光纤衰减系数测试记录(表4)

光纤衰减系数测试记录(表4)
光纤衰减系数测试记录(表4)

敖市(A端)至八飘(B端)中继段光纤线路衰减测试记录(表4)中继段长8.850km 光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

采芹(A端)至彦洞(B端)中继段光纤线路衰减测试记录(表4)中继段长:4.046km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

彦洞(A端)至救民(B端)中继段光纤线路衰减测试记录(表4)中继段长3.398km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

八飘(A端)至地茶(B端)中继段光纤线路衰减测试记录(表4)中继段长:6.732km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

江口(A端)至高柳(B端)中继段光纤线路衰减测试记录(表4)中继段长:7.838km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

大同(A端)至章山(B端)中继段光纤线路衰减测试记录(表4)中继段长:5.079km光源FOD1202 仪表FOD2114 波长1550nm温度25°C

平秋(A端)至岑良(B端)中继段光纤线路衰减测试记录(表4)

中继段长:6.075kM光源FOD1202 仪表FOD2114 波长1550nm温度25°C

黄门(A端)至采芹(B端)中继段光纤线路衰减测试记录(表4)中继段长:5.512km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

白塔(A端)至令冲(B端)中继段光纤线路衰减测试记录(表4)中继段长:5.331km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

启蒙(A端)至归故(B端)中继段光纤线路衰减测试记录(表4)中继段长:10.162km光源FOD1202 仪表FOD2114 波长1550nm 温度25°C

启蒙(A端)至西洋店(B端)中继段光纤线路衰减测试记录(表4)中继段长:6.715km光源FOD1202 仪表FOD2114 波长1550nm温度25°C

移动机房(A端)至茅坪(B端)中继段光纤线路衰减测试记录(表4)中继段长:10.672KM光源FOD1202 仪表FOD2114 波长1550nm温度25°C

(A端)至(B端)中继段光纤线路衰减测试记录(表4)中继段长:光源FOD1202 仪表FOD2114 波长1550nm温度25°C

220kV线路光纤通道测试作业指导书

贵州华电毕节热电有限公司 220kV线路专用光纤通道定检测试 作业指导书 批准: 审核: 编制: 2014年09月

一、适用范围: 本作业指导书适用于220kV线路保护光纤通道定检测试作业。 二、引用标准: 1、《电力安全动作规程》(发电厂和变电站电气部分)DL 408-1991 2、《继电保护和电网安全自动装置检验规程》GB/T 14285—2006 3、《继电保护和电网安全自动装置检验规程》DL/T 995—2006 4、《中国南方电网通信管理暂行规定》(南方电网调【2003】10号) 5、《中国南方电网安全自动装置管理规定》(南方电网调【2004】7号) 6、《南方电网电力调度数据网络管理办法》(调通【2005】2号) 7、《南方电网通信网络生产应用接口技术规范》(调通【2007】18号) 三、作业条件及作业现场要求 1、工作区间与带电设备的安全距离应符合《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的要求。 2、作业现场应有可靠的试验电源,且满足试验要求。 3、检验对象处于停运状态,现场安全措施完整、可靠。 4、保持现场工作环境整洁。 四、作业人员要求 1、所有作业人员必须身体健康,精神状态良好。 2、所有作业人员必须掌握《国家电网公司电力安全工作规程(变电部分)》(国家电网安监【2009】664号)的相关知识,并经考试合格。 3、所有作业人员应有触电急救及现场紧急救火的常识。 4、本项检验工作需要作业人员2—3人。其中工作负责人1人,工作班成员1—2人。 5、工作负责人应由从事继电保护现场检验工作3年以上的专业人员担任,必须具备工作负责人资格,熟练掌握本作业程序和质量标准,熟悉工作班成员的技术水平,组织并合理分配工作,并对整个检验工作的安全、技术等负责。 6、工作班成员应由从事继电保护现场检验工作半年以上的专业人员担任,必须具备必要的继电保护知识,熟悉本作业指导书,能掌握有关试验设备、仪器仪表的使用。 五、作业前准备工作: 1、开始工作前一天,准备好作业所需设备、仪器、仪表和工器具。主要仪器设备和工器具见下表。 主要仪器设备和工器具 序号名称数量规格备注 1 继电保护光纤通道测试仪1台ZY64520 有效期内 2 尾纤适量 3 数字万用表1只4位半有效期内 4 工具箱1套0.2级,0.5—2A 各种检修工具齐全 2、开始作业前一天,准备好图纸及资料,且图纸及资料应符合现场实际情况。具体图纸、资料见下表。 检验所需图纸资料 序号资料名称单位数量

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式 保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电

缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向传输延时不得超过10ms,所经过的站点不宜超过6个站点,迂回所经线路长度不宜超过 1000km。 8.继电保护通道中任一设备故障,不应造成多于6条线路的一套主保护信号同时中断。

保护光纤通道测试报告.

