两配对样本非参数检验

两配对样本非参数检验
两配对样本非参数检验

sss非参数检验K多个独立样本检验KruskalWallis检验案例解析

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析2011-09-19 15:09 最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。 还是以SPSS教程为例: 假设:HO: 不同地区的儿童,身高分布是相同的 H1:不同地区的儿童,身高分布是不同的 不同地区儿童身高样本数据如下所示: 提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个

即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验) 点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面: 将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。 在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定 运行结果如下所示:

对结果进行分析如下: 1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900 自由度为:3=k-1=4-1 下面来看看“秩和统计量”的计算过程,如下所示: 假设“秩和统计量”为 kw 那么:

其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数) 最后得到的公式为: 北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72 上海地区的“秩和”为:8.2*5=41 成都地区的“秩和”为:15.8*5=79 广州地区的“秩和”为:3.6*5=18

两独立样本和配对样本T检验

两独立样本T检验 目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。 检验前提: 样本来自的总体应服从或近似服从正态分布; 两样本相互独立,样本数可以不等。 两独立样本T检验的基本步骤: 提出假设 原假设H_0:μ_1-μ_2=0 备择假设H_1:μ_1-μ_2≠0 建立检验统计量 如果两样本来自的总体分别服从N(μ_1,σ_1^2 )和N(μ_2,σ_2^2 ),则两样本均值差(x_1 ) ?-x ?_2应服从均值为μ_1-μ_2、方差为σ_12^2的正态分布。 第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为:s^2=((n_1-1) s_1^2+(n_2-1) s_2^2)/(n_1+n_2-2) 则两样本均值差的估计方差为: σ_12^2=s^2 (1/n_1 +1/n_2 ) 构建的两独立样本T检验的统计量为: t= ((x_1 ) ?-x ?_2)/√(s^2 (1/n_1 +1/n_2 ) ) 此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。 第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差为: σ_12^2=(s_1^2)/n_1 +(s_2^2)/n_2 构建的两独立样本T检验的统计量为: t= ((x_1 ) ?-x ?_2)/√((s_1^2)/n_1 +(s_2^2)/n_2 ) 此时,T统计量服从修正自由度的t分布,自由度为: f= ((s_1^2)/n_1 +(s_2^2)/n_2 )^2/(((s_1^2)/n_1 )^2/n_1 +((s_2^2)/n_2 )^2/n_2 ) 可见,两总体方差是否相等是决定t统计量的关键。所以在进行T检验之前,要先检验两总体方差是否相等。SPSS中使用方差齐性检验(Levene F检验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。 三、计算检验统计量的观测值和p值 将样本数据代入,计算出t统计量的观测值和对应的概率p值。 四、在给定显著性水平上,做出决策 首先,利用F统计量判断两总体方差是否相等,Levene F检验的原假设为两独立总体方差相等。概率p<0.05时,有充分理由拒绝原假设,说明方差不齐;否则,两样本方差无显著性差异。 其次,将设定的显著性水平α与检验统计量的p值比较,如果t统计量的p值小于α,落入拒绝域内,则我们有充分理由拒绝原假设,认为两总体均值有显著差异。 SPSS实现过程: 菜单:Analyze -> Compare Means-> Independent Samples T test Test Variable(s):待检验的变量(一般是定距或定序变量) Grouping Variable :分组变量(只能比较两个样本)

