表面化学热处理技术

表面化学热处理技术
表面化学热处理技术

化学热处理

渗碳:

为了获得高硬度、高耐磨的表面及强韧的心部,渗碳后必须进行淬火加低温回火处理。按渗碳介质可分为:气体渗碳、液体渗碳、固体渗碳。

渗氮:

①渗氮层具有高硬度、高耐磨性;②渗氮层比热容打,在钢件表面形成压应力层可显著提高耐疲劳性能,渗氮层的耐疲劳性优于渗碳层;③渗氮层表面有化学稳定性高的ε相,能显著提高耐腐蚀性。

渗氮能形成性能优越的渗氮层,但由于工艺时间太长,使得生产率太低,成本高,应尽量少采用。渗氮一般用在强烈磨损、耐疲劳性要求非常高的零件,有的场合是除要求机械性能外还要求耐腐蚀的零件。

碳氮共渗(俗称“氰化”):

按工艺温度分:低温碳氮共渗(520-580℃),工艺温度低,共渗过程是以氮原子为主、碳原子为辅的渗入过程,俗称“软氮化”;中温碳氮共渗(780-880℃);高温碳氮共渗(880-930℃)。

优点:①与渗碳相比处理温度低,渗后可直接淬火,工艺简单,晶粒不易长大,变形裂倾向小,能源消耗少,共渗层的疲劳性和抗回火稳定性好;②与渗氮相比,生产周期大大缩短,对材料适用广。

氮碳共渗:

氮碳共渗起源于西德,是在液体渗氮基础上发展起来的。早期氮碳共渗是在含氰化物的盐浴中进行的。由于处理温度低,一般在500-600℃,过程以渗氮为主,渗碳为辅,所以又称为“软氮化”。

氮碳共渗工艺的优点如下:①氮碳共渗有优良的性能:渗层硬度高,碳钢氮碳共渗处理后渗层硬度可达HV570-680;渗氮钢、高速钢、模具钢共渗后硬度可达HV850-1200;

脆性低,有优良的耐磨性、耐疲劳性、抗咬合性和耐腐蚀性。②工艺温度低,且不淬火,工件变形小。③处理时间短,经济性好。④设备简单,工艺易掌握。存在问题是:渗层浅,承受重载荷零件不宜采用。

渗硼:

渗硼是一种有效地表面硬化工艺。将工件置于能产生活性硼的介质中,经过加热、保温,使硼原子渗入工件表面形成硼化物层的过程称为渗硼。金属零件渗硼后,表面形成的硼化物(FeB、Fe2B、TiB2、ZrB2、VB2、CrB2)及碳化硼等化合物的硬度极高,热稳定性。渗硼钢的硬度、耐磨性、耐腐蚀性、耐热性均比渗碳和渗氮高。

渗铝:

在一定温度下使铝渗入工件表面的工艺称为渗铝。工件渗铝层的表面生成致密、坚固、连续的氧化铝薄膜,使工件内部不继续氧化。渗铝能提高工件高温抗氧化性、空气、二氧化硫气体以及其他介质中的热稳定性、耐腐蚀性和抗侵蚀性。低碳钢、铸铁、许多耐氧化钢和耐热钢、镍基耐热合金,以及钛、铜、难熔炼金属及其合金等金属材料都可以进行渗铝。

渗铬:

渗铬工艺是在高温下,将活性铬通过表面吸收及铬、铁和碳的相互扩散作用,在工作表面生成一层结合牢固的铁、铬、碳的合金。这一铬碳化物层具有良好的耐磨性,抗高温氧化性,热疲劳性,在大气、自来水、蒸汽和油品、硫化氢、硝

酸、碱、氯化钠水溶液介质中有较高的抗蚀性。这些优良的综合性能,使渗铬工艺广泛地应用于有耐磨、耐热、耐腐蚀等性能要求的工件上。

渗硫:

渗硫能提高钢件的耐磨性、抗咬合能力及抗粘着磨损性。渗硫的方法有固体、液体和气体三种。按渗硫的温度,又可分为低温渗硫(160-200℃)、中温渗硫(520-560℃)和高温渗硫(800-930℃)。

硫氮共渗及硫碳氮共渗:

为使工件表面兼有渗硫后的减摩特性和渗碳、渗氮后的抗磨特性,可以将渗碳、渗氮处理后获得高硬度表面的工件再进行渗硫处理。也可以采用硫氮二元共渗或硫碳氮三元共渗(硫氰共渗)的方法。经过硫氮碳复合渗的工件具有优良的耐磨、减摩、抗咬死、抗疲劳的能力,并改善了除不锈钢以外所有钢件的耐腐蚀性。

渗硅:

渗硅层在硫酸、硝酸、海水以及大多数盐、稀释碱中有很高的抗蚀性。渗硅层硬度虽然不高,但耐磨性较好,用于汽车、拖拉机零件的减摩。低碳电工钢渗硅后,硅含量达到7%,可以获得电磁性能优良的高硅硅钢片。对难熔炼金属(钼、钨、铌等)进行渗硅,可提高它们的高温抗氧化性能。但是,渗硅会使钢的冲击韧性、延伸率和强度极限降低。

渗锌:

渗锌可以提高工件在大气、海水、硫化氢和一些有机介质中的抗蚀能力。扩散锌层作为阳极复层可以保护基体金属不受腐蚀。

渗其他金属:

渗入元素渗层性能

钒(V) 提高工件在50%硝酸、98%硫酸、10%NaCl中的耐蚀性

钛(Ti) 提高工件在海水、硝酸、醋酸中的耐蚀性及抗氧化性

铌(Nb) 高的耐磨性,在98%硫酸、10%NaCl中有较高的耐蚀性

钼(Mo) 高的耐蚀性及耐磨性,提高渗氮后的硬度(HV1300)

铍(Be) 高硬度(HV

1000-1700),抗高温氧化能力

10

镉(Cd) 抗电化学腐蚀

钨(W) 钢渗钨后再渗碳,表面有高的硬度及红热性

复合渗:

硼铝共渗:主要用于提高工件的耐磨性和热稳定性。有时也用于提高工件在各种侵蚀性介质中的抗腐蚀性能。

硼硅共渗:既能提高渗硼层的耐磨性能,又能减少渗硅层的多孔性。工件经过硼硅共渗后,可提高耐腐蚀性能和耐热性,表面硬度也有所提高。

硼铬共渗:是为了改善脆性高,耐蚀性和热稳定性不足的硼化物层的性能。

铝硅共渗:主要是为了提高工件的热稳定性。顺序渗硅铝有利于铝的扩散。顺序渗铝硅,钢件表面易多孔。铝硅共渗层的孔隙率随着含硅量的增加而增多。

铬铝共渗:是为了获得比渗铬层或渗铝层更高的抗氧化性和热稳定性。铝在钢中的扩散系数比铬大,因此,渗剂中铝含量愈高,渗层愈厚。共渗层的抗氧化能力取决于深层中铬和铝的浓度。