附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为G.703规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用G.703同向数字接口或2Mbps透明传输接口,SDH的2Mbps 通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器

三、保护通道构成 备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 4.1专用光纤方式

(A)配有光纤接线盒的专用光纤通道连接图 (B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 4.1、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功 率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立

保护光纤通道测试报告

v1.0 可编辑可修改附件2 保护光纤通道测试报告 线路名称: 电压等级: 测试地点: 测试单位:单位盖章 测试日期:

v1.0 可编辑可修改 编写人: 参与测试人员: 审查: 核定: - I -

一、测试条件 阴大雾大雨 二、设备情况 1、现场运行设备 64kbps2Mbps专用光纤 注:1、继电保护光电转换装置指将接点电信号转换为光信号的装置,如FOX-41A、GXC-01、CSY-102A 等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信号转换为规约2M电信号的装置,如MUX-2M、GXC-64/2M、CSY-186A等。 2、保护装置使用的64kbps采用同向数字接口或2Mbps透明传输接口,SDH的2Mbps通道再定 时功能不用,此项工作由通信人员负责。 2、试验仪器 三、保护通道构成

备注:以罗平变滇罗Ⅰ线为例,主一保护通道一通信通道编号为如“罗平变2M29”,通道路由为点对点,罗平——滇东。通道路由通常指:专用、点对点、迂回,当为迂回时应说明迂回通道经过的站点。 四、差动保护光纤通道测试 专用光纤方式 (A)配有光纤接线盒的专用光纤通道连接图

(B)未有光纤接线盒的专用光纤通道连接图 图1 差动保护专用光纤通道连接示意图 、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率——保护装置的发光功率和保护装置收信端(RX)尾纤的光功率——保护装置接收到的光功率。测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立 技术档案,在继保专业存档。部检时若收信功率与投产时相比不低于 5 dBm即可,发信功率若变化超过±3dBm,请于厂家联系。 3、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助 尾纤,测量到的发光功率实为经过尾纤后的光功率。有光纤接线盒时, 由于尾纤较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功 率看作装置的发光功率;无光纤接线盒时,由于尾纤较长,光衰耗较大, 测量得到的保护装置的发光功率与装置的标称发光功率就有一定的差 距,若测得的发光功率与装置的标称发光功率有较大的差距,就需要向 厂家询问,以确保装置及尾纤是否正常。 4、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率,

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

光纤配线架验收测试报告

光纤配线架测试报告 检验记录 检验清单 主检人: 校核人: 批准人: 日期:光纤配线架测试 一、认可项目、检验类别及检验依据、流程图 1.认可项目及检验标准 产品名称:光纤配线架 检验标准:YD/T 778-2006 光纤配线架 2.检验类别 (1)产品认证型式检验 (2)产品认证复评型式检验 (3)产品认证监督检验 (4)产品认证监督检验+产品认证变更检验

(5)委托检验 上述(1)-(4)类别的检验依据除了对应产品的检验标准以外,还应依据泰尔发布的最新配线设备认证实施规则来执行。 3.检验流程图 按 委 托 方 要 求 , 不 符 合 标 准 要 求 数据处理,评判试验结果 评判、编制报告 样品检后处理 常温检验 1.外观与结构 2.材料

二、检验项目及检验方法 1、外观与结构检查 1.1用卡尺或卷尺检测机架外形尺寸。 1.2用手实际操作转动、插拔、锁定部位应感觉适度,用万能角尺,检测机架门开启角;用塞规检测其间隙的上、中、下三处。 1.3用装配工具手工检查紧固件,用裸手触摸外露和操作部位。 1.4用R量规检测光缆尾纤的弯曲半径。 1.5其它用目视方法检查。 2、功能检查 测试步骤:采用视察法和操作法检查各功能装置安装的完整齐备性及其达到的功能性。 3、光电性能测试 3.1插入损耗 3.1.1测试连接框图 3.1.2 按测试连接图连接测试光纤测试,光回波损耗测试仪 S1 光源,此时,图中S 2 回波损耗测试仪 启光源开关,预热15 3.2回波损耗 3.2.1测试连接框图 3.2.2测试步骤

