地较宽的梯形水沟时,排水沟、测沟、天沟、截水沟均宜采用矩形水沟的形式。 跌水、缓流井和急流槽,在地形陡峻地段,水沟的沟底纵坡很大时,可修建跌水、急流槽和缓流井等排水设施,以减少沟内流速,降低动能。 地下排水设备的类型?分别适用什么条件? 地下排水设备的类型有:明沟与槽沟、边坡渗沟、支撑渗沟、截水渗沟与引水渗沟、渗水隧洞、水平钻孔、立式集水渗井与渗管 明沟与槽沟是敞开的地下排水设备,用于拦截、引排埋藏不深的地下水(一般为2m以内的潜水和上层滞水),并可兼排地表水。设置时,宜沿线路方向和顺沟谷走向布置,沟底应埋入不透水地层内,沟壁最下一排渗水孔的底部应高出沟底不小于0.2m。为避免开挖断面过大,明沟深度不宜超过1.2m,若再深可用槽沟;槽沟深度不宜超过2m,若再深宜改用渗沟。 边坡渗沟是为疏导潮湿边坡及引排边坡上层滞水和泉水而修建的排水设备,同时可起支撑边坡的作用。其适用于土质路堑边坡不陡于1:1 或路堤边坡因潮湿容易发生表土坍滑的部位。 支撑沟是用来支撑可能滑动的不稳定土体或山坡,并排除在滑动面附近的地下水和疏干潮湿土体的一种地下排水设备。 截水渗沟与引水渗沟,截水渗沟用于拦截地下水,使其不流入病害区;引水渗沟是用来引排山坡湿地、洼地或路基内的地下水,以便疏干附近土体和降低地下水位。

高速铁路路基工程

高速铁路路基工程 中国铁道科学研究院 2002年11月27日 高速铁路路基技术特点 ?路基按照结构物设计,填料和压实标准高; ?严格控制路基变形和工后沉降; ?路桥及横向构筑物间设置过渡段; ?路基动态设计; ?地基处理类型多。 路基填筑质量标准高 ?基床表层采用级配碎石强化结构,K30 、E v2、E vd、n 指标满足设计要求。 ?基床底层采用A、B组或改良土填筑,K30、E v2、K 、n满足设计要求 ?基床以下路基采用A、B、C组或改良土填筑,K30、E v2、K 、n满足设计要求 严格控制路基变形和工后沉降 ?工后沉降是高速铁路路基设计的主要控制因素,路基发生强度破坏之前,已经出现了不能容许的变形;

?我国对无砟轨道的路基工后沉降要求一般不应超过扣件可调高量15mm,路桥路隧差异沉降不超过5mm。路桥及横向构筑物间设置过渡段 ?路桥及横向构筑物间的过渡段,是以往设计及施工中的薄弱环节,也是既有线发生路基病害的重要部位。由于桥台与路堤的刚度相差显 著,高速列车通过时对轨道结构及列车自身会产生冲击,从而降低列 车运行的平稳性和舒适度,加快结构物和车辆的损坏。 ?为保证列车高速运行时的平稳舒适,对路桥过渡段采用了刚度过渡的设计方法。在桥台后一定范围内,采用刚度较大的级配碎石作为过渡 填筑段,与路堤相接处采用1:2的斜坡过渡。 路基动态设计 ?为了有效地控制工后沉降量及沉降速率,需要开展路基动态设计。 ?根据沉降观测资料及沉降发展趋势、工期要求等,采取相应的措施,如调整预压土高度,确定预压土卸荷时间,以及铺轨前对路基进行评 估及合理确定铺轨时间,以确保铺轨后路基工后沉降量与沉降速率控 制在允许范围内。路基动态设计的成果可以为后续的轨道工程打下了 良好的基础。 地基处理的种类多 ?对于浅层软弱地基采用了换填碾压处理、或换填砂垫层处理; ?对于深层软基的主要地段采用袋装砂井、塑料排水板的排水固结加预压的处理方 法; ?对于工后沉降要求高及路桥过渡段,根据地质条件和经济对比,采用了砂桩、碎 石桩、粉喷桩、搅拌桩、旋喷桩等地基处理方法; ?对于有地震液化的粉土或粉细砂层的地基段,采用了挤密砂桩的处理方法; ?新建的一些客运专线采用强夯、CFG桩、灰土挤密桩、桩网、桩板等地基处理方

高铁路基附属工程施工方案

路基边坡防护工程施工方案 合福铁路客运专线 DK40+618.135~DK58+734.50路基边坡防护工程施工方案 编制: 复核: 审核: 中铁十三局集团合福铁路三分部 二0一二年十一月

目录 1.编制依据................................................. 错误!未定义书签。 1.1编制依据............................................. 错误!未定义书签。 1.2编制范围............................................. 错误!未定义书签。 2.工程概况................................................. 错误!未定义书签。 2.1主要技术指标 (2) 2.2轨道类型 (3) 3.施工要求 (3) 3.1质量要求 (3) 3.2职业健康安全要求 (3) 3.3环保要求 (3) 3.4文明施工要求 (3) 4.工程自然特征与施工条件 (3) 4.1工程地质及水文地质概况 (3) 4.2气象条件 (3) 4.3水电资源 (4) 5.路基护坡施工方案 (4) 5.1 C25混凝土拱形截水骨架内客土植草及栽种灌木护坡 (4) 5.2 C25方形植草窗内空心砖客土植草及栽种灌木护坡 (9) 5.3空心砖客土植草及栽种灌木边坡防护 (10) 5.4护坡与基础连接...................................... 1错误!未定义书签。 5.5路堑防护施工........................................ 1错误!未定义书签。 6.脚墙施工方案 (12) 6.1施工范围 (12)

