第二十八届物理竞赛预测实验气垫导轨

第二十八届物理竞赛预测实验气垫导轨
第二十八届物理竞赛预测实验气垫导轨

第二十八届物理竞赛预测实验气垫导轨上测量速度和加速度

【目的】

1.学习气垫导轨和数字毫秒计的正确使用。

2.掌握在气垫导轨上测量平均速度、瞬时速度和加速度的方法。

3.研究力、质量和加速度之间的关系。

【原理】

利用从导轨表面上的小孔喷出的压缩空气,使导轨表面与滑块之间的摩擦力大大减小,气轨上的滑块运动几乎可以看做是无摩擦的运动。当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为L ?的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L ?和遮光时间t ?,则滑块通过光电门的平均速度为:

t L

v ??= (2-13)

若L ?很小,则在L ?范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。L ?越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与L ?的大小无关。

若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S 的2个光电门的始末速度1v 和2v ,则滑块的加速度:

S v v a 221

22-= (2-14)

根据牛顿第二定律

F = m a (2-15)

如图2-11所示,水平气轨上质量为M 的滑块A ,用细绳通过轻滑轮B 与砝码C 相连,在忽略各摩擦力,不计线的质量,线不伸长的条件下,对于滑块A ,根据牛顿第二定律有

T = M a (2-16)

式中T 为绳子的张力,对于质量为m 的砝码,根据牛顿第二定律有

mg - F = m a

(2-17)

由式(2-16)和式(2-17)得 mg =(M +m )a (2-18)

式(2-18)表明,当系统总质量保持不变时,加速度与合外力

成正比,当合外力保持恒定时,加速度与系统总重量成正比,若实

验证明了式(2-18)成立,亦即验证了牛顿第二定律。

1.保持系统总质量不变,研究外力与加速度的关系

由式(2-18)得:

a k a g m

M m 1=+= (2-19)

图2-11 验证实验装置

实验可测得对应与不同的m 的加速度a ,以m 为纵坐标,a 为横坐标做关系曲线,若①各实验点的连线为一条直线;②该直线过坐标;③该直线的斜率g m M k b +=

=1,则式(2-19)成立。

2.保持外力mg 不变,研究系统质量与加速度的关系

由式(2-18)得:

a k a mg 11

2= (2-20)

实验可得对应于不同M 的加速度a ,以)(m M +为纵坐标,a 1

为横坐标,做其关系曲线,

若①各实验点的连线为一条直线;②该直线过坐标原点;③该直线的斜率为b =k 2=mg ,则式

(2-20)成立。

【仪器】

气垫导轨,数字毫秒计。

【实验内容与步骤】

1.保持系统总质量不变,研究外力与加速度的关系

①启动气源向气轨送气,用清洁的棉纱沾酒精擦拭导轨表面及滑块内表面。

②在装有与滑块运动方向严格平行的U 型挡光板的滑块上,放4~5个砝码(每个5.00 g ),将滑块放在导轨上轻轻推一下,使之来回运动,用数字毫秒计测量滑块通过相距50.00 mm 的2个光电门的时间,仔细调节导轨底脚螺丝(应调节单脚螺丝),使导轨持水平状态。

③将质量为5.00 g 的砝码盘用细绳饶过定滑轮系到滑块上,将滑块置于远离滑轮的另一端的某一个固定位置,待砝码盘不动后释放滑块,使其由静止开始作匀加速运动,分别记下滑块经过2个光电门的时间1t ?和2t ?,测量重复3次。

④从滑块上取下一个砝码放在砝码盘中(这样既改变了力的大小,又保证了系统总质量不变,即此时m =10.00(g )。由同一个固定位置释放,测出滑块经过2个光电门的时间1t ?和2t ?。同样重复3次。

重复上述步骤,每次从滑块上取下一个砝码放入砝码盘中,直至m =25.00 g 。各数据均填入表2-3中。

2.保持外力不变,研究系统质量与加速度的关系

①在滑块上放置3块铁块,重新检查导轨,使之为水平状态。

② 将装有砝码的砝码盘(即m =15 g ),绕过定滑轮系到滑块上,用实验内容1的方法测出滑块通过2个光电门的时间,重复3次。

③每次从滑块上取走一块铁块,测量对应于不同质量的系统时,滑块经过2个光电门的时间,各重复3次,数据填入表2-4中。

表2-3 外力与加速度关系的测量数据

M +m =______g L ?=______cm S =_____cm

g m 平均123/1s

t ? 平均123/2s

t ? ()11-?s cm v ()12-?s cm v ()1-?s cm a

50.00

10.00

15.00

20.00

25.00

_________________________________________________________________________

表2-4 质量与加速度关系的测量数据 ()g m M

+ 平均123/1s t ? 平均123/2s t ? ()11/-?s cm v ()12/-?s cm v ()2/-?s cm a ()121/--?cm s a

_________________________________________________________________________

【数据处理】

1.研究外力和加速度的关系

以m 为纵坐标,a 为横坐标,在直角坐标系上做出m -a 关系曲线,从图线求出其斜率b ,将b 与g m M /)(+比较,求百分偏差。

=++-g m

M g

m

M b % 2.研究系统质量和加速度的关系

以m M +为纵坐标,1/a 为横坐标,做1-+m M /a 关系曲线,从图线求其斜率b ,将b 与mg 比较,求百分偏差。

=-mg mg

b %

【注意事项】

1.调节导轨水平的程度是做好实验的关键。如导轨上装有水平仪,可调节螺母观察水平仪

显示状态。当导轨水平时,滑块在水平方向上所受的合外力为零,此时滑块静止,或者作匀速直线运动,但是,因为气轨的加工不可能绝对平直,滑块也难以完全静止,如轻轻推一下滑块,则滑块从一端向另一端运动,先后通过2个光电门的时间1t ?和2t ?应相等,由于空气阻力,滑

块速度缓慢减小,经过后一个光电门的时间总比经过前一个光电门的时间长,经仔细调节,使滑块经过2个光电门的时间相差不超过1%,至少在朝滑轮方向运动时满足这一要求,这时可视为导轨已调水平。