反射测试尾纤末端暴露。光回损仪开机预热15min之后,将标准反射测试尾纤暴露端环绕直径为7mm左右的圆柱体8圈,对光回损仪保存设置初始值。再将标准反射测试尾纤暴露端按图4所示接上被测尾纤,在被测尾纤暴露端环绕8圈,此时光回损仪所显示的值即为被测尾纤暴露端R2的实际回波损耗值;同理,将被测尾纤暴露端R2与标准反射测试尾纤连接,另一端R1环绕8圈,即可得到R1端的实际回波损耗值。 3.3高压防护接地装置与机架间绝缘测试 用CY2679A绝缘电阻测试仪进行测试,测试前仪表应预热1h,然后校准,选择500V 测试电压×105MΩ电阻档,将被测部位接至仪表的R 端,旋钮依次从放电、充电、测试位 X 置转动,待表头指针稳定后读取绝缘电阻值,如表头指针摆动不定,则读取1min时的绝缘电阻值,然后旋钮恢复至放电状态,准备下次测试。 3.4高压防护接地装置与机架间耐电压测试 用CY2661耐压测试仪进行测试,测试前仪表应预热并可靠接地,漏电流设置为2mA,电压量程为5kV,输出电压选择直流,按启动按钮,然后旋转升压旋钮使电压升至规定的值(DC 3000V),加压时间为1min,电压撤消(复原)后,将旋钮反时针旋至零位。 4、机械耐久性试验 在对方插头插入的情况下,以通常使用的方法插入和拔出,共插拔500次,最后50次时每10次记录一次光学性能数据,同时对插针及适配器的弹性套筒进行清洁,记录5次数据,取5次数据的平均值。 5、塑料燃烧性能试验 测试步骤:先调整燃烧器的供给量和空气入口,使之产生高度为(20±2)mm蓝色火焰,然后再增加空气量直到火焰的黄尖消失,对样品施加火焰30s,试样离火后持续有焰燃烧时间应小于10s。如右图所示。 6、机械和环境试验

光纤测量实验报告

光纤测量实验报告 光纤损耗测量 一、实验目的 1、掌握光功率计的原理及使用方法 2、利用光功率计测量1310nm及1550nm光纤的损耗 二、实验装置 LD激光器,光功率计,直径不同的圆柱型物体若干,光纤跳线若干。 1、LD激光器 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。 2、光功率计 光功率计是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。 在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 3、直径不同的圆柱型物体 分别有笔芯、针管、胶棒等圆柱型物体,如下图所示。 三、实验步骤 如下图所示,连接好实验装置后,首先将光纤拉直,在不进行缠绕的情况下测得初始光功率,再将光纤在不同的圆柱型外缠绕不同的圈数,分别记录下此时的光功率计显示的损耗值,列表分析数据并画出损耗曲线。

四、实验数据及结果分析 1、波长值为1310nm (初始光功率值为5.37dBm ) 2、波长值为1550nm (初始光功率值为2.40dBm ) (1)直径d=5mm

光缆工程竣工资料模板

◆二、 竣工技术资料 (管道光缆)/(直埋光缆)/(架空光缆) 建设项目: 建设单位: 设计单位: 监理单位: 施工单位(公章): 施工负责人(签章): 编制日期:年月日

光缆线路工程竣工技术资料目录及表格 1、施工单位营业执照复印件(需加盖施工单位公章) 2、施工单位资质等级证书复印件(需加盖施工单位公章) 3、委托施工合同 4、施工组织设计(方案)报审表(见附录2.1) 5、施工组织设计方案 6、工程开工/复工报审表(见附录2.2) 7、开工报告(见附录2.3) 8、分包单位资质报审表(见附录2.4) 9、施工进度计划报审表(见附录2.5) 10、工程变更费用报审表(见附录2.6) 11、费用索赔申请表(见附录2.7) 12、工程款支付/预付申请表(见附录2.8) 13、工程临时/最终延期申请表(见附录2.9) 14、工程材料/构配件/设备报审表(见附录2.10) 15、工程质量事故报告单(见附录2.11) 16、质量事故处理情况报验表(见附录2.12) 17、单位工程竣工预验及报验表(见附录2.13) 18、完成隐蔽作业项目报验单(见附录2.14) 19、监理通知回复单(见附录2.15) 20、工作联系单(见附录2.16) 21、工程说明(见附录2.17) 22、工程设计变更单(见附录2.18) 23、工程量总表(见附录2.19) 24、工程报验单(见附录2.20) 25、工程竣工初验证书(见附录2.21) 26、光缆敷设施工质量记录表(见附录2.22) 27、光缆测试质量记录表(见附录2.23) 28、光缆配盘图 29、光缆纤芯接续色谱图 30、中继段光缆衰减统计表(见附录2.24) 31、中继段光纤接头损耗记录(见附录2.25) 32、中继段光纤后散射信号曲线检测记录 33、工程竣工图(需加盖竣工章)