路基工程试题题库

路基工程试题 一、填空题 1、高速铁路路基工程施工质量验收单元应按单位工程、分部工程、 分项工程和检验批划分。 2、主控项目的质量经抽样检验应全部合格。一般项目,有允许偏差 的抽检点,除有专门要求为,80%及以上的抽检点应控制在规定允许偏差内,最大偏差不应大于规定允许偏差的1.5倍。 3、采用机械挖除换填土时,应预留保护层由人工清理,保护层的厚 度宜为30~50cm。 4、土工合成材料上的垫层和填料厚度大于50cm方可采用重型压实 机械碾压密实。 5、砂垫层应采用天然级配的中、粗、砾砂,含泥量不应大于5%,用 作排水固结地区的砂垫层含泥量不应大于3%。 6、采用砂垫层时应碾压密实,采用碎石垫层时,路基填高≤3m时, 顶面压实质量应满足K30≥150Mpa/m,路基填高>3m时,顶面压实质量应满足K30≥130Mpa/m。 7、CFG桩施工前应进行不少于3根桩的成桩工艺试验,确定施工工 艺参数后,进行单桩或复合地基承载力试验,确认设计参数。8、混凝土灌注桩施工前应进行不少于3根桩的成桩工艺试验,确定 施工工艺参数后,进行单桩或复合地基承载力试验,确认设计参数。 9、采用钻孔注浆处理岩溶或洞穴时,其钻孔的布设形式、范围、孔

径、深度和注浆施工质量应符合设计要求。 10、基床以下路堤填料的最大粒径应小于75mm,基床底层填料的最 大粒径应小于60mm。 11、级配碎石材料应由开山石块、天然卵石或砂砾石经破碎筛选而成。 12、路基填筑应按照三阶段、四区段、八流程的施工工艺组织施工。 13、路基分段填筑时,纵向街头处应在已填筑压实基础上挖出硬质 台阶,台阶宽度不宜小于2m,高度同填筑层厚度。 14、基床表层碾压应遵循先轻后重、先慢后快的原则。各区段交接处 应相互重叠压实,纵向搭接长度不小于2m,纵向行与行之间的轮迹重叠不小于40cm,上下两层填筑街头应错开不小于3m。 15、基坑开挖应采用临时支护措施保持边坡稳定,基坑开挖较深,边 坡稳定较差时,应跳槽开挖,并及时灌注基础混凝土封闭。16、挡土墙混凝土浇筑前应检查模板是否变形、漏浆、支撑牢固,混 凝土浇筑后挡土墙面应平顺整齐,墙顶、两端面与基础连接处应密贴封严。 17、抗滑桩桩孔开挖前应做好施工场地平整及地面截、排水,并备好 通风设施。 18、抗滑桩桩孔开挖应根据地质情况及时支护,桩孔第一节护臂应高 出地面20cm,并做好孔口加强护臂,缩口。 19、预应力锚索施工前应按工作锚索的3%做锚固试验,且不少于3 根,以验证锚固段的设计指标,确定施工工艺参数。 20、混凝土预制构件拼装排列应整齐、平顺、紧密、美观,并与坡面

高速铁路路基工程专业技术

高速铁路路基工程技术 中国铁道科学研究院铁道建筑研究所 史存林 一、我国高速铁路路基的发展情况 路基工程是铁路工程建设项目中所占比例较大的工程,在线下工程中占有举足轻重的地位。随着铁路向高速化发展,路基标准及施工质量状况直接影响列车高速、平稳、舒适和安全的技术指标。 我国客运专线铁路路基的技术标准及主要参数,是九十年代以来在高速铁路“八五”、“九五”研究成果的基础上,吸收了国外高速铁路路基施工和建设的经验;在设计过程中借鉴、消化、吸收了国外铁路设计新方法和新标准;结合秦沈线的实际情况,并经有关部门多次组织国内专家的论证而最终确定的。 1.1路基主要研究的课题及成果 1.1.1“八五”“九五”路基主要研究的课题 《高速铁路路基技术条件的研究》(1993~1995) 《高速列车作用下地基弹塑性与刚度的研究》(1993~1995) 《高速铁路路基稳定性及变形控制值的研究》(1995~1997) 《高速铁路软土地基工后沉降标准的研究》(1995~1997) 《高速铁路路基与桥梁过渡段技术措施的研究》(1995~1997) 1.1.2秦沈客运专线路基科研试验的主要项目(2000~2003) 《软土路基工后沉降的控制试验研究》 《路基施工工艺、质量检测方法和标准的试验》 《路桥过渡段设置方法试验》 《土工合成材料加筋技术处理路基试验》 《不同基床表层结构及路基、轨道动态试验研究》 1.1.3高速铁路(京沪)路基工程试验研究项目 《京沪高速铁路路基结构形式及填料改良优化研究》(1997~1998) 《(高速铁路)路基和桩基沉降控制的试验研究》(1999~2001) 《高速铁路路基沉降控制的试验研究》(2002~2003) 《高速铁路软土和液化土地基处理技术的试验研究》(2002~2003) 《高速铁路液化土地基加固技术的试验研究》(2003~2004) 1.1.4客运专线路基工程试验研究项目 随着客运专线的大规模规划建设,针对客运专线通过软土、膨胀土、湿陷性黄土等