化学热处理工艺及应用

一.化学热处理工艺及应用 除渗碳、渗氮外,渗金属主要有渗Al、Cr、V、Si、B、S等金属和非金属。下面简单介绍。 1.渗铬 适用于各种钢制件的耐磨性、耐蚀性和抗高温氧化能力。 渗后硬度:低碳钢为200~250HV;高碳钢为1250~1300HV。 渗层深度:一般为0.10~0.30mm。 渗层金相组织:低碳钢50%左右铬在铁素体中的固溶体;高碳钢由铬的碳化物(Cr7C3)、(CrFe)7C3组成。 渗铬方法:固、液、气体渗,还有真空渗等。 固体法:将以下配方研成粒度小于50目(约0.297mm)粉末,然后装箱进行。 配方1:50%~55%铬铁粉末+40~50%氧化铝+2~3%氯化铵。 配方2:60%~65%铬铁粉末+30~35%耐火土+3~4%氯化铵。 装炉温度为800~850℃,保温1~1.5h后升温到1000~1050℃.。保温12~15h(视层深要求而定)。然后随炉冷却600~700℃出炉空冷即可。 液体法:采用70%氯化钡+30%氯化钠为基盐。将金属铬或铬铁粉末经盐酸处理后放入基盐中,加热到1000~1050℃保温1.0~1.5h即开始渗,同时应不间断地用惰 性气体或还原气体保盐浴表面不被氧化。 气体法:利用干净铬块+氯化铵+氢气,在950~1100℃通入氯化铜蒸汽进行。渗铬后的处理:在一定载荷下工作并要求一定的强度的零件,渗铬后正火处理可细化晶 粒,提高基体强度和韧性,淬火和回火处理可根据需要调整基体的性能。 2、渗B 渗硼是指将工件放在一定比例的含硼介质中加热。 适用范围:提高各种钢、铸铁和粉末冶金等材料制作的工件耐磨性。 渗后硬度:900~1200H V0.1以上。 金相组织:为致密的单相Fe2B。

金属材料与热处理技术专业简介

金属材料与热处理技术专业简介 专业代码560107 专业名称金属材料与热处理技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料、热处理工艺制定及实施、生产管理与质量管理等基本知识,具备热处理操作、热处理工艺编制及实施、基本的热处理工装设计、设备保养与维护等能力,从事热处理生产操作、热处理工艺设计和实施、金属材料管理等方面工作的高素质技术技能人才。 就业面向 主要面向机械、航天航空、核工业、船舶制造、军工等企事业单位,在金属材料管理选择、金属材料改性等技术领域,从事热处理生产操作、热处理工艺设计和实施、金属材料管理、产品检验、车间生产管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备编制与实施常用热处理方法的工艺及工艺规程的能力; 3.具备常用工装夹具设计的能力; 4.具备常用热处理设备安装、调试、维修和技术改造的能力; 5.具备对金属制品进行金相分析、化学分析和力学性能检测的能力; 6.具备选用各种金属材料的能力; 7.具备分析、解决热处理现场技术问题的能力; 8.掌握常用热处理方法。

核心课程与实习实训 1.核心课程 机械制图及 CAD、机械设计基础、机械制造基础、金属学及金属材料、显微组织分析技术、材料成型与控制基础、金属力学性能测试技术、热加工检测技术、热处理原理及工艺等。 2.实习实训 在校内进行机加工、钳工、材料成型与控制、金相组织分析、金属力学性能测试、机械设计基础课程设计、热处理操作技能、热处理工艺设计、应用软件技术等实训。 在机械、核工业、军工等企业进行实习。 职业资格证书举例 热处理工金相分析员 衔接中职专业举例 金属热加工金属表面处理技术应用 接续本科专业举例 金属材料工程材料成型及控制工程

干化学技术与应用所谓干化学是与传统的湿化学即溶液化学相对比

干化学技术与应用 所谓“干化学”是与传统的“湿化学”(即溶液化学)相对比较而言的。它是以被检测样品中的液体作为反应媒介,待测物直接与固化于载体上的干粉试剂反应的一种方式。它与传统湿化学的最大区别就在于参与化学反应的媒介不同。随着生物化学中酶的分离、提纯、存储等技术的发展,传感器、光度计和电极技术的进步,以及计算机应用的普及,干化学技术在近20年里得到了长足的进步,相对于“湿化学”,“干化学”具有如下优点: 干化学试剂载体的结构干化学试剂载体的结构分为二层结构,三层结构,和多层膜。 最简单的二层结构 用于生化分析的试剂载体最简单的是二层结构,在支持层塑料基片上有一试剂层纤维素片,在纤维素片中预固相了全部试剂。常见的是尿生化分析试剂条: 尿液中的待测成分与预固相在纤维素片上的试剂直接反应,通过反射光度计测定其颜色的改变,从而计算待测成份的浓度。这种机构只能对待测成分进行定性或半定量测定,这样就限制了它在其它须准确定量的标本的应用。 稍加改进的三层结构 在试剂层上加一多孔胶膜过滤层,其作用是将样品中的杂质过滤掉,并起保护试剂层作用。常见的是微量法测定葡萄糖的试剂条。