光纤损耗测试方法及其注意事项

光纤损耗测试方法及其注意事项 1 引言 随着应用和用户对带宽需求的进一步增加,光纤链路对满足高带宽方面的巨大优势逐步体现,光纤的使用越来越多。在施工中,无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,本文中分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 本文主要就这三种方法各自的特点、操作方法、应该使用的场合进行分析和阐述。另外,对光纤链路的测试中需要注意的问题进行分析。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 标准中定义了三种测试损耗的方法(以双向测试为例): 2.1 测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如图1)。设置参考值后,将被测链路接进来(如图2),进行测试。 图1 图2 每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法 A 是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 2.2 测试方法B 方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如图3)。设置参考值后,将被测链路接进来(如图4),进行测试。 图3 图4 这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。 从技术角度讲,测试结果中还包括了额外的光纤跳线(3-4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光缆本身以及电缆两端的连接器。 2.3 测试方法C 方法C设置参考值时,使用三条光纤和两个连接器(单方向,见图5),其中两个连接

XXXXXXXX线220kV线路保护试验检测报告 (1)

试验日期:2010.01.25 报告编号:XXXXXXXXXX 外观无破损,划伤,字符清晰,紧固件无缺损,安装牢固。 三、绝缘检查 试验时短接弱电回路,带电缆外回路一起试验。绝缘电阻用500V,500MΩ摇表测量,耐压试验 四、逆变电源调试 五、零漂检查:(单位: A、V) 六、线性度检查 通入三相正序电流电压,对各通道进行检查,采样及相序均正确。 2、平衡度检查 将电流顺极性串联,电压同极性并联,通入 5 A电流, 57.74 V电压,各通道电流电压采样均为同极性。 七、开入开出检查 对压板及操作箱实际操作和在端子排处模拟,检查开关量输入,结果为所有开入量开入正确,配合保护试验及传动检查保护所有开出,结果为所有开出量开出正确。

试验日期:2010.01.25 报告编号:XXXXXXXXXX 注:接地距离保护试验时通入I段电流为 5 A,II段电流为5 A III段电流为3 A,试验时投入各段方向,正向时故障角为75°。接地补偿系数整定0.84 。II段是否闭重由控制字投退,III段三跳闭重。 注:相间距离保护试验时I段电流为5 A,II段电流为5 A III段电流为3 A,正向时故障角为80 ,分别模拟三相故障和两相及三相故障,距离保护均能可靠动作。II段是否闭重由控制字投退,III段三跳闭重。 确,信号正确。 4、零序保护 注:试验时各段方向保护投入。II段是否闭重由控制字投退,III段三跳闭重。

试验日期:2010.01.25 报告编号:XXXXXXXXXX 6、PT断线过流 注:PT断线过流闭锁重合。PT断线功能正确,自动投入过流保护(距离、零序保护压板需投入)。 接地的瞬时性和永久性故障均可靠正确动作。手合故障保护动作正确。单相重合时零序经60ms延时加速跳闸,三相重合时,零序经100ms延时加速跳闸。 8、901单跳、三跳正确启动602重合闸。 9、TA、PT断线功能正确,PT断线时自动投入PT断线过流保护。 10、故障打印和外部P键功能正确。 11、用机构防跳解操作箱防跳;断路器机构三相不一致保护;六氟化硫压力低闭锁重合闸。 九、交流功耗测量

保护光纤通道测试报告

附件2 线路名称:________________________ 电压等级:________________________ 测试地点:________________________ 测试单位:单位盖章 测试日期:________________________

编写人: 参与测试人员:审查: 核定:

、测试条件 二、设备情况 1、现场运行设备 注:1 等,有的可设展宽时间;继电保护信号数字复用接口装置指将光纤差动保护装置等出来的光信 号转换为规约2M电信号的装置,如MUX-2M GXC-64/2M CSY-186A等。 2、保护装置使用的64kbps采用同向数字接口或2Mbps透明传输接口,SDH的2Mbps通道再定时功能不用,此项工作由通信人员负责。 2、试验仪器 三、保护通道构成

辅A 保护 通道二 主二保护 通道一 通道二 辅B 保护 通道一 通道二 主三保护 通道一 通道二 备注:以罗平变滇罗I 线为例,主一保护通道一通信通道编号为如“罗平变 2M29,通 道路由为点对点,罗平一一滇东。通道路由通常指:专用、点对点、迂回,当为迂回时 应说明迂 回通道经过的站点。 四、差动保护光纤通道测试 专用光纤方式 (A )配有光纤接线盒的专用光纤通道连接图 测试点i 测试点2 通信机房及SDH 网络 继保小室 继保小室