中国高速铁路的发展现状与前景

xx高速铁路的发展现状与前景 众所周知,中国高速铁路在最近几年有了极大的发展,而我也非常荣幸可以聆听孙永福院士的讲座,进一步对我国的高速铁路有了了解。在此我也高速铁路谈谈我浅薄的了解和看法。 1.我国高铁发展现状 我国高速铁路网分骨干网、重要的区域网、大城市之间的城际高铁等三种类型,骨干网就是指规划的四纵四横干线网,“四纵”是指四条纵向铁路客运专线: 纵贯京津沪和冀鲁皖苏四省,连接环渤海和长江三角洲两大经济区,全长1 318公里的北京到上海客运专线;连接华北、华中和华南地区,全长2 260公里的北京经武汉、广州到深圳的客运专线;连接东北和关内地区,全长约1 700公里的北京经沈阳、大连到哈尔滨的客运专线;连接长江、珠江三角洲和东南沿海地区,全长约1600公里的杭州经宁波、福州到深圳的客运专线。“四横”则是连接西北和华东地区,全长约1 400公里的四条横向铁路客运专线: 徐州经郑州到兰州的客运专线;连接华中和华东地区,全长约880公里的杭州经南昌到长沙的客运专线;连接华北和华东地区,全长约770公里的青岛经石家庄到太原的客运专线;连接西南、华中和华东地区,全长约2 078公里的上海经南京、合肥、武汉、重庆到成都的客运专线。按高铁建设等级分为无砟道床的时速350公里/小时的高铁和时速250公里/小时的有砟道床的准高铁。 中国高铁的特点是大量采用高速桥梁和无砟道床技术,采用超大半径弯道,既消除平交道口和行人干扰,又保证路基的平顺,防止路基沉降。尤其是大量采用高速桥梁,使得一望无际的数十公里乃至数百公里的高速桥梁屹立在广阔平原上,非常雄伟壮观,成为一道靓丽的风景线。 2.xx高铁技术 目前中国所掌握的高铁技术有车体设计和空气动力学;高速道岔(250公里,部分进口);板式轨道;列控系统(部分芯片进口);逆变器,变流器,电动机(部分零件进口)。没有掌握的主要是轴承和车轮。中国铁路在高速动车组、高速铁路基础设施建造技术和既有线提速技术等方面都达到了世界先进

高速铁路路基工程施工质量验收标准考试题

高速铁路路基工程施工质量验收标准 考试题

高速铁路路基工程施工质量验收标准考试题 姓名:分数: 一、填空题(每题1分) 1.高速铁路工程施工应严格按进行,全面贯彻,达到设计要求的使用功能,保障铁路安全。 2.高速铁路工程施工,建设、勘察设计、施工和监理单位等建设各方应坚持“”的原则,设置管理机构,配备管理人员,制定生产规章制度,落实生产责任制。 3.高速铁路工程施工,明确了建设各方应建立健全保证体系,对工程施工质量进行全控制。规定了施工现场质量管理检查记录应包括、、人员质量责任实行终身追究制度。 4.高速铁路路基工程施工应贯彻国民经济可持续发展战略,合 选择,弃土不得堵塞沟槽、挤压河道、桥梁墩台及其它建筑物。 5.高速铁路工程应采用先进、成熟、科学的手段,质量数据 符合相关标准的规定,质量检测人员必须具有相应的资格。 6.高速铁路路基工程的各类质量检测报告、检查验收记录和其它工程技术管理资料,必须按规定,而且严格履行责任人签字确认制度。

7.高速铁路路基工程及入员应经过专门培训,经考试合格后方可上岗。 8.高速铁路路基的工后沉降达不到要求时,严禁进入轨道工程施工工序。 9.高速铁路路基工程施工,采用的原材料、构配件和设备,施工单位和单位应按本标准的规定进行检验,不合格的不应用于工程施工。各工序应按施工技术标准迸行控制,单位和单位按本标准的规定进行全面检查,并形成记录。工序之间应进行交接检验,应满足的施工条件和技术要求。相关专业工序之间的交接检验应经工程师检查认可,未经检查或经检查不合格的不应进行下道工序施工。 设施。 11.原地面处理前,应对地基的地质资料进行核查,地基条件应符合文件。核查的条件与设计资料不符时,应及时反馈。 12.原地面坡度陡于1:5 时,应顺原地面挖,整平,沿线路挖台阶的、应符合设计要求,沿线路纵向挖台阶的宽度不应小于 m 。 13.采用机械挖除换填土时,应预留由人工清理,保护层的厚度宜为㎝。 14.水泥粉煤灰碎石桩( CFG 桩),施工前应进行成桩工艺性出