2. 滑块通过某一位置的速度,是借助于光电门和数字毫秒计测量的,当滑块上的挡光板垂直通过光电门时,数字毫秒计将显示宽度为L ?的挡光板的遮光时间,或相距L ?的2次遮光之间的时间间隔,即滑块由该位置运动了距离L ?所用的时间,滑块的速度t L

v ??=,是滑块在距离

L ?内的平均速度。对于匀速直线运动,因速度处处相等,平均速度就是任意位置的瞬时速度,对于匀加速直线运动,只有当L ?→0(t →0)时,才是该位置的瞬时速度,因此,在匀加速直线运动时,必须使挡光板的宽度或2次挡光间的距离尽量小,所测出的速度才能代替瞬时速度。

在恒力作用下,滑块作匀加速直线运动,其加速度由滑块通过相距为S 的任意2个光电门的始末速度,按式2-14计算,因为是匀加速直线运动,平均加速度就是它的瞬时加速度,因此,加速度的测量值与2个光电门的位置无关。

3. 验证牛顿第二定律是根据F=ma 这一经典公式,式中F 是系统所受的合外力,本实验中,除包括所施的外力外,还应包括略去的滑轮摩擦力和空气阻力。m 是系统的总质量,除包括滑块、重物、砝码及盘的质量外,还应包括略去的绳子质量和滑轮的折合质量,a 是与F 相应的瞬时加速度,对于匀加速直线运动,平均加速度等于瞬时加速度,本实验可以看成是匀加速直线运动,验证从两方面着手:① 保持系统质量不变,研究力与加速度的关系,为了保持系统质量不变,改变力时是将滑块上的小砝码取下,放入施给滑块拉力的砝码盘中,或把砝码盘中的砝码取出后放到滑块上;② 研究恒力作用下系统质量与加速度的关系,要保持合外力不变,砝码盘中的砝码不能变,通过改变滑块上铁块数目来改变系统的质量,任何时候,系统的总质量都应包括砝码和砝码盘的质量。

【仪器描述】

气 轨

气轨是一种力学实验装置,利用从导轨表面的小孔喷出的压缩空气,使气轨表面与气轨上的滑块之间形成了一层很薄的“气垫”。这样,滑块在导轨表面运动时,就不存在接触摩擦力,只有小的多得空气粘滞力和运动时周围空气的阻力,几乎可以看成是无摩擦运动 。使用气轨可以大大减少力学实验中难于克服的摩擦力的影响,使实验效果大大改善。目前,气垫技术在很多部门得到广泛应用,是一种有着广泛发展前途的新技术。

一、气轨的组成

气轨主要由导轨、滑块及光电转换装置组成。其结构如图2-12所示。

1.导轨

图2-12 气垫导轨

1.工字钢底座

2.底脚螺丝

3.滑轮

4.光电门

5.导轨

6.挡光板

7.滑块

8.缓冲弹簧

9.进气嘴

图2-14 光电转换装置 导轨是用三角形铝合金

材料制成。可以调整其平直

度,常把它用螺丝固定在工

字钢上,导轨长1.50~2.20

m ,两侧面非常平整,并且

均匀分布着许多很小的气孔。导轨一端封闭,上面装有定滑轮,另一端有进气嘴,通过皮管与气源相连。当压

缩空气进入导轨后,从小气孔喷出,在导轨和滑块之间形成空气层,导轨和滑块两端都装有缓冲弹簧,使滑块可以往返运动。工字钢底部装有3个底脚螺丝,用来调节导轨水平,或将垫块放在导轨底脚螺丝下,以得到不同的斜度。

2.滑块

滑块是在导轨上运动的物体,一般用角铝制成,

内表面经过细磨,能与导轨的两侧面很好的吻合。

当导轨中的压缩空气由小孔喷出时,垂直喷射到滑

块表面,它们之间形成空气薄层,使滑块浮在导轨

上(图2-13)。根据实验要求,滑块上可以安装挡

光板、重物或砝码。滑块两端除可装缓冲弹簧外,

也可装尼龙搭扣及轻弹簧。

3.光电转换装置

光电转换装置又称光电门,由聚光灯泡和光敏

管组成(图2-14)。聚光灯泡的电源由数字毫秒计供给, 图2-14

光电转换装置只要接通毫秒计电源开关,聚光灯泡即可点亮,发出

的光束正好照在光敏管上,光敏管与数字毫秒计的控制电路连接。

当光照被罩住时,光敏管电阻发生变化,从而产生一个电信号,触

发毫秒计开始计时;当光照恢复或光照又一次被遮住(视数字毫秒

计的工作状态而定),又产生一个电信号,使毫秒计停止计时。毫

秒计显示出一次遮光或两次遮光之间的时间间隔。

二、气垫导轨的调节和使用

1.滑块运动速度和加速度测定

将数字毫秒计的工作状态选择在“光控”、“B”(或“2”)挡,在导

轨滑块上装一U 型挡光板(图2-15)。挡光板随滑块自右向左运动时,挡光板的第一条边11′,首先进入垂直于滑块运动方向安置的光电

门,射向光敏管的光束被遮住,触发信号使数字毫秒计开始计时。当挡光板的第三条边33′经过光电门时,光束又一次被遮住,触发信号

使数字毫秒计停止计时。毫秒计显示的时间t ?,即为挡光板经过距离

L ?的时间,若L ?足够小,t L

??即为滑块经过光电门的瞬时速度。

图2-13 滑块装置

图2-15 U 型挡光板

滑块自左向右运动,毫秒计上显示的时间t ?′,是挡光板第四条边44′至第二条边22′间距离L ?′所用的时间,一般L ?=L ?′。

若将数字毫秒计的工作状态选择在“光控”、“A”(或“1”)挡,滑块上装一平面挡光板(图2-16)。挡光板随滑块一起运动,挡光板前缘(11′)进入光电门时,由于射向光敏管的光束被遮住,触发信号使毫秒计开始计时;当挡光板后缘(22′)离开光电门时,射向光敏管的光束又照在光敏管上,由此发出的触发信号,使毫秒计停止计时。设挡光板宽度为L ?、挡光板经过光电门的时间为t ?,t L