两独立样本t检验和非参数检验的实证分析

龙源期刊网 https://www.360docs.net/doc/3a1403261.html, 两独立样本t检验和非参数检验的实证分析作者:张家骥 来源:《经营者》2013年第11期 摘要:教学质量是靠具体课程完成,课程的建设是教学质量提升的重要环节和基本保证。本文简述了概率论与数理统计重点课程建设的必要性,重点在于对课程建设前后分层随机抽样得来的样本进行实证分析。实证分析主要从基本统计分析、参数检验、非参数检验三个大的方面进行,尤其是非参数检验方面,又具体利用了三种不同的检验法进行分析推断。 关键词:t检验;非参数检验;显著性水平;频数分析 概率论与数理统计是我国高等院校理工类、经济类、管理类各专业的一门重要公共基础课程,同时也是一门应用广泛,适用性强的工具课。此门课程的教学为学生的其他专业课及其将来毕业后的工作、继续深造等方面奠定必要的数学基础,而且对培养学生的逻辑思维能力、分析判断问题能力、统计观点、应用能力和创新能力均有着特殊而又重要的作用,是培养高素质综合型人才的重要保证。 笔者本身是东华理工大学理学院的一线教师,这两年来,同时在江西财经大学统计学院读研究生。在此期间,笔者主持的“概率论与数理统计”重点课程建设项目小组一直在努力的探索和研究,收获了一些成果。本文的主要目的是针对进行重点课程建设这几年来,对搜集到的学生该门课程的考试成绩从统计学的角度进行实证分析。尤其是从参数检验和非参数统计两个重要角度进行探究,论证这几年来进行课程建设是否让学生成绩取得了明显的提高。 本文数据来源于东华理工大学所有开设了概率论与数理统计课程的学院,分别收集了2010学年第二学期(即下半年)概率成绩和2012学年第二学期概率成绩。总共十个学院,进行分层随机抽样,对每个学院随机抽取10名学生,最终获到两组样本,每组各100个样本点。下面开始进行实证分析: 一、基本统计分析 对数据的分析首先从基本统计分析入手。通过基本统计分析,掌握数据的基本统计特征,同时迅速把握数据的总体分布形态。而基本统计分析往往先从频数分析开始,由于成绩数据均为定距型数据,直接采用频数分析不利于对其分布形态的把握,因此先对数据分组后再进行频数分析。SPSS频数分析的操作如下:选择菜单【Analyze】→【Descriptive】→【Frequencies】,结果如下: 从上面的统计表中可以看出,进行重点课程建设后,平均分有了明显的提高,而且从频数分布表可以看出,第3组第4组即中高分数段百分数有了明显提升。从数据的角度初步说明课程建设有效果,学生成绩明显改善。

SPSS-非参数检验—两独立样本检验_案例解析

SPSS-非参数检验—两独立样本检验案例解析 2011-09-16 16:29 好想睡觉,写一篇博文,希望可以减少睡意,今天跟大家研究和分享一下:spss非参数检验——两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的 2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的 我们采用SPSS进行分析,数据如下所示: 点击“分析”选择“非参数检验” 再选择“旧对话框——2个独立样本检 验如下所示:

在检验类型下面选择"Mann-Whitney U “ 检验类型(Mann-whitney u 检验等同于对两组数据的Wilcoxon秩和检验和Kruskal-Wallis检验,主要检验两个样本的总体在某些位置上是否相等。) 两种工艺类型分别为:甲种工艺和乙种工艺分别用定义值为“1” 和 “2”将“工艺类型”变量拖入“分组变量”下拉框内,点击“定义组”按钮,在组别1 和组别 2 中分别填入 1和2,点击继续按钮 选择“使用寿命”作为“检验变量”点击确定,得到分析结果如下:

下面对结果,我将进行详细分解: 1:N 代表变量个数,甲种工艺秩和为 80 乙种工艺秩和为 40, 下面来分析“秩和”这个结果如何出来的 第一步:我们将”使用寿命“这个变量按照“从小到大”的顺序进行排序,得到如下结果:

得到数据如下: 甲种工 艺: 661 669 675 679 682 692 693 乙种工艺: 646 649 650 651 652 662 663 672 我们将“甲种工艺”和“乙种工艺”两组数据进行合并排序,并且对两组数据进行“秩次排序”分别用“序号”代替以上数据 序号分别为: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 得到以下结果: 甲种工艺为: 6 9 11 12 13 14 15 (加起来刚好等于80)

两配对样本T检验整理

1、两配对样本T检验 2、单因素方差分析 3、多因素方差分析 一、两配对样本T检验 定义:两配对样本T检验是根据样本数据对样本来自的两配对总体的均值是否有显著性差异进行推断。 一般用于同一研究对象(或两配对对象)分别给予两种不同处理的效果比较,以及同一研究对象(或两配对对象)处理前后的效果比较。 两配对样本T检验的前提要求如下: 两个样本应是配对的。在应用领域中,主要的配对资料包括:具有年龄、性别、体重、病况等非处理因素相同或相似者。首先两个样本的观察数目相同,其次两样本的观察值顺序不能随意改变。 样本来自的两个总体应服从正态分布 二、配对样本t检验的基本实现思路 设总体X1服从正太分布N(u1,σ12),总体X2服从正太分布 N(u2,σ22),分别从这两个总体中抽取样(X11,X12,?,X1N)和X21,X22,?,X2N),且两样本相互配对。要求检验μ1和μ2是否有显著差异。 第一步,引进一个新的随机变量Y=X1?X2对应的样本值为(y1,y2,?,y n),其中,y i=x1i?x2i(i=1,2,?,n)