高速铁路路基设计规范标准

6 路基 6.1一般规定 6.1.1路基工程应加强地质调绘和勘探、试验工作,查明基底、路堑边坡、支挡结构基础等的岩土结构及其物理力学性质,查明不良地质情况,查明填料性质和分布等,在取得可靠地质资料的基础上开展设计。 6.1.2路基主体工程应按土工结构物进行设计,设计使用年限应为100 年。 6.1.3基床表层的强度应能承受列车荷载的长期作用,刚度应满足列车运行时产生的弹性变形控制在一定范围内的要求,厚度应使扩散到其底层面上的动应力不超出基床底层土的承载能力。基床表层填料应具有较高的强度及良好的水稳性和压实性能,能够防止道砟压入基床及基床土进入道床,防止地表水侵入导致基床软化及产生翻浆冒泥、冻胀等基床病害。 6.1.4路基填料的材质、级配、水稳性等应满足高速铁路的要求,填筑压实应符合相关标准。 6.1.5路堤填筑前应进行现场填筑试验。 6.1.6路基与桥台、横向结构物、隧道及路堤与路堑、有砟轨道与无砟轨道等连接处均应设置过渡段,保证刚度及变形在线路纵向的均匀变化。 6.1.7路基工后沉降值应控制在允许范围内,地基处理措施应根据地形和地质条件、路堤高度、填料及工期等进行计算分析确定。对路基与桥台及路基与横向结构物过渡段、地层变化较大处和不同地基处理措施连接处,应采取逐渐过渡的地基处理方法,减少不均匀沉降。路基施工应进行系统的沉降观测,铺轨前应根据沉降观测资料进行分析评估,确定路基工后沉降满足要求后方可进行轨道铺设。 6.1.8路基支挡加固防护工程应满足高速铁路路基安全稳定的要求,路基边坡宜采用绿色植物防护,并兼顾景观与环境保护、水土保持、节约土地等要求。 6.1.9路基排水工程应系统规划,满足防、排水要求,并及时实施

高速铁路-施工测量考试题(含答案)

高速铁路施工测量考试试题 姓名职务单位得分 一.单项选择(每题1分) 1、由于各项测量工作中都存在误差,导致相向开挖中具有相同贯通里程的中线点在空间不相重合,此两点在空间的连线误差在水平面垂直于中线方向的分量称为( B )。 A.贯通误差 B.横向贯通误差 C.水平贯通误差 D.高程贯通误差 2.对工程项目的关键测量科目必须实行(B)。 A.同级换手测量 B.彻底换手测量 C.施工复D.更换全部测量人员3.施工单位对质量实行过程检查,工作一般由(D)检查人员承担。 A.测量队 B.监理单位C.分包单位D.施工单位 4.线路施工测量的主要内容包括:线路复测、路基边坡放样和(B)。 A.地形测量B.横断面测量C.纵断面测量D.线路竣工测量5.桥梁施工测量的主要内容不包括:(C)。 A.桥梁控制测量B.墩台定位及轴线测量C.变形观测D.地形测量 6.下列水准仪使用程序正确的是( D ) A.粗平;安置;照准;调焦;精平;读数 B.消除视差;安置;粗平;照准;精平;调焦;读数 C.安置;粗平;调焦;照准;精平;读数 D.安置;粗平;照准;消除视差;调焦;精平;读数。 7. CPⅡ控制网复测时,相邻点间坐标差之差的相对精度限差为:( C ) A、1/55000 B、1/80000 C、1/100000 8. 下列各种比例尺的地形图中,比例尺最小的是( C )。 A. 1∶2000 B. 1/500 C. 1∶10000 D. 1/5000 9 .导线测量中横向误差主要是由( C ) 引起的。 A 大气折光 B 测距误差 C 测角误差 D 地球曲率 10.水准仪i 角误差是指水平视线与水准轴之间的( A ) A 在垂直面上技影的交角 B 在水平面上投影的交角 C 在空间的交角 11.有一台标准精度为2mm+2ppm 的测距仪,测量了一条lkm 的边长, 边长误差为( B ) A、土2mm B、土4mm C、土6mm D、土8mm 12.在三角高程测量中,采用对向观测可以消除( C ) 的影响。 A.视差 B.视准轴误差 C.地球曲率差和大气折光差 D.水平度盘分划误差 13. 测量工作要按照( B )的程序和原则进行。 A.从局部到整体先控制后碎部 B. 从整体到局部先控制碎部 C. 从整体到局部先碎部后控制 D. 从局部到整体先碎部后控制 14.设AB 距离为200.23m ,方位角为121 0 23' 36" ,则AB 的x 坐标增 量为( D )m. 。 A.-170.919 B.170.919 C.104.302 D.-104.302

高速铁路的发展与展望

姓名:夏立新 班级:土木1006 学号:1208101625

高速铁路的发展与展望 夏立新 中南大学土木工程学院 摘要:2013年10月,中泰两国政府签署协议,明确中国将帮助泰国建设高铁,泰国则以大米等农产品抵偿部分投资,这一合作方式被形象地称为“大米换高铁”。这是中国继723事故以来,高铁走出国门的重要一步,也意味着中国高铁即将迎来有一个春天。本文主要讲述中国高铁历年的发展与改革,同时为高铁规划一副蓝图。 关键词:高速铁路;发展;优越性 1.中国高铁的现状 高速铁路的定义是随着世界科学技术的发展和客观条件的变化而变化的。在世界上首先以法律条文明确高速铁路定义的是日本,1970年5月,日本在第71号法律《全国新干线铁路整备法》中规定:“列车在主要区间以200㎞/h以上速度运行的干线铁道称为高速铁路”。也有一些其它区分,如将最高时速160公里划归为高速铁路,但在众多进入高速铁路时代的各国高速列车,一般最高时速均200公里以上,因此人们又往往习惯于把时速在200公里以上的干线铁道称作高速铁路。 2008年8月,中国第一条高铁——京津城际铁路开通。时至今日,中国的高铁总里程已突破1万公里,约占世界高铁运营里程的45%,稳居世界高铁里程榜首。 我国铁路系统瞄准世界铁路先进水平,运用后发优势,博采众家之长,坚持原始创新、集成创新和引进消化吸收再创新,用短短几年时间,推动我国高速铁路技术走在世界最前列。2010年底,我国铁路营业里程达到9.1万公里,居世界第二位;投入运营的高速铁路营业里程达到8,358公里,居世界第一位。2011年高铁预计将建成通车4,715公里,合计13,000公里以上。新线合计7,901公里,共计98,901公里。现在我国已成为世界上高速铁路系统