??即是滑块经过光电门的速度。

以上测量滑块运动速度方法,可根据需要选用。

若滑块在导轨上作匀加速运动,分别测出滑块通过相距为S2个

光电门的速度,则滑块运动的加速度为

S 2t 1L t 2L S 2v v a 22

22???? ????-???? ????=-=

式中1t ?和2t ?分别为挡光板先后经过2个光电门的时间。

2.气垫导轨的水平调节

把2个相同的光电门放在导轨的不同位置,并按要求与数字毫秒计连接。接通毫秒计电源,聚光灯泡发出的光束正好照在光敏管狭缝上,接通气源,使装有挡光板的滑块可以在导轨上自由运动。调节导轨上的单脚螺丝,使滑块在导轨上小范围内缓慢地来回运动(不是总朝一个方向),这时导轨基本调平。轻轻推动滑块,使之获得一定的速度,滑块从一端向另一端运动时,顺次通过2个光电门(返回时顺序相反),从毫秒计上先后读出滑块经过2个光电门的时间1t ?和2t ?,仔细调节导轨上的单脚螺丝,使1t ?和2t ?相差小于1%,便可认为滑块速度相等,导轨

已经调平。为了读数方便,毫秒计的复位方式开关应拨在“自动”一边,控制显示时间长短的“延时”旋钮要仔细调节。显示时间过长,会出现前后两时间的累积数;显示时间过短,会来不及读完显示的数字。适当调节“延时”旋钮,使显示时间既不会2次叠加,也不会来不及读数。

3.注意事项

气轨是一种高精度实验装置,导轨表面和滑块内表面有较高的光洁度,且配合良好。因此,各组导轨和滑块只能配套使用,不得与其他组调换,实验中要严防敲碰、划伤导轨和滑块(特别是滑块不能掉在地上);不得在未通气时就将滑块在导轨上滑动,以免擦伤表面;使用完毕,先将滑块取下再关气源;导轨和滑块表面有污物或灰尘时,可用棉纱沾酒精擦拭干净;导轨表面气孔很小,易被堵塞,影响滑块运动,通入压缩空气后要仔细检查,发现气孔堵塞,可用小于气孔直径的细钢丝轻轻捅通;实验完毕,应将轨面擦净,用防尘罩盖好。

图2-16 平面挡光板

气垫导轨实验数据

篇一:气垫导轨实验报告气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(qg-5-1.5m)、气源(dc-2b型)、滑块、垫片、电脑计数器(muj-6b 型)、电子天平(yp1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3v= dxdt dxdt 4过s1、s离?sa=速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,f=mgsinq=mg定牛顿第二定律成立,有mg hl =ma理论,a理论=g hl hl 。假 ,将实验测得的a和a理论进 行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为(本地g取979.5cm/s)a=a理论,则验证了牛顿第二定律。 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力学方程为mg hl -f=ma,f=mg hl -ma=m(a理论-a),比较不同倾斜状态下的 2 平均阻力f与滑块的平均速度,可以定性得出f与v的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右的速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量;

第届全国中学生物理竞赛决赛试题与详细解答

第23届全国中学生物理竞赛决赛试题 2006年11月深圳 ★理论试题 一、 建造一条能通向太空的天梯,是人们长期的梦想.当今在美国宇航局(NASA )支持下,洛斯阿拉莫斯国家实验室的科学家已在进行这方面的研究.一种简单的设计是把天梯看作一条长度达千万层楼高的质量均匀分布的缆绳,它由一种高强度、很轻的纳米碳管制成,由传统的太空飞船运到太空上,然后慢慢垂到地球表面.最后达到这样的状态和位置:天梯本身呈直线状;其上端指向太空,下端刚与地面接触但与地面之间无相互作用;整个天梯相对于地球静止不动.如果只考虑地球对天梯的万有引力,试求此天梯的长度.已知地球半径R 0=6.37×106m ,地球表面处的重力加速度g =9.80m ·s -2. 二、 如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们 平行地固连在一质量可以不计的,长为l =R 的矩形薄片的两端.初始时 矩形物位于水平位置且处于静止状态,A 、B 皆与圆筒内表面接触.已知A 、B 与圆筒内表面间的静摩擦因数μ都 等于1. 现令圆筒绕其中心轴线非常缓慢地转动,使A 逐渐升高. 1.矩形物转过多大角度后,它开始与圆筒之间不再能保持相对静止? 答:___________________________(只要求写出数值,不要求写出推导过程) l A 2R

2.如果矩形物与圆筒之间刚不能保持相对静止时,立即令圆筒停止转动.令θ表示A的中点和B的中点的连线与竖直线之间的夹角,求此后θ等于多少度时,B 相对于圆筒开始滑动.(要求在卷面上写出必要的推导过程.最后用计算器对方程式进行数值求解,最终结果要求写出三位数字.) 三、 由于地球的自转及不同高度处的大气对太阳辐射吸收的差异,静止的大气中不同高度处气体的温度、密度都是不同的.对于干燥的静止空气,在离地面的高度小于20km的大气层内,大气温度T e随高度的增大而降低,已知其变化率 =-6.0×10-3K·m-1 z为竖直向上的坐标. 现考查大气层中的一质量一定的微小空气团(在确定它在空间的位置时可当作质点处理),取其初始位置为坐标原点(z=0),这时气团的温度T、密度ρ、压强p都分别与周围大气的温度T e、密度ρe、压强p e相等.由于某种原因,该微气团发生向上的小位移.因为大气的压强随高度的增加而减小,微气团在向上移动的过程中,其体积要膨胀,温度要变化(温度随高度变化可视为线性的).由于过程进行得不是非常快,微气团内气体的压强已来得及随时调整到与周围大气的压强相等,但尚来不及与周围大气发生热交换,因而可以把过程视为绝热过程.现假定大气可视为理想气体,理想气体在绝热过程中,其压强p与体积V满足绝热过程方程 pVγ=C.式中C和γ都是常量,但γ与气体种类有关,对空气,γ=1.40.已知空气的摩尔质量μ=0.029kg?mol-1,普适气体恒量R=8.31J?(K?mol)-1.试在上述条件下定量讨论微气团以后的运动. 设重力加速度g=9.8m·s-2,z=0处大气的温度T e0=300K. 四、