这样,检验的问题就转化为单样本t检验问题。即转化为检验Y 的均值是否与0有显著差异。 第二步,建立零假设H0:μY=0 第三步,构造t统计量 t= y? S y √n?1 ? ~t(n?1) 第四步,SPSS自动计算t值和对应的P值 第五步,作出推断: 若P值<显著水平α,则拒绝零假设 即认为两总体均值存在显著差异 若P值>显著水平α,则不能拒绝零假设, 即认为两总体均值不存在显著差异 三、SPSS配对样本t检验的操作步骤 例题:研究一个班同学在参加了暑期数学、化学培训班后,学习成绩是否有显著变化。数据如表3所示。 1.操作步骤: 首先打开SPSS软件 1.1输入数据 点击:文件-----打开文本数据(D)-----选择需要编辑的数据-----打开

spss多配对样本非参数检验

课程名称实用统计软件 实验项目名称多配对样本非参数检验 实验成绩指导老师(签名)日期2011-12-6 一.实验目的 1,掌握多配对样本的非参数检验基本原理和算法; 2,能够用SPSS软件解决多配对样本的非参数检验的问题。 二. 实验内容与要求 1.实验内容 1.书上的三个研究问题的实现。 2.书上练习与思考题第10-3题。(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行) 3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。实验结果如下表(疱疹面积的度量单位为mm2): (提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)

2.实验要求: 作业中要出现检验过程。如本ppt第8页、第20页、第30页的表格及统计计算过程。 注意:今天的三种方法所处理的实际问题类型有所不同,需要根据具体问题选择不同的检验方法。 三.实验步骤 具体操作参见课件多配对样本非参数检验.PPT(ftp://10.66.28.22:22) 四. 实验结果(数据与图形)与分析 1.书上的三个研究问题的实现。 2.书上练习与思考题第10-3题。(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)

得到卡方统计量为9.782,W系统系数为0.466,小于1,相伴概率为0.201,大于显著性水平0.05,所以评分标准不够一致。 3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。实验结果如下表(疱疹面积的度 (提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)

非参数统计第4章 两独立样本的非参数检验

第四章 两独立样本的非参数检验 在单样本位置问题中,人们想要检验的是总体的中心是否等于一个已知的值.但在实际问题中,更受注意的往往是比较两个总体的位置参数;比如。两种训练方法中哪一种更出成绩,两种汽 油中哪一个污染更少,两种市场营销策略中那种更有效等等. 作为一个例子.我国沿海和非沿海省市区的人均国内生产总值(GDP)的1997年抽样数据如下(单位为元).沿海省市区为(Y1,Y2,…,Y12): 15044 12270 5345 7730 22275 8447 9455 8136 6834 9513 4081 5500 而非沿海的为对(x1,x2,…,x18): 5163 4220 4259 6468 3881 3715 4032 5122 4130 3763 2093 3715 2732 3313 2901 3748 3731 5167 人们想要知道沿海和非沿海省市区的人均GDP 的中位数是否一样.这就是检验两个总体的位置参数是否相等的问题. 假定代表两个独立总体的随机样本(Y1,Y2,…,Y12)和(x1,x2,…,x18),则问题归结为检验它们总体的均值(或中位数)的差是否相等,或是否等于某个已知值.换言之,即检验 0H :021D =-μμ;1H : 021D ≠-μμ 0H :021D =-μμ;1H : 021D <-μμ 0H :021D =-μμ;1H : 021D >-μμ 在正态假定下,这些问题化为:)2(~11)(0-++ --= m n t m n s D y x t 2 ) ()(1 2 1 2 -+-+ -= ∑∑==n m y y x x S m i i n i i t 检验并不稳健,在不知总体分布时,应用t 检验时会有风险的。 3.1 Brown-Mood 中位数检验 令沿海地区的人均GDP 的中位数为M X ,而内地的为M Y 。零假设为 0H :y x M M =;1H : y x M M > 显然,在零假设下,中位数如果一样的话,它们共同的中位数,即这(12十18)=30个数的样 本中位数(记为此xy M ),应该对于每一列数据来说都处于中间位置.也就是说,(Y1,Y2,…,Y12) 和(x1,x2,…,x18)中大于或小于xy M 的样本点应该大致一样多,计算他们的混合样本中位数为