三层试剂载体的测定光路是通过透明的塑料基片,而不经过最上面的过滤层,这样消除了样品中干扰成分的影响,保证了待测成分测定的稳定性和准确性。 比较完善的多层膜 当代临床检验中的干化学法,最具代表性的就是多层膜法,即干化学的多层膜试剂载体。它集现代化学、光学、酶工程学、化学计量学和计算机技术于一体。 多层膜分为三种类型:比色/速率法干片、离子法干片和免疫速率法干片 1.1 介绍比色/速率法干片 比色/速率法干片主要用于常规生化项目的测定,干片模式图(图1)显示了一个临床化学比色/速率法干片模式简图。在这个试剂片中,多种反应试剂被固化在一张透明聚酯膜上,上面覆以多孔的扩散层,然后被夹在一个塑料结构中。如图所示,共有4个功能层:扩散层、试剂层、指示剂层和支持层。每个试剂片的层数视所采用的分析方法而定,干片的大小大致与一枚邮票相同,显色剂层呈现的颜色深浅与待测物浓度成正比。 扩散层:扩散层的概念最早是由柯达研究实验室Edwin Przybylowic博士提出的,是由TiO2,BaSO4和醋酸纤维素构成的100-300微米的多空聚合物,聚合物的孔径在1.5-30微米之间。扩散层的孔径和厚度将取决于特定分析的需要。扩散层的中空体积占40%-90%,这种毛细网状结构能使样品溶液快速、均匀地分布到下层。当一滴样品约10微升加在试剂片上后,毛细作用将样品迅速吸入多空扩散层,但样品在一瞬间被下面的凝胶层所排斥,因为凝胶层在接受血清组份之前,必须先生成水合物。 扩散层不仅可阻留细胞,结晶和其他小颗粒,它也可以根据需要让大分子,如蛋白质等滞留。当待检样品通过扩散层后,可以消除溶液中影响检测反应干扰物质。扩散层中的TiO2和 BaSO4.一方面可用来掩盖待检样品中的有色物质,使反射光度计的测定结果不受影响,同时这些反光化合物也给干片底层的显色层提供反射背景。在一些特定试剂片中,扩散层中还含有选择性阻留某种成份或启动某种反应的物质,以提高分析的特异性。 试剂层:在化学试剂层中,根据实际测定的需要,可由数层至数十个功能试剂层组成。反应区的功能是将待测物通过物理、化学或生物酶学等反应转化为可与显色剂结合的化合物。试剂层中按照反应的顺序涂布了不同的化学试剂,使反应按照预先的设定依次进行。针对不同检测项目的个性化设计为化学反应提供了最理想的物理和化学反应环境-这就是为什么干化学技术能够确保更准确的试验结果。尿酸干片是使用清除剂层的一个示例。清除剂层含有抗坏血酸氧化酶,用于将抗坏血酸(维生素 C)(一种内源性干扰物)转化,对试剂层中所发生反应不产生干扰。 指示剂层:反应底物进入指示剂层,在这里发生显色反应。此层包含染料或相似的指示剂,使反应产物到达指示剂层后生成了有色化合物,其颜色变化与分析物浓度成比例,被反射光检测。

表面淬火和化学热处理

表面淬火和化学热处理 表面热处理和化学热处理都是改变钢件表面的组织和性能,仅对其表面进行热处理的工艺。表面淬火 表面淬火是通过快速加热,使钢的表层很快达到淬火温度,在热量来不及传到钢件心部时就立即淬火,从而使表层获得马氏体组织,而心部仍保持原始组织。表面淬火的目的是使钢件表层获得高硬度和高耐磨性,而心部仍保持原有的良好韧性,常用于机床主轴、发动机曲轴、齿轮等。 表面淬火所采用的快速加热方法有多种,如电感应、火焰、电接触、激光等,目前应用最广泛的是电感应加热法。 感应加热表面淬火法就是在一个感应线圈中通以一定的交流电(有高频、中频、工频三种),使感应线圈周围产生频率相同、方向相反的感应电流,这个电流称为涡流。由于集肤效应,涡流主要集中在钢件表层。由涡流所产生的电阻热是钢件表层被迅速加热到淬火温度,随即向钢件喷水,将钢件表面淬硬。 感应电流的频率愈高,集肤效应愈强烈,故高频感应加热用途最广。高频感应加热常用的频率为200~300 kHz,此频率加热速度极快,通常只有几秒钟,淬硬层深度一般为0.5~2mm,主要用于要求淬硬层较薄的中、小型零件。 感应加热表面淬火质量好,加热温度和淬硬层深度交易控制,易于实现机械化和自动化生产,缺点是设备昂贵,需要专门的感应线圈。因此,主要用于成批或大量生产的轴、齿轮等零件。化学热处理 化学热处理是将钢件置于合适的化学介质中加热和保温,使介质中的活性原子渗入钢件表层,以改变钢件表层的化学成分和组织,从而获得所需的力学性能或理化性能。化学热处理的种类很多,依照渗入元素的不同,有渗碳,渗氮,碳氮共渗等,以适应不同的场合,其中以渗碳应用最广。 渗碳是将钢件置于渗碳介质中加热、保温,使分解出来的活性碳原子渗入钢的表层。渗碳是采用密闭的渗碳炉,并向炉内通以渗碳剂(如煤油),加热到900~950℃,经较长的时间保温,使钢件表层增碳。渗碳件通常采用低碳钢或低碳合金钢,渗碳后渗层深一般为0.5~2mm,表层含碳量wc将增至1%左右,经淬火和低温回火后,表层硬度达到56~64HRC,因而耐磨;而心部因仍是低碳钢,故保持其良好的塑性和韧性。渗碳主要用于即承受强烈摩擦,又承受冲击或循环应力的钢件,如汽车变速箱齿轮,活塞销、凸轮、自行车和缝纫机的零件等。

金属表面化学热处理技术与应用

课程:学生姓名:学号:课程教师:

金属表面化学热处理技术与应用 姓名 (南昌大学,机电工程学院,江西南昌330031) 摘要:为提高金属表面机械强度和摩擦磨损性能,通常需要对材料表面进行化学热处理。此项技术正逐步朝着能源消耗低、环境污染少的方向发展。本文论述了渗硼、渗碳、真空化学热处理、催渗、等离子化学热处理等化学热处理技术在金属材料表面加工中的作用机理和应用;简介了复合处理新兴工艺并展望了化学热处理技术未来的发展方向。 关键词:化学热处理;金属材料;渗硼;电化学热处理 Metal surface chemical treatment technology and applications ZHANG Dan-ting (School of Mechatronics Engineering,Nanchang University,Nanchang 330031,China)Abstract:In order to improve the mechanical strength and the friction and wear propertiesof the metal surface,it usually requires chemical treatment of the material surface.This technology is developing toward low energy consumption,less environmental pollution and direction gradually.This article discusses applications and the mechanism of metallic material’s chemical heat treatment technologies such as boronizing,carburizing,vacuum heat chemical treatment,reminders infiltration and the plasma chemical treatment;Introduce the composite processing technology briefly and outlook development of chemical treatment technology in the future.Key Words:Chemical treatment;Metallic materials:Boriding;Electrochemical heat treatment 金属材料表面化学热处理是表面合金化与热处理相结合的一种表面处理技术。它是利用元素扩散性能,使合金元素渗人金属表面的一种热处理工艺。其基本工艺过程是:首先将工件置于含有渗入元素的活性介质中加热到一定温度,是活性介质通过分解并释放出欲渗入元素的活性原子,活性原子被工件表面吸附并溶入表面,溶入表面的原子向金属表层扩散渗入形成一定厚度的扩散层,从而改变工件表层、组织和性能[1]。根据渗入元素的活性介质所处状态不同,化学热处理可分为:固体法、液体法、气体法和等离子法。 通过一定的化学热处理工艺,金属表层、过渡层与心部,在成分、组织和性能上有很大差别。强化效果不仅与各层的性能有关,而且还与各层之间的相互联系有关。如渗碳表面层的碳含量及其分布、渗碳层深度和组织等均可能影响材料渗碳后的性能。 当前,我国热处理已有了不少重大的发展和进步,但与世界先进水平相比仍存在着很大的而且还在不断扩大着的差距,这种差距是深层次的。因此对化学热处理技术发展历程及现状进行全面深入的了解显得十分必要,本文列举渗硼、渗碳、真空化学热处理、催渗、等离子化学热处理等表面处理技术来说明近年来工艺发展的趋势。