气垫导轨类实验

气垫导轨类实验 气垫导轨是一种阻力极小的力学实验装置。它利用气源将压缩空气打入导轨型腔,再由导轨表面上的小孔喷出气流,在导轨与滑行器之间形成很薄的气膜,将滑行器浮起,并使滑行器能在导轨上作近似无阻力的直线运动。 仪器介绍 气垫导轨实验装置由导轨、滑块和光电测量系统组成。 1.导轨(图3.2-1) 导轨的主体是一根长约1.5米的截面为三角形的金属空腔管,在空腔管的侧面钻有两排等间距并错开排列的喷气小孔。空腔管一端密封,另一端装有进气嘴与气泵相连。气泵将压缩空气送入空腔管后,再由小孔高速喷出。在导轨上安放滑块,在导轨下装有调节水平用的底脚螺丝和用于测量光电门位置的标尺。整个导轨通过一系列直立的螺杆安装在口字形铸铝梁上。 进气嘴弹簧片挡光板滑块 底脚螺丝导轨 图 3.2-1 2.滑块 滑块是由长约0.100—0.300米的角铝做成的。其角度经过校准,内表面经过细磨,与导轨的两个上表面很好吻合。当导轨的喷气小孔喷气时,在滑块和导轨这两个相对运动的物体之间,形成一层厚约0.05-0.20mm流动的空气薄膜—气垫。由于空气的粘滞阻力几乎可以忽略不计,这层薄膜就成为极好的润滑剂,这时虽然还存在气垫对滑块的粘滞阻力和周围空气对滑块的阻力,但这些阻力和通常接触摩擦力相比,是微不足道的,它消除了导轨对运动物体(滑块)的直接摩擦,因此滑块可以在导轨上作近似无摩擦的直线运动。滑块中部的上方水平安装着挡光片,与光电门和计时器相配合,测量滑块经过光电门的时间或速度。滑块上还可以安装配重块(即金属片,用以改变滑块的质量)、接合器及弹簧片等附件,用于完成不同的实验。滑块必须保持其纵向及横向的对称性,使其质心位于导轨的中心线且越低越好,至少不宜高于碰撞点。 3.光电测量系统 光电测量系统由光电门和光电计时器组成,其结构和测量原理如图3.2-2所示。当滑块

利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东

利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东 利用气垫导轨验证牛顿第二定律 】 【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月0.1mm厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。 【关键词】 气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平实验回顾【实验目的】 1.熟悉气垫导轨和MUJ-613电脑式数字毫秒计的使用方法。 2.学会测量滑块速度和加速度的方法。 3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。 【实验原理】 (一) 仪器使用原理1.气垫导轨如图4-1所示,气垫导轨是一种摩擦力很小的实验装置,它利用从导轨表面小孔喷出的压缩空气,在滑块与导轨之间形成很薄的空气膜,将滑块从导轨面上托起,使滑块与导轨不直接接触,滑块在滑动时只受空气层间的内摩擦力和周围空气的微弱影响,这样就极大地减少了力学实验中难于克服的摩擦力的影响,滑块的运动可以近似看成无摩擦运动,使实验结果的精确度大为提高。 图4-1 气垫导轨装置图 2.MUJ-613电脑式数字毫秒计在用气垫导轨验证牛顿第二定律实验中,我们采用MUJ-613电脑式数字毫秒计测量时间。利用它的测加速度程序,可以同时测量出滑块通过两个光电门的时间及滑块通过两个光电门之间的时间间隔。 使用计数器时,首先将电源开关打开(后板面),连续按功能键。使得加速度功能旁的灯亮,气垫导轨通入压缩空气后,使装有两个挡光杆的滑块依次通过气垫导轨上的两个光电门计数器按下列顺序显示测量的时间: 显示字符 含 单位1 通过第一个光电门的速度 cm/s(亮)××·×× 2 通过第二个光电门的速度 cm/s(亮)××·×× 1—2 在第一和第二个光电门之间运动的加速度

第28届全国中学生物理竞赛决赛实验试题及参考解答

第28届全国中学生物理竞赛决赛 实验试题一试卷及答卷 直流电源特性的研究 一、 题目: 一直流待测电源x E ,开路电压小于2V 。 (1) 利用所给仪器,自组电压表、并测量待测电源x E 的开路电压; (2) 利用所给仪器,测量待测电源x E 的短路电流。 二、 仪器: 直流待测电源x E ,六位电阻箱二台,标称值350欧姆的滑线变阻器一台,标称值3V 直流电压源E 一台,准确度等级0.5级指针式100微安直流电流表1A 一台,准确度等级0.5级指针式多量程直流电流表 2A 一台,准确度等级1.5级指针式检流计G 一台,开关、导线若干。 三、 说明: 1、 待测电源x E 具有非线性内阻,不适合用U I -曲线外推法测量; 2、 测量中需要的电压表用100微安指针式直流电流表1A 和电阻箱自组; 3、 标称值3V 直流电压源E 由两节1号干电池、15欧姆保护电阻串联构成; 4、 所画测量电路中的待测电源x E 、3V 直流电压源E 、电流表1A 、电流表2A 需用“+”和“-”标明其正负极性; 5、 检流计G 两接线端子上并联两个保护二级管,作为平衡指示器使用时,可以不使用串联保护电阻。 如果测试中需要用检流计G 判断电流是否为0时,应说明检流计G 指示为0的判断方法或者判断过程。 四、 要求: 1、 (7分)利用所给器材,测量100微安电流表内阻,并将100微安电流表改装成2.00V 量程的电压表。 要求画出测量内阻的电路图,简述测量原理,给出测量结果;画出自组电压表的示意图,并标明元件的数值。 2.1(5分)画出测量待测电源x E 的开路电压的电路图,简述测量待测电源x E 开路电压的原理和步骤。 2.2(6分)连接电路、测量并记录必要的数据,标明待测电源x E 开路电压的测量值。 3.1(5分)画出测量待测电源x E 短路电流的电路图,并简述测量待测电源x E 短路电流的原理和步聚。 3.2(7分)连接电路、测量并记录必要的数据,写出待测电源x E 短路电流的测量值。 实验试题一答题纸: 1(7分)利用所给器材,测量100微安电流表内阻,并将100微安电流表改装成2.00V 量程的电压表。要 求画出测量内阻的电路图,简述测量原理,给出测量结果;画出自组电压表的示意图,并标明元件的