(B)未有光纤接线盒的专用光纤通道连接图图1差动保护专用光纤通道连接示意图 、保护装置及保护通信接口装置发光功率和接收功率测试 测试目的:测试保护装置和光纤接口的发光功率以及接收功率。 测试方法:分别用光功率计测量保护装置发信端(FX)尾纤的光功率一一保护装置的发光功率和保护装置收信端(RX尾纤的光功率一一保护装置接收到的光功率。 测试地点:保护装置光纤端口和光纤接线盒光纤端口及ODF架处。 测试分工:测试点1处由继保人员负责,测试点2处由保护人员和通信人员共同负责。注意事项:1、了解保护装置和保护通信接口装置的发光功率是否在厂家的给定范围内,同时测试尾纤及接头的损耗是否满足要求。 2 、新安装试验、全检及部检时测试点1和测试点2都应进行测试,并建立 技术档案,在继保专业存档。部检时若收信功率与投产时相比不低于5 dBm即可,发信功率若变化超过土3dBm请于厂家联系。 3 、由于保护装置及保护接口装置的发光功率通常无法直接测量,需要借助 尾纤,测量到的发光功率实为经过尾纤后的光功率。有光纤接线盒时,由于尾纤 较短,尾纤的光衰耗较小,就将发信端口尾纤测量得到的光功率看作装置的发光 功率;无光纤接线盒时,由于尾纤较长,光衰耗较大,测量得到的保护装置的发 光功率与装置的标称发光功率就有一定的差距,若测得的发光功率与装置的标称 发光功率有较大的差距,就需要向厂家询问,以确保装置及尾纤是否正常。 4 、无光纤接线盒时,测试点1仅可以测量到保护装置的接收到的光功率, 测试点2仅可测量到ODF处接收到的光功率(即保护装置经过尾纤后的发光功 率),测量到的光功率均填在测试点1、测试点2的“实测接收光功率”栏。 5 、测试时两侧保护正常运行,光纤通道连接正常。对于RCS931 CSC103 PSL603保护,通道时延可在保护装置面板上进行查看。WXH80保护无此功能。

继电保护光纤通道管理规定

继电保护光纤通道管理规定

500kV系统继电保护光纤通道管理规定 一.总则 1.为加强继电保护光纤通道管理,进一步提高继电保护光纤通道可靠性,制定本规定。 2.本规定主要依据《继电保护和安全自动装置技术规程》(GB/T 14285-2006)、《线路保护及辅助装置标准化设计规范》(Q/GDW 161-2007)、《继电保护和电网安全自动装置检验规程》(DL/T 995—2006)和《光纤通道传输继电保护信息通用技术条件》等制定。 3.本规定适用于500kV继电保护光纤通道的调度、设计、基建、运行维护等。220千伏及以下系统可参照执行。 二.专业管理职责划分 1.专用纤芯方式 1.1保护用光纤直接由龙门架接续盒引出到线路保护装置的,接续盒至保护装置的光缆由继电保护专业负责维护。通信专业协助进行光纤的测试及熔接工作。 1.2保护用光纤由通信机房光配线架(ODF)引出到线路保护装置的,通信专业与继电保护专业以光配线架为分工界面。龙门架接续盒至通信机房光配线架的光缆及光配线架由通信专业负责维护。光配线架至保护装置的光缆由继电保护专业负责维护,通信专业协助进行光纤的测试及熔接工作。 2.复用接口方式

保护装置复用通道以配线架(数字配线架或音频配线架)作为继电保护专业和通信专业的分工界面。继电保护接口设备(保护用光电转换器)至配线架间的电缆由保护专业维护,配线架和复用通信设备及其连接线由通信专业负责维护,继电保护接口设备由继电保护专业负责维护。 3.传输保护信号的光缆、数字电缆、音频电缆在通信侧各配线架的接线或改线方案由通信专业、继电保护专业的双方负责人签字确认,接线由通信专业人员负责。接线时,继电保护专业人员应到场配合。 三.管理规定和技术要求 1.对于配置双套光纤差动保护的线路,要求至少一套光纤差动保护使用双通道。 2.线路两套光纤纵联保护通道应使用两条完全独立的路由。 3.采用复用光纤通道的线路两侧继电保护设备,其使用的继电保护接口设备应采用同型号、同版本的产品。 4.采用2M方式传输的继电保护业务通道不得设置通道保护方式。 5.对于主干线光纤网络长度小于30km且建设有OPGW光缆的线路,宜优先采用专用纤芯作为保护通道。 6.对于传输继电保护信息的迂回光纤通道,迂回路由的站点应在500kV、220kV系统OPGW光纤通信骨干环网上。 7.传输保护的迂回光纤通道,通道传输收发延时应相同,且单向