工程材料与热处理第2章作业题参考答案

1.常见的金属晶格类型有哪些?试绘图说明其特征。 i 4 I 体心立方: 单位晶胞原子数为2 配位数为8 <3 原子半径=—a (设晶格常数为a) 4 致密度0.68

面心立方: 单位晶胞原子数为4 配位数为12 原子半径=_2a(设晶格常数为 4 a)致密度0.74

密排六方: 晶体致密度为0.74,晶胞内含有原子数目为6。配位数为12,原子半径为1/2a。 2实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响点缺陷、线缺陷、面缺陷 一般晶体缺陷密度增大,强度和硬度提高。 3什么叫过冷现象、过冷度?过冷度与冷却速度有何关系?它对结晶后的晶粒大小有何影响? 金属实际结晶温度低于理论结晶温度的现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度。金属结晶时的过冷度与冷却速度有关,冷却速度愈大,过冷度愈大,金属的实际结晶温度就愈低。结晶后的晶粒大小愈小。 4金属的晶粒大小对力学性能有何影响?控制金属晶粒大小的方法有哪些 一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。

控制金属晶粒大小的方法有:增大过冷度、进行变质处理、采用振动、搅拌处理。 5?如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小: (1) 金属型浇注与砂型浇注: (2) 浇注温度高与浇注温度低; (3) 铸成薄壁件与铸成厚壁件; (4) 厚大铸件的表面部分与中心部分 (5) 浇注时采用振动与不采用振动。 (6) 浇注时加变质剂与不加变质剂。 (1) 金属型浇注的冷却速度快,晶粒细化,所以金属型浇注的晶粒小; (2) 浇注温度低的铸件晶粒较小; (3) 铸成薄壁件的晶粒较小; (4) 厚大铸件的表面部分晶粒较小; (5) 浇注时采用振动的晶粒较小。 (6) 浇注时加变质剂晶粒较小。。 6 ?金属铸锭通常由哪几个晶区组成 ?它们的组织和性能有何特点 ? (1) 表层细等轴晶粒区 金属铸锭中的细等轴晶粒区,显微组织比较致密,室温下 力学性能最 高; (2) 柱状晶粒区 在铸锭的柱状晶区,平行分布的柱状晶粒间的接触面较为脆弱, 并常常聚集有易熔杂质和非金属夹杂物等,使金属铸锭在冷、热压力加工时容 易沿这些脆弱面产生开裂现象,降低力学性能。 (3) 中心粗等轴晶粒区 由于铸锭的中心粗等轴晶粒区在结晶时没有择优取向,不 存在脆弱的交界面,不同方向上的晶粒彼此交错,其力学性能比较均匀,虽然 其强度和硬度 低,但塑性和韧性良好。 7?为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性 ? 因为单晶体中的不同晶面和晶向上的原子密度不同, 导致了晶体在不同方向上的性能不 同的现象,因此其性能呈现各向异性的。 而多晶体是由许多位向不同的晶粒组成, 虽然每个晶粒具有各向异性, 但不同位向的各晶粒 的综合作用结果,使多晶体的各方向上性能一样,故显示出各向同性。 &试计算面心立方晶格的致密度。 4 3 4 一 r 3 3 a 9?什么是位错?位错密度的大小对金属强度有何影响 ? 所谓位错是指晶体中某处有一列或若干列原子发生了有规律的错排现象。 随着位错密度的增加金属的强度会明显提高。 0.74 74% nv V

《金属材料与热处理》教案

基本概念: 一、晶体与非晶体 晶体:表示的是原子呈有序和有规则排列的物质。(各向异性) 非晶体:表示是原子呈无序的杂乱无章的排列形式的物质。(各向同性) 晶体和非晶体的对比 项目晶体非晶体 定义原子呈有序、有规则排列的 物质 原子呈无序、无规则堆积的物 质 性能特点 具有规则的几何形状 有一定的熔点,性能呈各向 异性 没有规则的几何形状 有固定的熔点,性能呈各向同 性 典型物质石英、云母、明矾、食盐、 硫酸铜、糖、味精 玻璃、蜂蜡、松香、沥青、橡 胶 二、晶体的结构的概念(基本概念:) 1、晶格:表示原子在晶体中排列的有规律的空间格架。 2、晶胞:能够完整地反映晶格特征的最小几何单元。 3、晶面:金属晶体中通过原子中心的平 面。 4、晶向:通过原子中心的直线,可代表 晶格空间的一定方向。

单晶体——晶体内部原子的排列位向是完全一致的晶体。 多晶体——由许多晶粒组成的晶体。 单晶体表现出各向异性,多晶体显示出各向同性,也称“伪无向性”。 五、金属的晶体结构的缺陷 晶体缺陷——由于各种原因,实际晶体中原子的规律排列受到干 扰和破坏,使晶体中的某些原子偏离正常位置,造成原子排列的不完 全性。 1. 点缺陷——空位、间隙原子 和置代原子 无论是空位、间隙原子还是置代 原子,在其周围都会使晶格产生变 形,这种现象 称为晶格畸变。 上述三种晶体缺陷造成的晶格畸变区仅限于缺陷原子周围的较小 区域,故统称 为点缺陷。 2.线缺陷——位错 位错的特点之一是很容易在晶体中移动,金属材料的塑性变形就 是通过位错的运动来实现的。 在晶体中,位错的晶格畸变发生在沿半原子面端面的狭长区域, 故称为线缺陷。 单晶体示意图 多晶体示意图

化学热处理设备的安全技术正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.化学热处理设备的安全技 术正式版

化学热处理设备的安全技术正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 钢铁零件的化学热处理,是将零件置于不同的化学活性介质中,在特定工艺温度下对其加热并保温,向工件表层内渗入化学元素,改变工作表层的化学成分与组织,获得所需要的表层使用性能。化学热处理的方法很多,下面仅就目前生产中广泛应用的气体化学热处理、液体化学热处理及辉光离子氮化生产中的安全技术作一简介。 一、气体化学热处理设备的安全技术 气体化学热处理设备主要有井式炉、周期式多用炉和连接式贯通马弗炉。可用