高速铁路路基工程施工工艺

3.7主要工程项目施工工艺 3.7.1路基工程 3.7.1.1级配碎石、级配碎石加水泥及混凝土、砂浆的拌和要求 路基基床表层、过渡段填筑的级配碎石、级配碎石加5%水泥以及改良土填料等混合料采用厂拌法施工;混凝土采用自动计量拌合,砂浆采用机械拌和。分别设3座混合料拌合站统一进行厂拌级配碎石(级配碎石加5%水泥)的拌合生产供应,挡护工程混凝土就近与桥梁或隧道工程混凝土拌合站共用,级配碎石的生产实行严格的准入及准出制度,水泥、碎石及砂等材料的材质满足要求方能入厂,级配碎石等混合料的级配、含水量及水泥的灰剂量、含水量等满足要求方能出厂。 3.7.1.2填料及压实标准 路基填筑时,基床、过渡段及基床以下部分路堤的填料与压实标准以及地基条件等均要满足铺设相应轨道类型的要求;基床表层、路堤与桥台过渡段、路堤与横向结构物(立交框架、箱涵等)过渡段、路堤与路堑过渡段采用的级配碎石的材质和级配符合相关规范要求。 3.7.1.2.1基床表层填料及压实标准 采用级配碎石填筑基床表层的材料的规格及压实标准应符合下述技术要求: (1)碎石粒径、级配及材料性能应符合《新建时速200公里客货共线铁路基床表层级配碎石技术条件》(暂行)的规定。颗粒的粒径、级配应符合“基床表层级配碎石粒径级配表”中规定,且0.5mm以下的细集料中粒径小于0.075mm的颗粒含量应≤6%。 基床表层级配碎石粒径级配表 表3.7.1.2-1 (2)基床表层级配碎石材料经认真考察当地有关碎石加工厂后确定符合设计及《暂规》要求的碎石材料。 (3)在粒径大于22.4mm的粗颗粒中带有破碎面的颗粒所占的质量百分率不少于30%。同时用于基床表层级配碎石材料性能需满足: 碎石材料性能需满足: ①粒径大于1.7mm的集料的洛杉矶磨损率不大于50%。

高速铁路路基工程试题

吉图珲客专XXX标 路基专业考试题 姓名:_________ 单位: __________ 职务:__________ 专业类别:___________ 答题时间:120分钟满分:100分 一、填空(每空1分,共计40分) 1、工序之间应进行交接检验,上道工序应满足下道工序的施工条件和技术要求。相 关专业工序之间的交接检验应经(监理工程师)检查认可,未经检查或经检查不合格的不得进行下道工序施工。 2、路堤填筑材料基床底层填料的粒径应小于(60 )mm基床底层以下路堤填料的粒 径应小于(75 )mm且应级配良好。 3、区间原地面处理、浆体喷射搅拌桩、CF血沿线路纵向连续路基长度每(w 200n)的单个工点为一个检验批;站场路基折合正线双线每(w 200n)的单个工点为一个检验批; 4、路基相关工程包括(_____ 线、综合接地)等分项工程。 5、路堤填筑应按(三阶段、四区段、八流程)的施工工艺组织施工。每个区段的长度 应根据使用机械的能力、数量确定,一般宜在200m以上或以构筑物为界。各区段或流程 内严禁几种作业交叉进行。 6、基床以下路堤压实标准:压实系数(》0.92 ),砂类土及细砾土地基系数K30(MPa/m)(》110 ),碎石类及粗砾土K30 (MPa/m)(》130 ),基床底层路堤压实标准:压实系数(》0.95 ),砂类土及细砾土地基系数K30(MPa/m)(》130

), 碎石类及粗砾土K30 (MPa/m) O 150 ),动态变形模量Evd (MPa) O 40 )0 7、路堤边坡宜采用加宽超填或专用边坡压实机械施工。当采用加宽超填方法时,超填宽度不宜小于(50cm。 8路基与桥台、横向结构物连接过渡段采用倒梯形设计,过渡段长度按公式L=a+( H-h)n确定,且不小于(20)m基床表层级配碎石内掺入5%水泥,基床表层以下级配碎石内掺入3%水泥,线路与横向结构物斜交时,基床表层以下三角区域采用掺入(5%水泥级配碎石,过渡段长度L>20+Z X sin a。 9、原地面处理坡度陡于(1:5)时,应自上而下挖台阶,台阶宽度、高度应符合设计要求,纵向台阶宽度不小于2m 10、涵洞及桥台基坑回填采用(级配碎石或C20昆凝土),压实标准满足Evd > ( 30 )。 11、多向搅拌水泥砂浆桩桩底原位搅拌不少于(30 )s,桩头原位搅拌不少于(2 )mi n。 12、多向搅拌水泥砂浆桩、CFG桩施工桩径和桩长不得小于设计值,垂直度偏差不得 超过(1% ),桩位偏差不得大于(50 )mm。 13、多向搅拌水泥砂浆桩检查重点是:(水泥用量)、用砂量、(喷浆量)、提升和下沉速度、停浆处理方法和单桩施工时间等。 14、CFG S成桩施工顺序为:钻机就位一成孔一提升钻杆-(灌注混合料)f成桩f钻机移位。 15、双线路堤直线地段路基面宽(13.4 )m,线间距4.6m,路基面设三角形路拱,由中心向两侧设4%)卡水坡。 16、CFG桩成孔到设计标高后,停止钻进,开始泵送混合料,当钻杆芯管充满混合料后开始