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

气垫导轨上的实验

实验一 气垫导轨上的实验(二) 【实验简介】 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms (十万分之一秒),这样, 就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律等等。 【实验目的】 1、学习气垫导轨和电脑计数器的使用方法。 2、用气垫导轨装置验证机械能守恒定律 3、验证动量守恒定律。 【实验仪器】 气垫导轨(QG —1.5mm )、滑块、垫片、光电门、电脑计数器(MUJ —6B )、游标卡尺(0.02mm )、卷尺(2m )。配重块、一台电子天平及尼龙搭扣。 【实验原理】 1、研究动量守恒定律 动量守恒定律和能量守恒定律一样,是自然界的一条普遍适用的规律。它不仅适用于宏观世界,同样也适用于微观世界。它虽然是一条力学定律,但却比牛顿运动定律适用范围更广,反映的问题更深刻。 动量守恒定律告诉我们,如果一个系统所受的合外力为零,那么系统内部的物体在作相互碰撞,传递动量的时候,虽然各个物体的动量是变化的,但系统的总动量守恒。如果系统在某个方向上所受的合外力为零,则系统在该方向上的动量守恒。 在水平的气垫导轨上,滑块运动时受到的粘滞阻力很小,若不计这一阻力,则滑块系统受到的合外力为零,两滑块作对心碰撞时前后的总动量守恒。 112211 22m v m v m v m v ''+=+ 1m 、2m 分别为两个滑块的质量,1v 、2v 分别为碰撞前两个滑块的速度,1v '、2 v '分别为碰撞后两个滑块的速度。应该注意的是,计算时必须选择一个方向为正,反方向为负。 牛顿在研究碰撞现象时曾提出恢复系数的概念,定义恢复系数2 112 v v e v v ''-= -。当1e =时为完全

第届全国中学生物理竞赛决赛试题及详细解答

第26届全国物理竞赛决赛试题理论部分及标准答案 一、填空题(每题5分,共20分) 1.某光滑曲面由曲线()y f x =绕竖直y 轴旋转一周形成,一自然半径为a 、质量为m 、劲度系数为k 的弹性圆环置于该曲面之上,能水平静止于任意高度,则曲线方程为 。 参考答案:2 22()y C x a mg π=--(C 为任意常数)。 2.如图所示的电阻框架为四维空间中的超立方体在三维空间中的投影模型(可视为内外两个立方体框架,对应顶点互相连接起来),若该结构中每条棱均由电阻R 的材料构成,则AB 节点间的等效电阻为 。 参考答案: 712 R 3.某种蜜蜂的眼睛能够看到平均波长为500nm 的光,它是由5000个小眼构成的复眼,小眼一个个密集排放在眼睛的整个表面上,小眼构造很精巧,顶部有一个透光的圆形集光装置,叫角膜镜;下面连着圆锥形的透明晶体,使得外部入射的光线汇聚到圆锥顶点连接的感光细胞上(入射进入一个小眼的光线不会透过锥壁进入其他小眼),从而造成一个“影像点”(像素);所有小眼的影像点就拼成了一个完整的像。若将复眼看作球面圆锥,球面半径 1.5r mm =,则蜜蜂小眼角膜镜的最佳直径d 约为(请给出两位有效数字) 。 参考答案:30m μ 4.开路电压0U 与短路电流SC I 是半导体p-n 结光电池的两个重要技术指标,试给出两者之间的关系表达式:0U = ,式中各符号代表的物理量分别为 。 参考答案:0ln 1SC S I kT U e I ??= + ??? ,式中e 为电子电量的绝对值,k 为波尔兹曼常量,T 为绝对温度,S I 为p-n 结的反向饱和电流。 评分标准:本题共20分。 第1、2题每题填对均得5分,第3题只要答案在27-30m μ之间即得5分,否则0分。第4题第一空格占4分,第二空格占1分。 二、(15分)天体或微观系统的运动可借助计算机动态模拟软件直观显示。这涉及几何尺寸的按比例缩放。为使显示的运动对缩放后的系统而言是实际可发生的,运动时间也应缩放。 1.在牛顿力学框架中,设质点在力场()F r 中作轨道运动,且有()()k F r F r αα=,k 为常数, r 为位矢。若几何尺寸按比率? 缩放显示,确定运行时间的缩放率?。 2.由此证明,行星绕太阳轨道运动周期的平方与轨道几何尺寸的立方成正比。 参考答案

大学物理实验气垫导轨实验报告.doc

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

实验二 气垫导轨上的实验上课讲义

实验二气垫导轨上 的实验

实验二 气垫导轨上的实验 气垫导轨是为消除摩擦而设计的力学实验的装置,来自气源的气在开有密集小孔的导轨表面产生一层气垫。物体运动在气垫上,避免物体与导轨的直接接触,很大程度上减少了物体与导轨表面的摩擦。利用气垫导轨可以进行许多力学实验,如测定速度、加速度,验证牛顿第二定律,动量守恒定律,研究简谐振动等。 【实验目的】 1、利用碰撞特例验证动量守恒定律。 2、学习使用气垫导轨和数字毫秒计。 【实验仪器】 实验装置如图1所示,主要由气源、气垫导轨、滑块(上面装有档光 片)、光电计时系统(光电门、数字毫秒计)组成。 图1 气垫导轨实验示意图 实验室用“吹尘器”作气源。 气垫导轨简称气轨,是一条横截面为三角形的空芯轨道,轨道表面分布着许多小气孔。气轨一头封闭,另一头装有进气嘴,气流从进气嘴流入,通过小气孔喷出,当滑块置于气垫之上时,滑块与轨道之间形成气垫,将滑块浮起,滑块的运动可视为是无摩擦的(气垫的两端装有缓冲弹簧,以免滑块冲出)。整个导轨安置在矩形梁上,梁下有三个用来调节水平的底脚螺丝。 (3)滑块1m 、2m (1m ~22m )是实验中相互碰撞的两物体,1m 、2m 滑块的内表面可与气轨密切配合;上部装有“凹”字形的档光片,1m 一端装有缓冲弹簧,另一端粘有尼龙搭扣,2m 一端粘有尼龙搭扣,另一端为光滑端。 (4)光电计时测速系统由光电门、数字毫秒计(包括滑块上的档光片)组成。 光电门是计时系统的信号接收装置,主要由安装在支架上的小聚光灯和光敏管组成,也有使用红外发光二极管和红外光敏三极管组成的光电门。聚光灯