来进行气体渗碳、氮化、软氮化和氰化。所使用的渗剂有:甲醇、乙醇、煤油、丙酮、三乙酸胺、尿素、氨气、吸热式气氛、天然气、城市煤气等。 操作人员除必须熟悉设备的性能和安全操作规程外,还应对所采取的化学物品的性能、安全使用保管有所了解,对它们在化学热处理过程中的分解产物及对周围环境的影响也要有所了解。 气体化学热处理中的废气,都必须点燃,因为其中一般含有一氧化碳、氰氢酸、氨和不饱和烃等,点燃后即可分解。例如气体软氮化时,炉内的HCN含量为 6~8mg/m<sup>3<sup>,废气点燃后,工作环境中含HCN量仅为0~0.08mg/m<sup

中外热处理工艺现状与趋势

中外热处理工艺现状和趋势 热处理工艺现状 中国热处理工艺现状简介 热处理是机械工业中的一项十分重要的基础工艺,对提高机械零件内在质量和使用寿命,加强产品在国内外市场竞争能力具有举足轻重的作用。但是人们认识到这一点却花了相当长的时间和很大的代价。由于热处理影响的是产品的内在质量,它一般不会改变制品的形状,不会使人直观地感到它的必要性,弄不好还会严重畸变和开裂;破坏制品的表面质量和尺寸精度,致使制造过程前功尽弃。所以在我国的制造业中长期存在着“重冷(冷加工)轻热(热加工)”现象,以致这个行业很长时间处于落后状态。而机械工业发达国家特别注重热处理工艺技术的研究和发展。 建国以来特别是20世纪80年代以来,我国的热处理技术有了很大的发展,现有热处理生产企业、从业人数、设备数量和能力都有大大增长。目前来说,我国在热处理的基础理论研究和某些热处理新工艺、新技术研究方面,与工业发达国家的差距不大,但在热处理生产工艺水平和热处理设备方面却存在着较大的差距,还没有完全扭转热处理生产工艺和热处理设备落后、工件氧化脱碳严重、产品质量差、生产效率低、能耗大、成本高、污染严重的局面。 目前在我国工业生产上大量应用的还是常规热处理工艺,今后仍将占有重要的地位和相当大的比重,但正在日益改进和不断完善。要以少无氧化加热、节能、无污染和微电子技术在热处理中的应用为重点,大力发展先进的热处理成套技术,利用现代高新技术对常规热处理进行技术改造,实现热处理设备的更新换代,全面提高热处理的工艺水平、装备水平、管理水平和产品水平,这对于改变我国热处理技术的落后面貌,赶上工业发达国家的先进水平,将起到积极的促进作用中国热处理工艺技术应用还不十分广泛,对热处理工艺的重视程度还需要提高,特别从事热处理工艺的人才的培养需要加大,现今热处理专业比较冷淡,这些都需要做出大大的改善。另一方面,热处理环境给人感觉脏乱差,热处理工艺控制不够严格,这些都阻碍了热处理工艺的发展,同时阻碍了中国机械制造工艺的发展。 中国热处理工艺行业、学术团体 中国全国性的热处理行业、学术团体是中国机械工程学会热处理学会和中国热处理行业协会。 1.中国机械工程学会热处理学会 英文名称是CHINESE HEAT TREATMENT SOCIETY ,简称CHTS。 中国机械工程学会成立于1936年,下设29个专业学会和30个地方省市学

金属材料与热处理

金属材料的性能(材料的性能一般分为使用性能和工艺性能两大类,使用性能主要包括力学性能、物理性能、化学性能)(选择题) 1.力学性能:强度(屈服强度、抗拉强度)、塑性、弹性与刚度、硬度(布氏 硬度,洛氏硬度,维氏硬度)、冲击韧性、疲劳强度 2.物理性能:密度、熔点、热膨胀性、导热性、导电性、 3.化学性能:耐蚀性、抗氧化性 常见金属的晶格类型—— 1.体心立方晶体具有这种晶格的金属有钨(W),钼(M),铬(Cr),钒(V), α-铁(α-Fe)等 2.面心立方晶格具有这种晶格的金属有金(Au),银(Ag),铝(Al),铜(Cu),镍 (Ni),γ-铁(γ-Fe)等 3.密排六方晶格具有这种晶格的金属有镁(Mg),锌(Zn),铍(Be),α- 钛(α-Ti) 根据晶体缺陷的几何特点,可分为 1.点缺陷点缺陷是指在晶体中长,宽,高尺寸都很小的一种缺陷,常见的有 晶格空位和间隙原子 2.线缺陷线缺陷是指在晶体中呈线状分布(在一维方向上的尺寸很大,而别 的方向则很小)原子排列不均衡的晶体缺陷,主要指各种类型的位错 3.面缺陷面缺陷是指在二维方向上吃醋很大,在第三个方向上的尺寸很小, 呈面状分布的缺陷 位错:位错是指晶格中一列或若干列原子发生了某种有规律的错排现象。 铁素体:铁素体是碳溶于α-Fe中形成的间隙固溶体,为体心立方晶格,用符号F(或α)表示 简化后的Fe-Fe3C相图,画图啊亲,三个学期的铁碳相图啊有木有,都是泪啊有木有!!!书P9 共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核,奥氏体晶核长大,剩余渗碳体溶解和奥氏体成分均匀化 影响奥氏体晶粒长大的因素: 1.加热温度和保温时间加热温度愈高,保温时间愈长,奥氏体晶粒愈粗大

化学热处理技术

化学热处理技术应用和发展 摘要:浅谈化学热处理原理、反应机理,以及化学热处理分类、应用和发展前景、技术特点 关键词:化学热处理;碳渗;氮渗;稀土化学 前言 化学热处理是一种通过改变金属和合金工件表层的化学成分、组织和性能的金属热处理。它的工艺过程一般是:将工件置于含有特定介质的容器中,加热到适当温度后保温,使容器中的介质(渗剂)分解或电离,产生的能渗入元素的活性原子或离子,在保温过程中不断地被工件表面吸附,并向工件内部扩散渗入,以改变工件表层的化学成分。通常,在工件表层获得高硬度、耐磨损和高强度的同时,心部仍保持良好的韧性,使被处理工件具有抗冲击载荷的能力。 一、化学热处理原理 化学热处理是将工件置于一定温度的活性介质中保温,使活性物质的原子渗入工件的表层中,改变其表层的化学成分、组织和性能的热处理工艺,是表面合金化与热处理相结合的一项工艺技术。 二、化学热处理的过程 化学热处理包括三个基本过程,即①化学渗剂分解为活性原子或离子的分解过程;②活性原子或离子被金属表面吸收和固溶的吸收过程;③被渗元素原子不断向内部扩散的扩散过程。 (1) 分解过程 渗剂通过一定温度下的化学反应或蒸发作用,形成含有渗入元素的活性介质,然后通过活性原子在渗剂中的扩散运动而到达工件的表面。 (2) 吸收过程 渗入元素的活性原子吸附于工件表面并发生相界面反应,即活性物质与金属表面发生吸附—解吸过程。