我国高速公路发展史与趋势

我国高速公路发展史与趋势 在我国铁路是国家重要的基础设施、国民经济的大动脉和大众化交通工具,在综合交通运输体系中处于骨干地位。新中国成立以来,尤其是改革开放以来,中国铁路取得了长足进步,为经济建设做出了重要贡献。但与其他行业相比,铁路发展相对滞后,运输能力严重不足,“一票难求、一车难求”的现象十分突出,铁路成为制约经济社会发展的“瓶颈”。 从世界范围看,速度作为交通运输现代化的重要标志之一,往往在很大程度上影响着某种运输方式或某种交通工具的兴衰。铁路自诞生以来,正是由于它在运输速度和运输能力上的巨大优势,才在很长的历史时期内成为世界各国交通运输的骨干,极大地推动着社会进步和历史进程。曾几何时,由于忽视了提高行车速度,铁路在速度方面的优势迅速缩小,甚至消失。速度慢成了阻碍铁路发展的重要因素之一。 20世纪中叶以来,世界铁路以高速客运为突破口开始了新一轮的复兴。高速铁路的问世,使一度被人们称为“夕阳产业”的铁路焕发了青春,出现了新的生机。客运高速化是世界铁路发展的趋势。在许多国家,越来越多的旅客把乘坐舒适便捷的高速列车作为出行的首选。建设现代化的中国铁路,同样必须在速度上“突出重围”。

高速铁路具有速度快、运量大、节约土地、节能环保等明显优势。发展高速铁路,符合中国经济社会发展需要,对于构建现代综合交通运输体系,具有重要作用。 中国在高速铁路领域的发展较世界上部分发达国家晚,起步较其晚了20至30年,但自21世纪以来发展迅速。世界上第一条高速铁路是1964年开通的日本东海岛新干线。1978年10月26日,时任国家副总理的邓小平乘坐新干线列车赴文化古城京都访问。他对随行的记者说乘坐新干线列车的感觉:“就感觉到快,就像推着我们跑一样,我们现在正合适坐这样的车!”1990年,在邓小平乘坐新干线22年后,铁道部完成了“京沪高速铁路线路方案构想报告”,这是中国首次正式提出兴建高速铁路。 1991年,经国务院批准,广深准高速铁路立项。同年12月,广深铁路改造工程开始动工。1994年,国务院批准了开展京沪高速铁路预可行性研究。同年,改造后的广深铁路开行中国首列准高速旅客列车,运行时速在120—160公里之间,广深铁路也成为中国第一条准高速铁路。 高速铁路发展的重要部分——铁路六次大提速(1997—2007)1997年4月1日,中国第一次铁路大提速,最高运行时速达到140公里。这一次提速是中国铁路运输的一次变革,开启了中国铁路大发展的时代。1997年,1998年,2000年,2001年,2004年,2007年,中国铁路完成了六次大提速。 1998年6月2日,在中国科学院和中国工程院两院院士大会上,

高速铁路路基工程施工质量验收标准TB10751-2018

1.明确本标准适用于新建高速铁路路基工程施工质量的验收,补充了本标准未涉及的新技术、新工艺、新设备、新材料验收要求。 2.优化调整了施工质量验收单元单元划分,补充了站场路基填筑、工程材料、路堑坡体排水、防风沙设施、防雪害设施的验收单元,取消了混凝土工程的模板验收单元,调整了地基处理验收单元分类及划分;并规定了施工前施工单位结合工程特点制定分项工程和检验批的划分方案,由监理单位审批,建设单位备案的要求。 3.规定了隐蔽工程的检查验收要求以及隐蔽工程和关键工序施工影像资料的留存要求。 4.为确保材料进场质量,保证材料进场进行专业化检验和验收,并减少材料进场重复验收和资料归集的工作量,新增了工程材料一章,统一规定了路基工程所用填料、混凝土、砂浆注(喷)浆材料、土工合成材料、钢筋(钢料)和拉锚材料、石料、预制构件、其他材料的原材料制品和检验要求。 5.补充了CFG桩、螺杆(纹)等素混凝土桩和托梁、承载板的验收要求;明确了施工前和施工期间地址核对工作相关要求,补充完善了成桩、垫层、预压、岩溶及采空区注浆等地基处理的验收要求。 6.补充了按过渡段设计的短路基、提堑连接处、半挖半填路基的检验规定;明确了过渡段及锥体采用同种材料、不同填料填筑时的填层检验要求;完善了化学改良土混合材料的块料粒径技术条件和掺水泥级配碎石的使用时限技术条件。 7.补充了槽型挡土墙的验收要求,完善了锚杆、锚索注浆检验规定,取消了短卸荷板式挡土墙、锚定板挡土墙、沉井基础等高速铁路路基不使用支挡类型的验收要求。 8.补充了空心砖内客土植生防护、喷混植生、植生袋、生态袋、植被毯的质量验收内容,充分体现生态和环保理念;完善了一般地区、旱地地区、寒冷地区不同地区植被覆盖、成活的验收要求。 9.补充了孔窗式护墙(坡)、柔性防护网、拦石墙的验收要求;完善了边坡防护的防冻胀设施及措施的验收要求。 10.补充了纤维混凝土及混凝土防(隔)水层、轨道板与封闭层构造缝嵌缝等新型防(隔)水措施的验收要求;补充完善了吊沟消力池及挡水墙、盲(渗)沟、坡体仰斜孔及引水、排水管的验收要求,细化了地面排水工程系统化的一般规定。 11.补充了防风沙设施和防雪害设施的验收要求,取消了端刺基坑等验收要求;完善了电缆槽垫层和基底压实质量的验收规定;增加了接触网下锚支柱基础及拉线基础的验收内容;补充了补充了接地端子预埋检验、综合接地系统及其连接方式核查和选取试验段进行声屏障基础、锚杆试验性施工的要求。 12.细化、补充完善了沉降变形观测和冻胀变形监测的有关要求。 新增: 3.基本规定 3.1一般规定 3.1.3 高速铁路路基工程施工质量验收应符合下列规定: 1.工程施工质量验收应包括实体质量检查、观感质量检查、质量控制资料检查等内容。 2.涉及结构安全、环境保护或主要使用功能的试块、试件及材料应按规定进行平行或见证检验。 3.隐蔽工程在覆盖前应经监理单位验收,并按附录A的要求留存影像资料。 4.单位工程以及涉及结构安全、环境保护或使用功能的重要分部工程在验收前应按规定进行抽样检验。 3.1.4 高速铁路路基工程施工质量控制资料应齐全、真实、系统、完整,并应包括下列主要