和光敏管对置于轨道两侧,工作时聚光灯发光,光敏管接收光电信号。利用光敏管所接收的光照变化来控制毫秒计的“计”和“停”,实现计时。 光电计时器在本实验的工作特点是:光敏管第一次被遮光,开始计时,第二次被遮光,计时停止,故计时器记录的是两次遮光的时间间隔。 固连于滑块上的挡光片的有效部分为“凹”字形铝片,当挡光片随同滑块通过光电门时,就使光敏管受到两次遮光,从而使计时器记下一段时间t 与此段 图2 档光片运动示意图 于是滑块通过光电门的平均速度为 t x =υ (1) x 不大,可将v 近似地视为瞬时速度。本实验中,1m 、2m 上的挡光片的有效宽度分别为00.31=x cm 、00.12=x cm. 毫秒计的用法此处不再详述。 【实验原理】 二、速度与加速度 物体作直线运动时,如果在t ?时间间隔内,通过的位移为x ?,则物体在t ?的时间间隔内的平均速度V 为: t x V ??= (8) 当t ?趋近于零时,平均速度的极限值就是该时刻(或是该位置)的瞬时速度。当滑块在气垫导轨上运动时,通过测量滑块上的档光片经过光电门的档光时间t ?与档光片的宽度x ?(见图2),即可求出滑块在t ?时间内的平均速度v 。由于档光片宽度比较窄,可以把平均速度近似地看成滑块通过光电门的瞬时速度。档光片愈窄,相应的t ?就愈小,平均速度就更为准确地反映滑块在经过光电门位置时的瞬时速度。本实验中,滑块上的U 型挡光片的宽度为 00.31=x cm ,条形挡光片的宽度为00.12=x cm 在水平气轨上的滑块,如果受到水平方向的恒力作用(这个恒力由加上质量为m 的重物来提供),则滑块在气轨上作匀加速度运动。分别测量滑块通过两个光电门时的初速度V 1和末速度V 2,并测出两个光电门的间距S ,则滑块的加速度a 为:

全国高中物理竞赛历年试题与详解答案汇编

全国高中物理竞赛历年试题与详解答案汇编 ———广东省鹤山市纪元中学 2014年5月

全国中学生物理竞赛提要 编者按:按照中国物理学会全国中学生物理竞赛委员会第九次全体会议的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国目前中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛和决赛命题的依据,它包括理论基础、实验基础、其他方面等部分。其中理论基础的绝大部分内容和国家教委制订的(全日制中学物理教学大纲》中的附录,即 1983年教育部发布的《高中物理教学纲要(草案)》的内容相同。主要差别有两点:一是少数地方做了几点增补,二是去掉了教学纲要中的说明部分。此外,在编排的次序上做了一些变动,内容表述上做了一些简化。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁由全国中学生物理竞赛委员会第10次全体会议正式通过,开始实施。 一、理论基础 力学 1、运动学 参照系。质点运动的位移和路程,速度,加速度。相对速度。 矢量和标量。矢量的合成和分解。 匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。 刚体的平动和绕定轴的转动。 2、牛顿运动定律 力学中常见的几种力 牛顿第一、二、三运动定律。惯性参照系的概念。 摩擦力。 弹性力。胡克定律。 万有引力定律。均匀球壳对壳内和壳外质点的引力公式(不要求导出)。开普勒定律。行星和人造卫星的运动。 3、物体的平衡 共点力作用下物体的平衡。力矩。刚体的平衡。重心。 物体平衡的种类。 4、动量 冲量。动量。动量定理。 动量守恒定律。 反冲运动及火箭。 5、机械能 功和功率。动能和动能定理。 重力势能。引力势能。质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)。弹簧的弹性势能。 功能原理。机械能守恒定律。 碰撞。 6、流体静力学 静止流体中的压强。 浮力。 7、振动 简揩振动。振幅。频率和周期。位相。

气垫导轨阻尼常数的测量实验报告.doc

气垫导轨阻尼常数的测量实验报告 姓名:谭伟 学号:2008213481 院系:物理学院 一、 实验目的 1、 掌握气垫导轨阻尼常数的测量方法,测量气垫导轨的阻尼常数; 2、 学习消除系统误差的试验方法; 3、 通过实验过程及结果分析影响阻尼常数的因数,掌握阻尼常数的物理意义。 二、 实验仪器 气垫导轨、滑块2个、挡光片、光电门一对、数字毫秒计数器、垫块、物理天平、游标卡尺. 三、 实验原理 1、含倾角误差 如图3,质量为m 的滑块在倾角为α的气垫导轨上滑动。由气体的摩擦理论可知,滑块会受到空气对它的阻力,当速度不太大时,该力正比于速度v ,即f bv =。滑块的受力示意图如图所示,据牛顿第二定律有 sin ma mg bv α=- (1) 设滑块经过k1和k2时的速度分别为v1和v2,经历的时间为t1,k1、k2之间的距离为s. 由以上关系易得 211sin bs v v gt m α=+- (2) 即: 121(sin )m v v gt b s α-+= (sin α= h l ) (3)

图1 2、不含倾角误差 为了消除b 中的倾角α,可再增加一个同样的方程,即让滑块在从k2返回到k1,对应的速度分别为v3和v4,经过时间t2返回过程受力图如图2 f=bv sin mg α v 图2 同样由牛顿二定律有: sin mg bv ma α+= (4) 由始末条件 可解得: 432sin bs v v gt m α=-- (5) 由(2)式和(5)式可得: 13422112[()()] () m t v v t v v b s t t ---= + (6) 四、 实验步骤 1、打开电源,用抹布擦净气垫导轨,并连接好光电门与数字毫秒计数器; 2、调节水平。将一滑块在导轨上由静止释放,若滑块任静止,则导轨水平,否则则要调节调平螺母,使其水平; 3、调平后,选择一厚为h 的垫块将导轨一端垫起,将两光电门固定在导轨上相距为s 处,并选择数字毫秒计数器的记速功能;