系统测试记录

弱电系统测试记录 项目建设单位: 项目监理单位: 文件编制单位:

目录 一、测试计划及内容1 1.1测试计划及内容1 二、硬件设备加电功能测定记录1 2.1核心交换机加电功能测定记录1 2.2接入交换机(H3C SMB-MS4024)加电功能测定记录3 2.3其他设备功能测定记录6 2.4设备安装调试记录10 三、综合布线测试记录11 四、光纤耗损测试记录19 五、视频系统末端测试记录20 六、测试结果确认21

一、测试计划及内容 1.1测试计划及内容 根据测试内容,分设备安装上架调试阶段、设备调试完成阶段和业务迁移完成阶段四阶段完成测试,各测试阶段的测试方式、测试内容和相应的参与人员情况如下: 二、硬件设备加电功能测定记录 2.1核心交换机加电功能测定记录

测试序号1-02 测试项目板卡注册 测试结果详见测试序号“1-01” 测试结果 测试序号1-03 测试项目设备温度 测试步骤通过命令show temperature查看设备温度 核心交换机H3C MS4300-28P温度 测试记录 测试序号2104 测试项目CPU使用率

测试步骤通过命令Show cpu查看设备CPU利用率是否在正常范围 核心交换机H3C MS4300-28P 测试记录 测试序号1-04 测试项目内存使用率 测试步骤通过命令Show memory查看设备内存利用率是否在正常范围 核心交换机内存利用率 测试记录 测试序号1-05 测试项目硬件告警 测试步骤查看设备指示灯是否正常,通过命令show alarm查看是否有硬件告警核心交换机告警信息,显示无 测试记录 2.2接入交换机(H3C SMB-MS4024)加电功能测定记录 测试序号1-06

光纤纵联差动保护通道测试的基本方法1

光纤纵联差动保护通道测试的基本方法1 通道, 光纤 0 概述光纤差动保护已应用在丹江电厂110kV系统丹20,丹29线路;220kV系统丹55线路保护上,随着电力系统站网改造的发展,线路保护距离有日愈缩短的趋势,光纤差动短距离保护的优势被体现出来,必将更多应用在我厂。光纤电流差动保护是在电流差动保护的基础上演化而来的,基本保护原理也是基于克希霍夫基本电流定律,它能够理想地使保护实现单元化,原理简单,不受运行方式变化的影响,而且由于两侧的保护装置没有电联系,其灵敏度高、动作简单可靠快速、能适应电力系统震荡、非全相运行等优点是其他保护形式所无法比拟的。光纤差动保护在继电保护中的地位越来越高,然因光纤成本,光纤保护大面积推广较晚。各方面对光纤保护定值等传统校验项目比较重视,对通道检测认识不足,甚至认为通道不用检测校验,其实光纤通道在光纤电流差动保护中起着极其重要作用,在出厂、投运以及定检时,都应该对通信通道中的各个环节包括光端机、通道衰耗、复用接口盒、时钟设置以及现场的复用设备等等进行检查,防止由于通信通道导致保护不能正常工作的产生。常见问题包括: 1)保护装置提供的技术指标,如光收发功率、接收灵敏度、光收发模块的稳定性,由于接触不良、老化等原因,不能满足技术指标。装置若不检查这些指标,在运行过程中,由于接触不良、接头有灰尘、温度老化更降低通道指标,会造成误码率增大,影响保护动作行为。 2)目前光纤电流差动保护定检都是基于通道完好情况下,如采用尾纤连接定检试验,误码率很低。实际随着装置的运行,光器件老化、通道接触原因、光纤老化,通道衰减增大,误码率增大。应考虑在正常误码及许可误码的情况下保护装置的动作行为,确保装置在许可误码下装置正确动作。 3)光纤电流差动保护由于是基于通道的纵联保护,通道的时延,间断对保护性能有影响。采用双通道的光纤电流差动保护,应检查双通道保护动作情况及单通道的动作情况。采用复接PCM 设备时,还应检查PCM 其他业务对光纤电流差动保护的影响。光纤通道需要检测的项目一般包括:光发射器功率测试、光接受灵敏度测试、光收发模块稳定度测试、光接收功率测试、光通道自环测试。 1 光发射器功率测试目的:测试发射器功率是否满足要求。发射器功率测试接线如下图1所示。 图1 光发送功率测试发射器功率=测量值+接头衰耗(2×1db)用跳线光纤一端接光端机发射口,一端接光功率计测试端,读出表上显示稳定值(dBm)。发射