高速铁路工程施工质量验收标准培训试题及答案

高速铁路工程施工质量验收标准培训试题 单位:姓名:得分: 一、选择题(有一种或多种正确答案,请将正确选项填在括号内,多选少选不得分,共25题,每题2分,共50分) 1.铁道行业标准可以分为两种,分别为( AB )。 A.产品标准 B.工程建设标准 C.强制性标准 D.推荐性标准 2.每套移动模架首次拼装后应采用不小于( C )倍的施工总荷载进行预压。 A. 1.0 B. 1.1 C. 1.2 D. 1.2 3.高速铁路简支箱梁梁体徐变变形观测点每孔梁不少于( B )个。 A. 4 B. 6 C. 8 D. 10 4.高速铁路工程验收标准的两部分内容是( CD )。 A. 一般规定 B. 检验项目 C. 主控项目 D. 一般项目 5.高速铁路工程验收单元有( ABCD ) A. 单位工程 B. 分部工程 C. 分项工程 D. 检验批 6.分项工程质量验收合格应满足( AC )。 A. 所含的检验批均应符合合格质量的规定; B. 检验批验收记录签认完成; C. 所含的检验批的质量验收记录应完整; D. 参加验收的人员具有相应的资格。 7.高速铁路工程中不受条件限制的钢筋连接方式有( BD )

A. 闪光对焊 B. 机械连接 C.搭接焊 D. 绑扎连接 8.高速铁路工程施工质量过程组成资料有( ABCD ) A. 验收标准规定的质量验收记录 B. 质统表与程检表 C. 资料管理规程规定施工记录 D. 试验检测报告 9.高速铁路工程桥梁钻孔桩笼式检孔器应( C ) A.检查长度宜为3~4倍设计桩径,且不宜小于5m。 B.检查长度宜为3~4倍设计桩径,且不宜小于6m。 C.检查长度宜为4~5倍设计桩径,且不宜小于5m。 D.检查长度宜为4~5倍设计桩径,且不宜小于6m。 10.高速铁路桥梁工程钻孔桩孔底沉渣厚度应( AC ) A.柱桩不大于50mm B. 柱桩不大于100mm C. 摩擦桩不大于200mm。 D.摩擦桩不大于300mm。 11.铁路混凝土结构凿毛的要求有( BCD ) A. 人工凿毛不小于2.5MPa B. 人工凿毛不小于5MPa C. 机械凿毛不小于10MPa D. 接缝面露出75%以上新鲜混凝土面 12.悬臂浇筑预应力混凝土连续梁纵向预应力筋张拉应满足( AD ) A.梁段混凝土强度达到设计值的95%,弹性模量达到设计值的100% B. 梁段混凝土强度达到设计值的100%,弹性模量达到设计值的100% C. 混凝土的龄期不小于5天 D. 混凝土的龄期不小于7天 13.高速铁路路基工程施工质量验收标准对成桩工艺性试验要求( BC ) A. 试验根数不少于2根 B. 试验根数不少于3根 C. 监理单位、勘察设计单位应参加工艺性试桩,并确认试验结论

我国高速铁路及路基工程技术发展

中南林业科技大学课程考查作业学科专业:工程管理 年级:2011级 学号:20111518 姓名:梁志杰 课程名称:铁道工程

我国高速铁路与路基工程技术发展 【摘要】:高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。高速铁路的出现已突破了传统铁路路基的设计理念,其设计理论、施工技术和检测手段等都有了很大发展,相关的技术标准不断提高,新技术也不断被应用于高速铁路路基中。 【关键字】:高速铁路、路基、技术特点 【正文】: 高速铁路是指通过改造原有线路,使营运速率达到每小时200公里以上,或者专门修建新的高速新线,使营运速率达到每小时250公里以上的铁路系统。高速铁路是当今世界铁路高新技术的一项重大成就,是当今世界安全可靠的现代交通工具。它在许多国家得到迅猛发展,成为世界铁路的新潮流。 我国高速铁路的运输组织模式主要有以下3种类型:(1)高速客运专线。这种高速铁路建于客货运输都十分繁忙的通道上,一般沿既有线修建,设计速度达350km/h。承担本线到发与跨线客流的输送任务,采用300km/h及以上的高速列车与200~250km/h的跨线列车混合运行的运输组织模式。(2)城际铁路。这种高速铁路建于两相邻大城市间,设计速度为200~250km/h。承担两城市间到发客流的输送任务,采用高密度、短编组、公交化的运输组织模式。(3)快速客运