(3) 扩散过程 吸附的活性原子从工件的表面向内部扩散,并与金属基体形成固溶体或化合物。 三、化学热处理的分类 1.按渗入元素的数量分类 (1)单元渗:渗碳,渗氮,渗硫,渗硼,渗铝,渗硅,渗锌,渗铬,渗钒等。 (2)二元渗:碳氮共渗,氮碳共渗,氧氮共渗,硫氮共渗,硼铝共渗,硼硅共渗,硼碳共渗,铬铝共渗,铬硅共渗,铬钒共渗,铬氮共渗,铝稀土共渗,铝镍共渗等。 (3)多元渗:氧氮碳共渗,碳氮硼共渗,硫氮碳共渗,氧硫氮共渗,碳氮钒共渗,铬铝硅共渗,碳氮氧硫硼共渗等。 2.按渗剂的物理形态分类 (1) 固体法:颗粒法,粉末法,涂渗法(膏剂法、熔渗法),电镀、电泳或喷涂后扩散处理法。 (2) 液体法:熔盐法(熔盐渗、熔盐浸渍、熔盐电解),热浸法(加扩散处理〕,电镀法(加扩散处理),水溶液电解法。 (3) 气体法:有机液体滴注法,气体直接通人法,真空处理法,流态床处理法。 (4) 辉光离子法:离子渗碳或碳氮共渗,离子渗氮或氮碳共渗.离子渗硫,离子渗金属。 3.按钢铁基体材料在进行化学热处理时的组织状态分类 (1) 奥氏体状态:渗碳,碳氮共渗,渗硼及其共渗,渗铬及其共渗。渗铝及其共渗,渗钒、渗钦、渗错等。 (2) 铁素体状态:渗氮,氮碳共渗,氧氮共渗及氧氮碳共渗,渗硫,硫氮共渗及硫氮碳共渗,氮碳硼共渗,渗锌。 4.按渗入元素种类分类 (1) 渗非金属元素:渗碳,渗氮,渗硫,渗硼,渗硅。 (2) 渗金属元素:渗铝,渗铬,渗锌,渗钒。

金属材料及热处理教学计划

金属热处理工培训计划 1.培训目标 1.1总体目标 培养中级技术工人所必须的一门技术基础课。其内容包括金属的机械性能、金属学的基础知识及金属材料等部分。并达到一定熟练程度。 1.2理论知识培训目标 (1)本课程的任务是使学生掌握金属材料和热处理的基础知 识,为学习各门专业工艺学课及今后从事生产技术工作打下必要的基础。 (2) 通过本课程的教学,应使学生达到下列基本要求: ①基本掌握常用金属材料的牌号,成分,性能及应用范围。 ②了解金属材料的内部结构,以及成分,组织和性能三者之间的一般关系。 ③懂得金属材料热处理的一般原理。 ④明确热处理的目的,了解热处理的方法及实际应用。 1.3操作技能培训目标 ①会评价工程材料力学性能指标。 ②运用Fe-Fe3C平衡相图解决工程问题; ③能为工程零件及结构正确选材; ④能为工件制定的热处理工艺参数。 2.教学要求 2.1理论知识要求

2.1.1职业道德 2.1.2会评价工程材料力学性能指标。 2.1.3运用Fe-Fe3C平衡相图解决工程问题; 2.1.4能为工程零件及结构正确选材; 2.1.5能为工件制定的热处理工艺参数。 2.1.6热处理工艺管理知识。 2.1.7热处理各种淬火介质的冷却性能知识。 2.1.8热处理辅助设备、控温仪表知识。 2.1.9.热处理质量检验及校正知识。 2.2操作技能要求工装制作基础知识 (1)识图及绘图。 (2)钳工操作一般知识。 电工知识 (1)通用设备常用电器的种类及用途。 (2)电气传动及控制原理基础知识。 (3)安全用电知识。 安全文明生产与环境保护知识 (1)现场文明生产要求。 (2)安全操作与劳动保护知识。 (3)环境保护知识。 质量管理知识

表面化学热处理技术

化学热处理 渗碳: 为了获得高硬度、高耐磨的表面及强韧的心部,渗碳后必须进行淬火加低温回火处理。按渗碳介质可分为:气体渗碳、液体渗碳、固体渗碳。 渗氮: ①渗氮层具有高硬度、高耐磨性;②渗氮层比热容打,在钢件表面形成压应力层可显著提高耐疲劳性能,渗氮层的耐疲劳性优于渗碳层;③渗氮层表面有化学稳定性高的ε相,能显著提高耐腐蚀性。 渗氮能形成性能优越的渗氮层,但由于工艺时间太长,使得生产率太低,成本高,应尽量少采用。渗氮一般用在强烈磨损、耐疲劳性要求非常高的零件,有的场合是除要求机械性能外还要求耐腐蚀的零件。 碳氮共渗(俗称“氰化”): 按工艺温度分:低温碳氮共渗(520-580℃),工艺温度低,共渗过程是以氮原子为主、碳原子为辅的渗入过程,俗称“软氮化”;中温碳氮共渗(780-880℃);高温碳氮共渗(880-930℃)。 优点:①与渗碳相比处理温度低,渗后可直接淬火,工艺简单,晶粒不易长大,变形裂倾向小,能源消耗少,共渗层的疲劳性和抗回火稳定性好;②与渗氮相比,生产周期大大缩短,对材料适用广。 氮碳共渗: 氮碳共渗起源于西德,是在液体渗氮基础上发展起来的。早期氮碳共渗是在含氰化物的盐浴中进行的。由于处理温度低,一般在500-600℃,过程以渗氮为主,渗碳为辅,所以又称为“软氮化”。 氮碳共渗工艺的优点如下:①氮碳共渗有优良的性能:渗层硬度高,碳钢氮碳共渗处理后渗层硬度可达HV570-680;渗氮钢、高速钢、模具钢共渗后硬度可达HV850-1200; 脆性低,有优良的耐磨性、耐疲劳性、抗咬合性和耐腐蚀性。②工艺温度低,且不淬火,工件变形小。③处理时间短,经济性好。④设备简单,工艺易掌握。存在问题是:渗层浅,承受重载荷零件不宜采用。 渗硼: 渗硼是一种有效地表面硬化工艺。将工件置于能产生活性硼的介质中,经过加热、保温,使硼原子渗入工件表面形成硼化物层的过程称为渗硼。金属零件渗硼后,表面形成的硼化物(FeB、Fe2B、TiB2、ZrB2、VB2、CrB2)及碳化硼等化合物的硬度极高,热稳定性。渗硼钢的硬度、耐磨性、耐腐蚀性、耐热性均比渗碳和渗氮高。 渗铝: 在一定温度下使铝渗入工件表面的工艺称为渗铝。工件渗铝层的表面生成致密、坚固、连续的氧化铝薄膜,使工件内部不继续氧化。渗铝能提高工件高温抗氧化性、空气、二氧化硫气体以及其他介质中的热稳定性、耐腐蚀性和抗侵蚀性。低碳钢、铸铁、许多耐氧化钢和耐热钢、镍基耐热合金,以及钛、铜、难熔炼金属及其合金等金属材料都可以进行渗铝。 渗铬: 渗铬工艺是在高温下,将活性铬通过表面吸收及铬、铁和碳的相互扩散作用,在工作表面生成一层结合牢固的铁、铬、碳的合金。这一铬碳化物层具有良好的耐磨性,抗高温氧化性,热疲劳性,在大气、自来水、蒸汽和油品、硫化氢、硝