光纤保护通道试验方法

光差保护通道调试方法 以南瑞RCS-931保护为例: 一、光纤通道联调 将保护使用的光纤通道连接可靠,通道调试好后装置上“通道异常灯”应不亮,没有“通道异常”告警,TDGJ 接点不动作。 1. 对侧电流及差流检查 将两侧保护装置的“TA 变比系数”定值整定为1,在对侧加入三相对称的电流,大小为 In,在本侧保护状态”→“DSP 采样值”菜单中查看对侧的三相电流、三相补偿后差动电流及未经补偿的差动电流应该为In。 若两侧保护装置“TA 变比系数”定值整定不全为1,对侧的三相电流和差动电流还要进 行相应折算。假设M 侧保护的“TA 变比系数”定值整定为km,二次额定电流为INm,N 侧保护的“TA 变比系数”定值整定为kn,二次额定电流为INn,在M 侧加电流Im,N 侧显示的对侧电流为Im*km*INn/(INm*kn),若在N 侧加电流In,则M 侧显示的对侧电流为 In*kn*INm/(Inn*km)。若两侧同时加电流,必须保证两侧电流相位的参考点一致。 2. 两侧装置纵联差动保护功能联调 模拟线路空冲时故障或空载时发生故障:N 侧开关在分闸位置(注意保护开入量显示有 跳闸位置开入,且将相关差动保护压板投入), M 侧开关在合闸位置,在M 侧模拟各种故障,故障电流大于差动保护定值,M 侧差动保护动作,N 侧不动作。 模拟弱馈功能:N 侧开关在合闸位置,主保护压板投入,加正常的三相电压34V(小于65% Un 但是大于TV 断线的告警电压33V),装置没有“TV 断线”告警信号,M 侧开关在合闸位置,在M 侧模拟各种故障,故障电流大于差动保护定值,M、N 侧差动保护均动作跳闸。 远方跳闸功能:使M 侧开关在合闸位置,“远跳受本侧控制”控制字置0,在N侧使保护 装置有远跳开入,M 侧保护能远方跳闸。在M 侧将“远跳受本侧控制” 控制字置1,在N 侧使保护装置有远跳开入的同时,在M 侧使装置起动,M 侧保 护能远方跳闸。 二、通道调试说明 1、通道良好的判断方法: 1)保护装置没有“通道异常”告警,装置面板上“通道异常灯”不亮,TDGJ 接点不闭合。 2)“保护状态”→“通道状态”中有关通道状态统计的计数应恒定不变化(长时间可能会有小的增加,以每天增加不超过10 个为宜)。 必须满足以上两个条件才能判定保护装置所使用的通道通信良好,可以将差动保护投入运行。 2、通道调试前的准备工作 1)通道调试前首先要检查光纤头是否清洁?光纤连接时,一定要注意检查FC 连接头上的凸台和砝琅盘上的缺口对齐,然后旋紧FC 连接头。当连接不可靠或光纤头不清洁时,仍能收到对侧数据,但收信裕度大大降低,当系统扰动或操作时,会导致通道异常,故必须严格校验光纤连接的可靠性。

江西住宅及商务楼宇光纤链路测试、衰减限值速查表、工程验收检验项目及标准、图例

附录A 光纤链路测试方法 (规范性附录) A.0.1 插入损耗法可分为三跳纤法和两跳纤法。 A.0.2 当被测光纤链路两端均为插头时,应采用三跳纤法进行测试。 三跳纤法校准如图A.2.1所示,将测试设备光源与光功率计经“光源侧光跳纤”“校准用适配器”“参考跳纤”“光功率计侧光跳纤”相连,启动仪表校准(归零)按钮(或程序),完成对仪表的校准。 图A.2.1 三跳纤法校准示意图 完成校准后,应将校准用“参考跳纤”取下,将参与校准的带有光纤连接器的测试光跳纤分别保留在光源和光功率计上,并用防尘帽保护。 测试如图A.2.2所示,分别将用户接入点和家居配线箱处被测光纤链路的插头与测试跳纤上的光纤连接器连接。启动仪表测试,并记录读数。 图A.2.2 测试两端为插头的光纤链路 三次测试读数的平均值不应大于《住宅区和额住宅建筑内光纤到户通信设施工程设计规范》DB37/T 5113中8.0.1规定的衰减值。 A.0.3 当被测试光纤链路用户接入点一端为光纤连接器(插头已与适配器连接),用户配线箱一端为插头时,应采用两跳纤法进行测试。 两跳纤法校准如图A.3.1所示,将测试设备光源与光功率计经“光源侧光跳纤”“校准用适配器”“光功率计侧光跳纤”相连,启动仪表校准(归零)按钮(或程序),完成对仪表的校准。 图A.3.1 两跳纤法校准示意图