参数、非参数检验操作步骤

参数、非参数检验操作步骤 参数检验 非参数检验 对象 针对参数做的假设 针对总体分布情况做的假设 使用范围 等距数据和比例数据(度量) 定类数据和定序数据(名义和有序) 分布 正态分布 正态、非正态分布 内容 Means 检验 单样本T 检验 独立样本T 检验 配对样本T 检验 卡方检验(均匀分布) 二项分布检验(两个变量) 游程检验(随机分布) K-S 检验(正态分布检验) 参数检验 一 Means 过程 Means 过程用于统计分组变量的的基本统计量,这些基本统计量包括:均值(Mean )、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。 1数据编辑窗口输入分析的数据 2 分析→比较均值→均值 因变量、自变量的选择可根据实际情况。 “选项”

3 结果分析

P<0.05,拒绝原假设,显著性强。 结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.3846,标准差15.95065,方差254.423; 暴雨后有13个样本,平均数104.4615,标准差15.10858,方差228.269;总体26个样本,平均数113.4231,标准差17.75426,方差315.214。 方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。 二单一样本的T检验 T检验是检验单个变量的均值与指定的检验值之间是否存在显著差异。如:研究人员可能想知道一组学生的IQ平均分与100分的差异。 1 分析→比较均值→单一样本的T检验

参数、非参数检验操作步骤讲解

参数、非参数检验操作步骤 参数检验非参数检验 对象针对参数做的假设针对总体分布情况做的假设 使用范围等距数据和比例数据(度量)定类数据和定序数据(名义和有序)分布正态分布正态、非正态分布 内容Means检验 单样本T检验 独立样本T检验 配对样本T检验 卡方检验(均匀分布) 二项分布检验(两个变量) 游程检验(随机分布) K-S检验(正态分布检验)参数检验 一Means过程 Means过程用于统计分组变量的的基本统计量,这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。 1数据编辑窗口输入分析的数据 2 分析→比较均值→均值 因变量、自变量的选择可根据实际情况。 “选项”

3 结果分析

P<0.05,拒绝原假设,显著性强。 结果报告,分别给出暴雨前和暴雨后卵量的统计量:暴雨前有13个样本,平均数122.3846,标准差15.95065,方差254.423; 暴雨后有13个样本,平均数104.4615,标准差15.10858,方差228.269;总体26个样本,平均数113.4231,标准差17.75426,方差315.214。 方差分析表,共有六列,第一列说明方差的来源,Between Groups是组间的,Within Groups 组内的,Total 总的。第二列为平方和,其大小说明了各方差来源作用的大小。第三列为自由度。第四列为均方,即平方和除以自由度。第五列F值是F统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性。第六列是F统计量的显著值,由于这里的显著值0.007小于0.05,所以模型是显著的,降雨对卵量有显著影响。 二单一样本的T检验 T检验是检验单个变量的均值与指定的检验值之间是否存在显著差异。如:研究人员可能想知道一组学生的IQ平均分与100分的差异。 1 分析→比较均值→单一样本的T检验

spss实验报告—非参数检验

实验报告 ——(非参数检验) 实验目的: 1、学会使用SPSS软件进行非参数检验。 2、熟悉非参数检验的概念及适用范围,掌握常见的秩和检验计算方法。 实验内容: 1、某公司准备推出一个新产品,但产品名称还没有正式确定,决定进行抽样调 查,在受访200人中,52人喜欢A名称,61人喜欢B名称,87人喜欢C 名称,请问ABC三种名称受欢迎的程度有无差别?(数据表自建) SPSS计算结果如下: 此题为总体分布的卡方检验。 零假设:样本来自总体分布形态和期望分布没有显著差异。即ABC三种名称受欢迎的程度无差别,分布形态为1:1:1,呈均匀分布。 观察结果,上表为200个观察数据对A、B、C三个名称(分别对应1,2,3)的喜爱的期望频数以及实际观察频数和期望频数的差。从下表中可以看出相伴概

率值为0.007小于显著性水平0.05,因此拒绝零假设,认为样本来自的总体分布与制定的期望分布有显著差异,即A、B、C三种名称受欢迎的程度有差异。 2、某村庄发生了一起集体食物中毒事件,经过调查,发现当地居民是直接饮用 河水,研究者怀疑是河水污染所致,县按照可疑污染源的大致范围调查了沿河居民的中毒情况,河边33户有成员中毒(+)和均未中毒(-)的家庭分布如下:(案例数据run.sav) -+++*++++-+++-+++++----++----+---- 毒源 问:中毒与饮水是否有关? SPSS计算结果如下: 此题为单样本变量值随机检验 零假设:总体某变量的变量值是随机出现的。即中毒的家庭沿河分布的情况随机分布,与饮水无关。 相伴概率为0.036,小于显著性水平0.05,拒绝零假设,因此中毒与饮水有关。 3、某试验室用小白鼠观察某种抗癌新药的疗效,两组各10只小白鼠,以生存日数作为观察指标,试验结果如下,案例数据集为:npara1.sav,问两组小白鼠生存日数有无差别。 试验组:24 26 27 30 32 34 36 40 60 天以上 对照组:4 6 7 9 10 10 12 13 16 16 SPSS计算结果如下: 此题为两独立样本非参数检验。 (1)两独立样本Mann-Whitney U检验:

两相关样本的非参数检验

第三章 两相关样本的非参数检验 在实际生活中,常常要比较成对数据。比如比较两种处理,如药物,饮食,材料,管理方法等等。有时要同时比较,有时要比较处理前后的区别.例如,某鞋厂比较两种材料的耐磨性,如果让两组不同的人来实验,则因为人们的行为差异很大,所以,不能进行公平的比较,如果让某个样本的左右两只鞋分别用不同的材料作成,实验的条件就很相似了。所谓两个相关样本,是指两样本之间存在着某种内在联系。 §3.1 符号检验 一、基本方法 设X 和Y 分别具有分布函数F(x)和f(y),从两个总体得随机配对样本数据),(,),,(),,(2211n n y x y x y x ,研究X 和Y 是否具有相同得分布函数。即检验::0H )(x F =)(y F 。如果两个总体具有相同的分布,则其中位数应该相等,所以检验的假设为: 配对资料符号检验的计算步骤为: 与单样本的符号检验一样,也定义S +和S -为检验的统计量。 的数目为i i n i i i y x y x I S >>=∑=+1)( 的数目为i i n i i i y x y x I S >>=∑=+1)( 由于S +和S -的抽样分布为二项分布)2 1,(n B ,如果S +大小适中,则支持原假设,否则S +太大,S -太小,则支持y x m m H >:1;S +太小,S -太大,则支持y x m m H <:1。 令),min(,则检验的准则如下表:

例从实行适时管理(JIT)的企业中,随机抽取20家进行效益分析,它们在实施JIT前后三年的平均资产报酬率。问在5%的显著性水平下,企业在实施JIT前后的资产报酬率是否有显著差异? 应该接受原假设,即企业在实施JIT前后的资产报酬率没有显著差异? §3.2 两样本配对Wilcoxon检验 前面的符号检验只用到它们差异的符号,而对数字大小所包含的信息未能考虑。因此为改进信息的利用效率,可采用两样本配对Wilcoxon检验。配对Wilcoxon检验既考虑了正、负号,又考虑了两者差值的大小。 Wilcoxon符号秩检验的步骤:

spss两配对样本的非参数检验

原文地址:SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)作者:王江源 一、概述 非参数检验对于总体分布没有要求,因而使用范围更广泛。对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。它与配对样本t检验相对应。 二、问题 为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。请问该放松方法对入睡时间有无影响。 本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。 三、统计操作 数据视图

菜单选择 打开如下的对话框

该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。点击进入“字段”选项卡。将“放松前”、“放松后”均选入右边“检验字段”框中。 点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon匹

配样本对符号秩(二样本)”复选框。“检验选项”可以设定显著性水平。 点击“运行”按钮,输出结果 四、结果解读 这就是输出结果。原假设示放松前好放松后差值的中位数等于0,P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。

双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。如下图。

统计第十一课:SPSS 多相关样本的非参数检验(Friedman检验) 关键词:SPSS多相关样本非参数检验2015-07-14 00:00来源:互联网点击次数:5103 先讲讲什么是 Friedman 检验 Friedman 检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。 其原假设是:多个配对样本来自的多个总体分布无显著差异。 SPSS 将自动计算 Friedman 统计量和对应的概率 P 值。如果概率 P 值小于给定的显著性水平 0.05,则拒绝原假设,认为各组样本的秩存在显著差异,多个配对样本来自的多个总体的分布有显著差异。 反之,则不能拒绝原假设,可以认为各组样本的秩不存在显著性差异。 基于上述基本思路,多配对样本的 Friedman 检验时,首先以行为单位将数据按升序排序,并求得各变量值在各自行中的秩;然后,分别计算各组样本下的秩总和与平均秩。多配对样本的 Friedman 检验适于对定距型数据的分析。 看完这些,是不是有点儿晕,好吧,让我们进入实例来分析分析。