通道。这种高速铁路建于客货运输潜在需求都十分旺盛但还没有铁路的地区,设计速度为200~250km/h,承担吸引区内客货运输任务,采用200~250km/h的旅客列车与120km/h货物列车混合运行的运输组织模式。我国高速铁路的技术体系构建,主要应针对高速客运专线。 高速铁路不仅仅是高速,它具有三点优势:一是高速铁路速度快、省时间,安全系数高,乘坐空间大,舒适又方便,价格又适宜,迎合了现代社会出行的需求,因而受到人们的青睐,成为世界各国振兴铁路的强大动力。二是高速铁路运输系统是铁路大面积吸纳现代高科技成果进行技术创新的产物。推动了铁路科学技术和装备登上一个崭新的台阶,增强了铁路的竞争力。三是高速铁路不仅运输能力特别大,有年运输量可达数亿人次以上的优势,又有减少环境污染的优势,因而特别适宜于大运量的城市间、城市群和城郊的高频率运输。旅行时间的节约,旅行条件的改善,旅行费用的降低,再加上国际社会对人们赖以生存的地球环保意识的增强,使得高速铁路在世界范围内呈现出蓬勃发展的强劲势头。总之,发展高速铁路是科技进步的必然,是时代发展的需要。 我国高速铁路以其高速、平稳、舒适的优良品质赢得了人民群众的广泛赞誉,有力促进了沿线区域经济发展,带动了相关产业升级,改善了人民群众生活。 从旧时落后的铁路到如今的高速铁路,我国铁路的发展经历了几代人不懈的努力,从封建落后的清朝至今已有百余年的历史,旧时中国铁路发展缓慢,受到清政府封建势力的强烈发对。在那个动荡的年

高铁路基工程施工技术标准

高铁路基工程施工技术标准(2011) 【标准概况】 适用范围:高铁路基施工适用速度范围:250-350km/h 编制意义:统一主要技术要求 2011年 1 总则 1.0.1为指导高速铁路路基工程施工,统一主要技术要求,加强施工管理,保证工程质量,制定本指南。 1.0.2本指南适用于新建时速250-350高速铁路路基工程 施工。时速250km以下客运专线铁路路基工程施工可参照执行。 1.0.3高速铁路路基工程施工必须执行国家法律法规及相关技术标准,按照设计文件施工,满足工程结构安全、耐久性能及系统使用功能要求,保证设计使用年限内正常运营。 1.0.4高速铁路路基工程施工应从管理制度、人员配备、现场管理和过程控制四个方面加强标准化管理,采用机械化、工厂化、专业化、信息化等先进的施工管理手段,实现质量、安全、工期、投资效益、环境保护、,技术创新等建设目标。 1.0.5高速铁路路基工程施工应重视地质核査,作好地基处理、填料生产供应及压实成型、过渡段处理、支挡结构、边坡防护及防排水、变形观测评估、接口工程等关键环节的施工。

1.0.6高速铁路路基工程施工应加强现场管理,严格施工工序,根据工艺流程合理划分施工段落,提髙文明施工水平。 1.0.7高速铁路路基工程施工应重视对地质灾害的识别、评估和预防工作,加强路基变形监控量测,保证排水系统畅通无阻,及时完成支护结构,有效减少地质灾害及其影响。 1.0.8高速铁路路基工程施工涉及文物古迹时,应立刻停止作业上报有关部门并做好现场保护工作,严格按文物保护部门批准的保护措施进行施工。 1.0.9高速铁路路基工程施工应根据国家节约资源、节约能源、减少排放等相关法规和技术标准,结合工程特点和施工环境,编制并实施工程施工节能减排技术方案。 1.0.10 高速铁路路基工程施工应根据批准的指导性施工组织设计编制实施性施工组织设计和作业指导书。 1.0.11 高速铁路软土、松软土路基工程应作为控制工程组织施工。 1.0.12 防排水工程是高速铁路路基工程的重要组成部分,应加强施工全过程管理,及时做好防、排水工程。 1.0.13修筑于路基上的端刺、电缆槽、接触网支柱基础、声屏障基础、预埋管线等工程项目应与路基同步协调施工,不应损坏或危及路基的稳定和安全。 1.0.14高速铁路路基工程施工爆破器材的储存、保管、运输、使用等方面必须符合国家爆破安全规程的相关规定。 1.0.15高速铁路路基工程应加强施工过程的安全管理和监控,高陡边坡、地质不良地段、临近营业线或营业线施工等危险性较大的路基工程应编制专项施工方案,并按相关规定经审批后实施。 1.0.16高速铁路路基工程施工中,应重视对农田水利和环境的保护,节约用地,少占耕地,临时占用的土地应及时做好复垦工作。 1.0.17高速铁路路基工程施工的各类人员应经过专门培训,合格后方可上岗。 1.0.18高速铁路路基工程施工资料的收集和整理工作应与工程进度同步,做到系统、完整、真实、准确,保正其具有有效的查考利用价值和完备的质量责任追溯功能,并应按相关规定做好资料的归档管理工作。 1.0.19高速铁路路基工程施工除应执行本指南外,尚应符合国家现行相关标准的规定。

相关文档
最新文档