完成校准后,应将“校准用适配器”保留在后续与被测插头相连接仪表一侧,并用防尘帽对插头和连接器进行保护。 测试如图A.3.2所示,在用户接入点一侧,将测试光跳纤插头与被测光纤连接器连接;在家居配线箱一侧,通过校准用适配器与被测光纤链路的插头连接。启动仪表测试,并记录读数。 图A.3.2 测试一端为光纤连接器,另一端为插头的光纤链路三次测试读数的平均值减去0.5dB(用户接入点一侧适配器引入衰减的典型值),其结果不应大于《住宅区和住宅建筑内光纤到户通信设施工程设计规范》 DB37/ 5113中8.0.1规定的衰减值。 当对两跳纤测试结果有疑义时,应将用户接入点侧插头从适配器上取下,并采用三跳纤法复测。

关于光纤接续损耗测试以及分析

关于光纤接续损耗测试以及分析 作者:舒伟明 光纤接续损耗是光纤通信系统 性能指标中的一项重要参数,损耗值的大小直接影响到光传输系统的整体传输质量,在光缆施工和维护测试中,运用科学的测试分析方法,对提高整个光缆接续施工质量和维护工作极其重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定现实意义。 一、 光纤接续损耗分析 1、 光纤接续损耗产生的原因 1.1 本征损耗 本征损耗是光纤材料所固有的一种损耗,预制棒拉丝成纤后就确定了,这种损耗无法避免,引起光纤本征损耗的主要原因是散射和吸收,散射是由于材料密度不均匀而产生的瑞利散射,吸收主要是光纤材料中的杂质粒子对某些波长的光产生强烈的吸收。 1.2光纤的附加损耗 附加损耗是成纤后产生的损耗,主要是由于光纤受到弯曲和微弯所产生的,在成缆和光缆的施工过程中,都不可避免地要发生弯曲,因此就会产生附加损耗,对于单模光纤,对接的两根纤,由于模场直径,纤芯和包层的同心度、纤芯的不圆度参数的差异,会导致光纤接续损耗的产生,在两根光纤完全对准,且忽略端面间隙的情况下,接续损耗主要取决于光纤模场直径的差异,接续损耗的计算为:b=20lg[1/2(d1/d2+ d2/ d1)], d1与d2分别为两对接光纤的模场直径,从计算公式可以看出,两对接光纤的模场直径相等(即d1=d2)时,其接续损耗b=0。 2、 影响光纤接续损耗的原因

影响光纤接续损耗的原因,主要是光纤本身的结构参数和熔接机的熔接质量,同时还有一些人为因素和机械因素,比如光纤收容盘纤产生的弯曲损耗,光纤切割的断面质量,横向失配、纵向分离、轴向倾斜等。 二、光纤接续损耗测试分析 1、熔接机对接续损耗估算原理 熔接机接续是通过对光纤X轴和Y轴方向的错位调整,在轴心错位最小时进行熔接的,这种能调整轴心的方法称为纤芯直视法,这种方法不同于功率检测法,现场是无法知道接续损耗的确切数值的,在整个调整轴心和熔接接续过程中,通过摄像机把探测到所熔接纤芯状态的信息,送到熔接机的分析程序中,然后熔接机计算出接续损耗值,其实准确地说,这只能是说明光纤轴心对准的程度,并不含有光纤本身的固有特性所影响的损耗,而OTDR 的测试方法是后向散射法,它包含有光纤参数的不同形式的反射损耗,所以熔接机所显示的数据配合观察光纤接续断面情况只是粗略地估计了光纤接续点损耗的状况,不能作为光纤接续损耗的真实值。 2、OTDR的工作原理 背向散射法是将大功率的窄脉冲光注入待测光纤,然后在同一端检测沿光纤轴向向后返回的散射光功率,由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,当脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射,其中总有一部分进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比,测量沿光纤轴向返回的背向瑞利散射光功率可采集到沿光纤传输损耗的信息,从而测得光纤的衰减。 光时域反射仪通过光发送脉冲进入输入光纤,同时在输入端接收其中的菲涅尔反射光和瑞利背向散射光,再变成电信号,随时间在示波器上显示。 使用OTDR测试光纤接续损耗时,1550nm的波长对光纤弯曲的损耗较1310nm敏感,所以光纤接续损耗测试应选择1550nm波长,以便观察光缆敷设和光纤接续中是否会因光纤弯曲过度而造成损耗增大,但采用光源光功率计全程传输损耗测试时应对1310nm和1550nm两波长进行分测。

相关文档
最新文档