两独立样本和配对样本T检验

两独立样本T 检验 目的:利用来自两个总体的独立样本,推断两个总体的均值是否存在显著差异。 检验前提: 样本来自的总体应服从或近似服从正态分布; 两样本相互独立,样本数可以不等。 两独立样本T 检验的基本步骤: 提出假设 原假设H_0:「1-「2=0 备择假设H_1:叮-卩_2工0 建立检验统计量 如果两样本来自的总体分别服从N(^_1,c_1A2)和N(「2, q_2A2),则两样本均值差(x_1 ) ?-x ?_2应服从均值为Q-匸2、方差为c_12A2的正态分布。 第一种情况:当两总体方差未知且相等时,采用合并的方差作为两个总体方差的估计,为: sA2=((n_1-1) s_1A2+(n_2-1) s_2A2)/(n_1+n_2-2) 则两样本均值差的估计方差为: c_12A2=sA2 (1/n_1 +1/n_2 ) 构建的两独立样本T检验的统计量为: t= ((x_1 ) ?-x ?_2/ V (sA2 (1/n_1 +1/n_2 )) 此时,T统计量服从自由度为n_1+n_2-2个自由度的t分布。 第二种情况:当两总体方差未知且不相等时,两样本均值差的估计方差 为: (T _12A2=(s_1A2)/n_1 +(s_2八2)/n_2

构建的两独立样本T 检验的统计量为: t= ((x_1 ) ?x ?_2)/ V ((s_1A2)/n_1 +(s_2A2)/n_2 ) 此时,T 统计量服从修正自由度的t 分布,自由度为: f= ((s_1A2)/n_1 +(s_2A2)/n_2 )A2/(((s_1A2)/n_1 )A2/n_1 +((s_2A2)/n_2 )A2/n_2 ) 可见,两总体方差是否相等是决定t 统计量的关键。所以在进行T 检验之前,要先检验两总体方差是否相等。SPS芽使用方差齐性检验(Levene F检 验)判断两样本方差是否相等近而间接推断两总体方差是否有显著差异。 三、计算检验统计量的观测值和p 值 将样本数据代入,计算出t 统计量的观测值和对应的概率p 值。 四、在给定显著性水平上,做出决策 首先,利用F统计量判断两总体方差是否相等,Levene F检验的原假设为两独立总体方差相等。概率p<0.05 时,有充分理由拒绝原假设,说明方差不齐;否则,两样本方差无显著性差异。 其次,将设定的显著性水平a与检验统计量的p值比较,如果t统计量的p 值小于a,落入拒绝域内,则我们有充分理由拒绝原假设,认为两总体均值有显著差异。 SPSS实现过程: 菜单:Analyze -> Compare Means-> Independent Samples T test Test Variable(s):待检验的变量(一般是定距或定序变量) Grouping Variable :分组变量(只能比较两个样本) 结果中比较有用的值:方差齐次性检验F统计量对应的P值和方差相等或 不相等T统计量对应的P值。 例:利用pkustedu.sav 数据,检验不同性别学生的平均月生活费是否存在差异。 扩展案例:

两个独立样本的非参数检验方法有4种

两个独立样本的非参数检验方法有4种 曼-惠特尼U检验(Mann—whitney U) 两个独立的曼-惠特尼U检验可用于对两个总体分布的比较判断。其零假设是两组独立样本来自的总体分布无显著差异。曼-惠特尼U检验通过对两组样本平均秩的研究来实现推断秩简单的说就是变量值排序的名次。 两个独立样本的K-S检验 K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。 两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。主要差别在于:这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下: ①首先,将这两组样本混合并按升序排序。 ②然后分别计算两组样本秩的累计频数和累计频率。 ③最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。 两独立样本的游程检验 单样本游程检验用来检验变量值的出现是否随机,而两个独立变量游程检验则用来检验两个独立样本来自的两个总体的分布是否存在显著差异。其零假设是两组独立样本来自的两个总体的分布无显著差异。 两独立样本的游程检验与单样本游程检验的基本思想相同,不同的是计算游程数的方法。两独立样本的游程检验中,又程数依赖于变量的秩。 步骤如下:首先,将两组样本混合并按升序排列,在变量值排序的同时,对应的组标记值也会随之重新排列。 然后,对组标记只序列按前面讨论的游程的方法计算游程数容易理解:如果两总体的分布存在较大的差距,那么游程数会相对比较少,如果游程数比较大,则应是两组样本充分混合的结果,那么总体的分布不会存在显著差异。 再次,根据游程数据计算Z统计量,该统计量近似服从正态分布。 极端反应检验 极端反应检验从另一个角度检验两独立样本所来自的两个总体分布是否存在显著差异。其零假设是来两独立样本来自的两个总体分布无显著差异。 极端反应检验的基本思想是将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现极端反应。如果试验样本没有出现极端反应,则认为两总体分布无显著差异,反之,则总体分布存在显著差异。 第1 页共1 页