化学热处理

化学热处理 化学热处理是将工件置入含有活性原子的特定介质中加热和保温,使介质中一种或几种元素(如C、N、Si、B、Al、Cr、W等)渗入工件表面,以改变表层的化学成分和组织,达到工件使用性能要求的热处理工艺。其特点是既改变工件表面层的组织,又改变化学成分。它可比表面淬火获得更高的硬度、耐磨性和疲劳强度,并可提高工件表层的耐蚀性和高温抗氧化性。 各种化学热处理都是由以下三个基本过程组成的。 1)分解由介质中分解出渗入元素的活性原子。 2)吸收工件表面对活性原子进行吸收。吸收的方式有两种,即活性原子由钢的表面进入铁的晶格形成溶体,或与钢中的某种元素形成化合物。 3)扩散已被工件表面吸收的原子,在一定温度下,由表面往里迁移,形成一定厚度的扩散层。 1、渗碳: 渗层组织:淬火后为碳化物、马氏体、残余奥氏体。渗层厚度(mm),0.3~1.6,表面硬度,57~63HRC,作用与特点,提高表面硬度、耐磨性、疲劳强度,渗碳温度(930℃)较高,工件畸变较大;应用,常用于低碳钢、低碳合金钢、热作模具钢制作的齿轮、轴、活塞、销、链条。 渗碳件渗碳后,都要进行淬火、低温回火,回火温度一般为150~200℃。 经淬火和低温回火后,渗碳件表面为细小片状回火马氏体及少量渗碳体,硬度可达58~64HRC,耐磨性能很好。心部组织决定于钢的淬透性。普通低碳钢如15、20钢,心部组织为铁素体和珠光体,硬度为10~15HRC。低碳合金钢如 20CrMnTi心部组织为回火低碳马氏体、铁素体及托氏体,硬度为35~45HRC,具

有较高的强度、韧性及一定的塑性。 2.液体氮化 也称软氮化,低温氰化,或者氮碳共渗,在渗氮过程中,碳原子也参与,因而比一般的单一气体渗氮具有更高的渗速,在渗层表面硬度相当的情况下,氮化层的脆性也比气体氮化小,软氮化因此得名。氮化主要是往炉中加入纯氨,在200℃以上氨分解为活性氮原子,在500~580℃时,活性氮原子往钢件表面渗氮和扩散,得到0.3~0.5mm厚的高硬度、耐腐蚀、抗疲劳的氮化层。 把含碳物质和氨同时通入炉内就是碳氮共渗,又叫氰化。它兼有渗碳和氮化的性能,氰化温度低于渗碳,使工件变形小,而氰化速度比渗碳和氮化快,生产周期短。老的液体氮化法主要原料是氰化钠,所以也有叫低温氰化的,硬化层中的氮比碳的浓度高,因而氮碳共渗的称法又被广泛采用在氮化的过程中,当活性较大时,表面生成很薄的化合物层(10~30μm的ε相),随后便是γ`和扩散层。当活性较小时,表面化合物相可以不出现,从而获得得以弥散硬化为主的组织3.离子氮化 是利用辉光放电这一物理现象对金属材料表面强化的氮化法。在低压的氮气或氨气等气氛中,炉体和被处理工件之间加以直流电压,使产生辉光放电,在被处理表面数毫米处出现急剧的电压降,气体中的离子,向阴极移动,当接近工件表面时,由于电压降剧降而被强烈加速,轰击工件表面,离子具有的动能转变为热能,加热了被处理的工件,同时一部分离子直接注入工件表面,一部分离子引起阴极溅射,从工件表面“溅射出”电子和原子,“溅出”的铁原子和由于电子作用而形成的原子态氮相结合,形成FeN。FeN由于吸附和在表面上蒸发,因受

金属材料与热处理教学大纲

全国技工学校机械类 金属材料与热处理教学大纲 一、说明 1、本课程的性质和内容: 金属材料与热处理是培养中级技术工人所必须的一门技术基础课。其内容包括钢铁的冶炼、金属的性能、金属学的基础知识、钢的热处理及金属材料部分。 2、本课程的任务和基本要求: (1)本课程的任务是使学生掌握金属材料和热处理的基础知识,为学习各门工艺学课程和生产实习以及今后从事生产技术工作打下必要的基础。 (2)通过本课程的教学,应使学生达到下列要求: 1)基本掌握常用金属材料的牌号、成分、性能及应用范围; 2)了解金属材料的结构及其成分、组织和性能之间的一般关系; 3)懂得金属材料处理的一般原理; 4)明确热处理的目的,了解常用热处理工艺及实际应用。 3、教学中应注意的几个问题: (1)认真贯彻理论联系实际的原则,紧密结合生产实际。 (2)正确掌握大纲的深广程度,合理处理教材内容。本大纲中,记有“*”符号的内容,供不同工种选用。 (3)加强实验和参观,增加感性认识。 (4)有条件的还可辅以电化教学(如幻灯、录像等)的手段,是教学活动直观而生动地进行。