气垫导轨实验报告

基础物理实验实验报告 计算机科学与技术 【实验名称】 气轨上弹簧振子的简谐振动 【实验简介】 气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦阻力。虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律;研究简谐振动、阻尼振动等。本实验采用气垫导轨研究弹簧振子的振动。 【实验目的】 1. 观察简谐振动现象,测定简谐振动的周期。 2. 求弹簧的倔强系数和有效质量。 3. 观察简谐振动的运动学特征。 4. 验证机械能守恒定律。 1

【实验仪器与用具】 气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。 【实验内容】 1. 学会利用光电计数器测速度、加速度和周期的使用方法。 2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。 3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。分析和讨论实验结果可得出什么结论?(若滑块做简 谐振动,应该有怎么样的实验结果?) 4. 研究振动周期和振子质量之间的关系。在滑块上加骑码(铁片)。对一个确定的振幅(如取A=40.0cm)每增加一个骑码测量一组 T。(骑码不能加太多,以阻尼不明显为限。) 作 T2-m 的 图,如果 T 与 m 的关系式为T2= 42m1+m0,则 T2-m 的图应为一条直线,其斜率为,截距为。 k 用最小二乘法做直线拟合,求出 k 和 m0。 5. 研究速度和位移的关系。在滑块上装上 U 型挡光片,可测量速度。作 v2-x2 的图,看改图是否为一条直线,并进行直线拟合,看斜率是否为,截距是否为,其中,T 可测出。 6. 研究振动系统的机械能是否守恒。固定振幅(如取 A=40.0cm),测出不同 x 处的滑块速度,由此算出振动过程中经过每一个 x 处的动能和势能,并对各 x 处的机械能进行比较,得出结论。 7. 改变弹簧振子的振幅 A,测相应的V max,由V max2A2关系求 k,与实验内容 4 的结果进行 比较。 8. 固定振幅(如取 A=40.0cm),测0、A4、A2、34A处的加速度。 【数据处理】 1. 实验仪器的调试 多次测量滑块从左到右和从又到左做运动经过两个光电门的速度差并多次调平,最终将经过两 个光电门的速度差控制在了 0.5% 以内。 2

第29届全国中学生物理竞赛决赛试题理论及参考解答

29届全国中学生物理竞赛决赛试题 一、(15分) 如图,竖直的光滑墙面上有A 和B 两个钉子,二者处于同一水平高度,间距为l ,有一原长为l 、劲度系数为k 的轻橡皮筋,一端由A 钉固定,另一端系有一质量为m= g kl 4的小球,其中g 为重力加速度.钉子和小球都可视为质点,小球和任何物体碰撞都是完全非弹性碰撞而且不发生粘 连.现将小球水平向右拉伸到与A 钉距离为2l 的C 点,B 钉恰好处于橡皮筋下面并始终与之光滑接触.初始时刻小球获得大小为2 0gl v 、方向竖直向下的速度,试确定此后小球沿竖直方向的速度为零的时刻. 二、(20分) 如图所示,三个质量均为m 的小球固定于由刚性轻质杆构成的丁字形架的三个顶点A 、B 和C 处.AD ⊥BC ,且AD=BD=CD=a ,小球可视为质点,整个杆球体系置于水平桌面上,三个小球和桌面接触,轻质杆架悬空.桌面和三小球之间的静摩擦和滑动摩擦因数均为μ,在AD 杆上距A 点a /4和3a /4两处分别施加一 垂直于此杆的推力,且两推力大小相等、方向相反. 1.试论证在上述推力作用下,杆球体系处于由静止转变为运动的临界状态时,三球所受桌面的摩擦力都达到最大静摩擦力; 2.如果在AD 杆上有一转轴,随推力由零逐渐增加,整个装置将从静止开始绕该转轴转动.问转轴在AD 杆上什么位置时,推动该体系所需的推力最小,并求出该推力的大小. 三、(20分) 不光滑水平地面上有一质量为m 的刚性柱体,两者之间的摩擦因数记为μ.柱体正视图如图所示,正视图下部为一高度为h 的矩形,上部为一半径为R 的半圆形.柱体上表面静置一质量同为m 的均匀柔软的链条,链条两端距地面的高度均为h /2,链条和柱体表面始终光滑接触.初始时,链条受到微小扰动而沿柱体右侧面下滑.试求在链条开始下滑直至其右端接触地面之前的过程中,当题中所给参数满足什么关系时, 1.柱体能在地面上滑动; 2.柱体能向一侧倾倒; 3.在前两条件满足的情形下,柱体滑动先于倾倒发生. 四、(20分) 如图所示,在一光滑水平圆桌面上有两个质量、电荷都均匀分布的介质球,两球半径均为a ,A 球质量为m ,所带电荷量为Q ,B 球质量为4m ,所带电荷量为-4Q .在初始时刻,两球球心距为4a ,各有一定的初速度,以使得两球在以后的运动过程中不发生碰撞,且都不会从圆桌面掉落.现要求在此前提下尽量减小桌面面积,试求

大一下物理实验【实验报告】 用气垫导轨研究物体的运动

东南大学 物理实验报告 姓名学号指导老师 日期座位号报告成绩 实验名称用气垫导轨研究物体的运动 目录 预习报告...................................................2~5 实验目的 (2) 实验仪器 (2) 实验中的主要工作 (2) 预习中遇到的问题及思考 (3) 实验原始数据记录 (4) 实验报告…………………………………………6~12 实验原理………………………………………………………实验步骤………………………………………………………实验数据处理及分析…………………………………………讨论……………………………………………………………

实验目的: 1、了解气垫导轨的工作原理 2、掌握利用气垫导轨测量运动物体的加速度和重力加速度 3、验证牛顿第二运动定律 实验仪器(包括仪器型号): 试验中的主要工作: 实验一:1、练习通用计数器的基本使用 2、调平气垫导轨: ①粗调:在导轨中部相隔50cm放置两个光电门,接通气源确定导轨通气良好,然后调节导轨的调平螺钉,使滑块在导轨上保持不动或稍微左右摆动。 ②细调: 设置计数器在S2功能,给滑块一个适当的初速 ,t2,仔细调节调平螺钉, 度,观察滑块经过前后光电门的时间t 使t 1 略小于t2即可。 实验二:1、打开MUJ-6B电脑通用计数器,选择加速度功能,设