两个独立样本的非参数检验方法有哪四种

两个独立样本的非参数检验方法有哪四种 两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。 一、Mann-Whitney U检验 主要通过对平均秩的研究来实现推断。 将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。 相同观察值(即相同秩,ties),取平均秩。 两独立样本的Mann-Whitney U检验的零假设 H0:两个样本来自的独立总体均值没有显著差异。 将两组样本(X1 X2 …… Xm)(Y1 Y2 …… Yn)混合升序排序,每个数据将得到一个对应的秩。 计算两组样本数据的秩和Wx ,Wy 。 N=m+n Wx+Wy= N(N+1)/2 如果H0成立,即两组分布位置相同,Wx应接近理论秩和 m(N+1)/2; Wy 应接近理论秩和n(N+1)/2)。 如果相差较大,超出了预定的界值,则可认为H0不成立。 二、两个独立样本的K-S检验 K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。 两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下: ①首先,将这两组样本混合并按升序排序。 ②然后分别计算两组样本秩的累计频数和累计频率。

最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。 三、游程检验(Wald-Wolfwitz Runs) 零假设是H0:为样本来自的两独立总体分布没有显著差异。 样本的游程检验中,计算游程的方法与观察值的秩有关。首先,将两组样本混合并按照升序排列。在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。 如果计算出的游程数相对比较小,则说明样本来自的两总体的分布形态存在较大差距;如果得到的游程数相对比较大,则说明样本来自的两总体的分布形态不存在显著差距。 SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为两个样本来自的总体分布有显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设H0,认为两个样本来自的总体分布无显著差异。 四、极端反应检验 从另一个角度检验两独立样本所来自的两个总体分布是否存在显著差异。其零假设是来两独立样本来自的两个总体分布无显著差异。 极端反应检验的基本思想是将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现极端反应。如果试验样本没有出现极端反应,则认为两总体分布无显著差异,反之,则总体分布存在显著差异。

SPSS的参数检验和非参数检验

实验二 SPSS的参数检验和非参数检验 (验证性实验 4学时) 1、目的要求:熟练掌握t检验及其结果分析。熟练掌握单样本、两独立 样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给 出准确分析。 2、实验内容:使用指定的数据按实验教材完成相关的操作。 3、主要仪器设备:计算机。 练习: 1、给幼鼠喂以不同的饲料,用以下两种方法设计实验: 鼠体内钙的留存量有显著不同。 2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天 并说明分析结论。 1 参数检验概述 假设检验的基本思想 .事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立; .采用逻辑上的反证法,依据统计上的小概率原理。

2 单样本的T检验 2.1检验目的: ?检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。 ?要求样本来自的总体服从或近似服从正态分布。 2.2 单样本T检验的实现思路 ?提出原假设: ?计算检验统计量和概率P值 ●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在 一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。 2.3 单样本t检验的基本操作步骤 1、选择选项Analyze-Compare means-One-Samples T test,出现窗口: 2、在Test Value框中输入检验值。 3、单击Option按钮定义其他选项。Option选项用来指定缺失值的处理方法。其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。可见,较第二种方式,第一种处理方式较充分地利用了样本数据。在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。另外,还可以输出默认95%的置信区间。 至此,SPSS将自动计算t统计量和对应的概率p值。 3 两独立样本的T检验 3.1 两独立样本T检验的目的 ?利用来自两个总体的独立样本,推断两个总体的均值是否存在显著性差异; ?两独立样本的样本容量可以相等,也可以不相等; ?样本来自的总体服从或近似服从正态分布。 方差齐性检验(Levene F方法): ?计算两组样本的均值 ●计算各个样本与本组均值的平均离差绝对值; ●利用单因素方差分析推断两独立总体平均离差绝对值是否有显著差异。 ●在对两独立样本进行T检验时,两组样本方差相等和不等时使用的计算t 值的公式不同,所以首先进行方差F检验。用户需要根据F检验的结果自己判断选择t检验输出中的哪个结果,得出最后结论。如果推断两总体方差相等则看方差相等的T检验值和P值,如果推断两总体方差不相等则看方差不相等的T检验值和P值。 3.2 两独立样本T检验的实现思路 ?提出原假设:两总体均值不存在显著差异: ●计算统计量和P值:首先利用F检验确定两个总体的方差是否相等;然后 再选择合适的T统计量计算观测值和概率P值; ●根据显著性水平和概率P值进行统计决策。 3.3 两独立样本t检验的基本操作步骤 进行两独立样本t检验之前,正确地组织数据是一个非常关键的任务。SPSS 要求将两组样本数据存放在一个SPSS变量中,同时,为区分哪些样本来自哪个