绪论 教学的目的和要求: 1、明确学习本课程的目的。 2、了解本课程的基本内容。 教学内容: 1、学习金属材料与热处理的目的。 2、金属材料与热处理的基本内容。 3、我过金属材料与热处理方面的成就和发展概况。 教学建议: 1、尽量利用学生已有的感性认识,说明学习金属材料与热处理的重要性。 2、结合我国国情,简述金属材料与热处理的发展概况。 第一章炼铁与炼钢 教学的目的与要求 1、明确金属材料的含义; 2、了解钢铁材料的一般生产过程; 3、了解钢铁材料中常存元素的来源。 教学内容: 1、金属材料。 2、金属材料的分类。 3、炼铁。 4、炼钢。 教学建议: 1、金属材料的教学从金属的概念引入到金属材料,内容较为简单,在教学过程中要讲清。 2、以讲清钢铁冶炼的实质及基本过程为主,化学反应不作重点要求。 3、如条件许可,最好组织适合的参加。 第二章金属的性能 教学的目的与要求: 1、了解金属的物理、化学性能的概念及应用。 2、掌握金属的主要力学性能的概念及其符号的表示方法(σs、σr0.2、σb、 ψ、δ、HBS(HBW)、HRC、HV、σ-1); 3、了解金属材料的工艺性能。 教学内容: 1、金属材料的物理、化学性能。 2、金属的力学性能。 概述:金属的力学性能在机器制造业中的重要性,载荷的种类、变形形式及内力与应力。 强度、塑性(拉伸式样、拉伸曲线、强度指标、塑性指标)。 硬度(布氏、洛氏、维氏等硬度实验的原理、优缺点及应用范围)。 任性(冲击韧性的实验原理、韧性指标、小能量多冲筒介)。 疲劳强度的概念。

表面淬火与化学热处理工艺异同点

表面淬火与化学热处理工艺异同点 摘要:介绍表面淬火与化学热处理的工艺的不同以及各自的分类、加工方法。 关键词:表面淬火化学热处理异同点 表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些台金钢。 化学热处理是将工件表面渗进了某些化学元素的原子,改变了表层的化学成份,使表面能得到高硬度或某些特殊的物理、化学性能。而心部组织成份不变,仍保留原来的高塑性。高韧性的性能,这样在工件截面上就有截然不同的化学成份与组织性能。化学热处理生产周期长,不便于实现机械化、自动化生产,工艺复杂,质量不够稳定,辅助材料消耗多、费用大、成本高,许多情况下还需要贵重的合金钢。化学热处理只在获得表面层的更高硬度与某些特殊性能及心部的高韧性等方面优于表面淬火。 表面淬火: 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。三维网技术论坛3 N: A0 ? E/ p$ X+ i1 W! _1 K$ z 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。

金属材料与热处理

《金属材料与热处理》教学大纲 一、课程的性质和任务 本课程是一门专业技术基础课,实践性较强,必须经过生产实习增强感性认识,再通过理论学习才能理解和掌握常见金属材料性能、组织、结构和热处理方法的特点;了解非金属材料的基本知识。为学后续的专业课打下坚实的基础。 二、课程教学目标 1、掌握机械工程材料的基本知识,能够正确选择材料。 2、掌握常见的金属热处理的方法、特点及应用范围 3、了解非金属材料基础知识。 三、教学内容和要求 1、金属材料基础知识 常见金属材料及其性能、金属的结构及结晶、合金的结构和组织、铁碳合金相图、碳钢及合金钢、铸铁、有色金属。 2、热处理基础知识 钢在冷却(加热)时的转变过程、钢的普通热处理工艺、钢的表面热处理工艺、钢的化学热处理工艺。 3、非金属材料 非金属材料的种类、特点、性能及应用。 四、《工程材料》课程的主要要求 1、常用金属材料及热处理工艺的基础知识,为后续相关专业课打下坚实基础。 2、通过本课程的学习,使学生能根据合理的选择材料和热处理方法。

3、在教学过程中贯彻理论联系实际的原则,在讲授理论时要注重和生产实习相结合,增强学生对理论知识的理解。 4、本课程建议安排在学生学完机械制图及计算机制图、工程力学、机械设计基础、金工实习课程之后讲授。 五、《金属材料与热处理》课程质量标准与考核方式 课程质量标准是培养学生掌握金属材料及热处理原理和非金属的基础知识,重点培养学生运用所学知识解决实际问题的能力。成绩考核方式按照天津石油职业技术学院课程成绩考核评价管理制度执行,采用单独考查方式,平时考核占考核评价成绩30%,期末考试占考核评价成绩40%,实验占考核评价成绩30%,考查采用5级制。 六、课时分配表

金属材料与热处理工艺

金属材料与热处理工艺关系的探讨 函数站株洲331函授站 专业机电一体化 班级 姓名朱雪峰 指导教师 二○一一年三月

目录 1、前言………………………………………………………………… 2、金属材料结构及基本组织…………………………………………. 3、金属材料的切削性能与热处理预热的关系……………………… 3.1金属材料的切削性能与热处理预热的关系………………………. 3.2金属材料的切边横量与热处理温度的关系……………………… 3.3金属材料的断裂韧性与热处理温度的关系……………………… 3.4 金属材料抗应力腐蚀开裂与热处理应力的关系………………… 4、零件材料结构及特点分析…………………………… 4.1零件的材料特点…………………………………………. 4.2零件的结构特点………………………………………… 5、轴承盖真空热处理工艺路线……………………………… 6、产品质量与《经济法》的关系…………………………… 7、结论……………………………………………………………… 8、主要参考文献…………………………………………………

第一章前言 工业生产中,许多金属材料为最大限度地发挥材料潜力,需要提高其机械性能。在设计工作中,正确制定热处理工艺可以改变某些金属材料的机械性能。而不合理的热处理条件,不仅不会提高材料的机械性能,反而会破坏材料原有的性能。因此,设计人员在根据金属材料成分及组织确定热处理的工艺要求时,应准确分析金属材料与热处理工艺的关系,合理安排工艺流程,才能得到理想的效果。 第二章金属材料结构及基本组织 在工业生产中,广泛使用的金属有铁、铝、铜、铅、锌、镍、铬、锰等。但用得更多的是它们的合金。金属和合金的内部结构包含两个方面:其一是金属原子之间的结合方式;其二是原子在空间的排列方式。金属的性能和原子在空间的排列配置情况有密切的关系,原子排列方式不同,金属的性能就出现差异。金属材料热处理过程是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来改变其性能的一种工艺。因此,对某些金属或合金来说,可以用热处理工艺来改变它的原子排列,进而改变其组织结构,控制其机械性能,以满足工程技术的需要。不同的热处理条件

相关文档
最新文档