spss-非参数检验-K多个独立样本检验(-Kruskal-Wallis检验)案例解析

spss-非参数检验-K多个独立样本检验(-Kruskal-Wallis检验)案例解析

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析2011-09-19 15:09 最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K 个独立样本检验( Kruskal-Wallis检验)。 还是以SPSS教程为例: 假设:HO: 不同地区的儿童,身高分布是相同的 H1:不同地区的儿童,身高分布是不同的 不同地区儿童身高样本数据如下所示: 提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个 即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的

分布,(即指:卡方检验) 点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面: 将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。 在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定 运行结果如下所示:

对结果进行分析如下: 1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900 自由度为:3=k-1=4-1 下面来看看“秩和统计量”的计算过程,如下所示: 假设“秩和统计量”为 kw 那么:

其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数) 最后得到的公式为: 北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72 上海地区的“秩和”为:8.2*5=41 成都地区的“秩和”为:15.8*5=79 广州地区的“秩和”为:3.6*5=18

两个独立样本的非参数检验方法

两个独立样本的非参数检验方法 两个独立样本的费参数检验正是对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布是否存在显著差异的方法。 一、曼-惠特尼U检验 两个独立的曼-惠特尼U检验可用于对两个总体分布的比较判断。其零假设是两组独立样本来自的总体分布无显著差异。曼-惠特尼U检验通过对两组样本平均秩的研究来实现推断秩简单的说就是变量值排序的名次。 二、两个独立样本的K-S检验 K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。 两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下: ①首先,将这两组样本混合并按升序排序。 ②然后分别计算两组样本秩的累计频数和累计频率。 ③最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。 三、两独立样本的游程检验 单样本游程检验用来检验变量值的出现是否随机,而两个独立变量游程检验则用来检验两个独立样本来自的两个总体的分布是否存在显著差异。其零假设是两组独立样本来自的两个总体的分布无显著差异。 两独立样本的游程检验与单样本游程检验的基本思想相同,不同的是计算游程数的方法。两独立样本的游程检验中,又程数依赖于变量的秩。 步骤如下:首先,将两组样本混合并按升序排列,在变量值排序的同时,对应的组标记值也会随之重新排列。 然后,对组标记只序列按前面讨论的游程的方法计算游程数容易理解:如果

两个独立样本的非参数检验

两个独立样本的非参数检验 两个独立样本的费参数检验正是对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布是否存在显著差异的方法。 曼-惠特尼U检验(Mann—whitney U) 两个独立的曼-惠特尼U检验可用于对两个总体分布的比较判断。其零假设是两组独立样本来自的总体分布无显著差异。曼-惠特尼U检验通过对两组样本平均秩的研究来实现推断秩简单的说就是变量值排序的名次。 两个独立样本的K-S检验 K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。 两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。主要差别在于:这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下: ①首先,将这两组样本混合并按升序排序。 ②然后分别计算两组样本秩的累计频数和累计频率。 ③最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。 两独立样本的游程检验 单样本游程检验用来检验变量值的出现是否随机,而两个独立变量游程检验则用来检验两个独立样本来自的两个总体的分布是否存在显著差异。其零假设是两组独立样本来自的两个总体的分布无显著差异。 两独立样本的游程检验与单样本游程检验的基本思想相同,不同的是计算游程数的方法。两独立样本的游程检验中,又程数依赖于变量的秩。 步骤如下:首先,将两组样本混合并按升序排列,在变量值排序的同时,对应的组标记值也会随之重新排列。 然后,对组标记只序列按前面讨论的游程的方法计算游程数容易理解:如果两总体的分布存在较大的差距,那么游程数会相对比较少,如果游程数比较大,则应是两组样本充分混合的结果,那么总体的分布不会存在显著差异。 再次,根据游程数据计算Z统计量,该统计量近似服从正态分布。 极端反应检验 极端反应检验从另一个角度检验两独立样本所来自的两个总体分布是否存在显著差异。其零假设是来两独立样本来自的两个总体分布无显著差异。 极端反应检验的基本思想是将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现极端反应。如果试验样本没有出现极端反应,则认为两总体分布无显著差异,反之,则总体分布存在显著差异。具体分析过程见课本!

相关文档
最新文档