置挡光片宽度值 2、安置光电门A和B,取S=|X B-X A|=50.0cm,在滑块上安装挡光片和小钩套,打开气源,调整导轨水平 3、利用小滑块,配重块4块,砝码1只,砝码盘等附件验证a1/M的关系 4、利用小滑块,配重块4块,砝码5只,砝码盘等附件验证F a的关系 预习中遇到的问题及思考: 1、在实验中如何调节导轨水平? 答:先进行粗调,在导轨中部相隔50cm放置两个光电门,接通气源确定导轨通气良好,然后调节导轨的调平螺钉,使滑块在导轨上保持不动或稍微左右摆动。 在进行细调,设置计数器在S2功能,给滑块一个适当的初速 ,t2,仔细调节调平螺钉, 度,观察滑块经过前后光电门的时间t 使t 1 略小于t2即可。 2、在验证牛顿第二定律的实验中如何保持系统总质量M不变, 而合外力F改变? 答:可以在砝码盘中放入一些砝码,然后通过向滑块上转移砝码来改变合外力F,而此时系统总质量M不变。

气垫导轨实验报告范本

Screen and evaluate the results within a certain period, analyze the deficiencies, learn from them and form Countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 气垫导轨实验报告

编号:FS-DY-60875 气垫导轨实验报告 【实验题目】 气垫导轨研究简谐运动的规律 【实验目的】 1.通过实验方法验证滑块运动是简谐运动. 2.通过实验方法求两弹簧的等效弹性系数和等效质量. 实验装置如图所示. 说明:什么是两弹簧的等效弹性系数? 说明:什么是两弹簧的等效质量? 3.测定弹簧振动的振动周期. 4.验证简谐振动的振幅与周期无关. 5.验证简谐振动的周期与振子的质量的平方根成正比. 【实验仪器】 气垫导轨,滑块,配重,光电计时器,挡光板,天平,两根长弹簧,固定弹簧的支架.

【实验要求】 1.设计方案(1)写出实验原理(推导周期公式及如何计算k 和m0 ). 由滑块所受合力表达式证明滑块运动是谐振动. 给出不计弹簧质量时的T. 给出考虑弹簧质量对运动周期的影响,引入等效质量时的T. 实验中,改变滑块质量5次,测相应周期.由此,如何计算k 和m0 ? (2)列出实验步骤. (3)画出数据表格. 2.测量 3.进行数据处理并以小论文形式写出实验报告 (1)在报告中,要求有完整的实验原理,实验步骤,实验数据,数据处理和计算过程. (2)明确给出实验结论. 两弹簧质量之和M= 10-3㎏= N/m = 10-3㎏ i m

届全国物理竞赛决赛理论考试试题

第32届全国中学生物理竞赛决赛理论考试试题 考生须知 1.考生考试前务必认真阅读本须知。 2.考试时间为3个小时。 3.试题从本页开始,共4页,含八道大题,总分为140分。试题的每一页下面标出了该页的页码和试题的总页数。请认真核对每一页的页码和总页数是否正确,每一页中是否有印刷不清楚的地方,发现问题请及时与监考老师联系。 4.考生可以用发的草稿纸打草稿,但需要阅卷老师评阅的内容一定要写到答题纸上;阅卷老师只评阅答题纸上的内容,写在草稿纸和本试题纸上的解答一律无效。 ——————————————————以下为试题———————————————— 本试卷解答过程中可能需要用到下列公式; 1 2221ln ;2;ln(1),2 x x x dx dx x x C x x x x x x ==+≈-??当||<<1 一、(15分)一根轻杆两端通过两根轻质弹簧A 和B 悬挂在天花 板下,一物块D 通过轻质弹簧C 连在轻杆上;A 、B 和C 的劲 度系数分别为k 1、k 2和k 3,D 的质量为m ,C 与轻杆的连接点 到A 和B 的水平距离分别为a 和b ;整个系统的平衡时,轻杆 接近水平,如图所示。假设物块D 在竖直方向做微小振动,A 、 B 始终可视为竖直,忽路空气阻力。 (1)求系统处于平衡位置时各弹簧相对于各自原长的伸长; (2)球物块D 上下微小振动的固有频率; (3)当a 和b 满足什么条件对,物块D 的固有频率最大?并求出该圈有频率的最大值。 二、(20分)如图,轨道型电磁发射嚣是 由两条平行固定长直刚性金属导轨、高 功率电源、接触导电性能良好的电枢和 发射体等构成。电流从电流源输出,经 过导轨、电枢和另一条导轨构成闭合回 路,在空间中激发磁场。载流电枢在安 培力作用下加速,推动发射体前进。已知电枢质量为m s ,发射体质量为m a ;导轨单位长度的电阻为'r R ,导轨每增加单位长度整个回路的电感的增加量为' r L ;电枢引入的电阻为s R 、电感为s L :回路连线引入的电阻为0R 、电感为0L 。导轨与电电枢间摩擦以及空气阻力可忽略. (1)试画出轨道型电磁发射器的等效电路图,并给出回路方程; (2)求发射体在导轨中运动加速度的大小与回路电流的关系: (3)设回路电流为恒流I(平顶脉冲龟流)、电枢和发射体的总质量为m s +m a =0.50kg 、导轨长度 为x m =500m 、导轨上单位长度电感增加'10/r L H m μ=,若发射体开始时静止,出口速度v sm =3.0×103m/s ,求回路电流I 和加速时间τ。

最新第五届物理竞赛决赛试题

第五届物理竞赛决赛试题 一、两质量同为m 的薄木块,用一条质量可以忽略, 倔强系数为k 的弹簧相连,置于靠墙光滑的水平地面上 (如图5—16所示)。若先把弹簧压缩d 0,然后突然释放. 1. 试论述木块B 离墙后,两木块相对于它们的 中点C 将做什么运动? 2. 试求出反映此运动特征的主要物理量. (提示:相对地面做匀速直线运动的参照系,牛顿定律和机械能守恒定律仍然成立.) 二、有一空气平行板电容器,极板面积为S ,用电池连接,极板上充有电荷+Q 0, —Q 0,如图5—17所示.断开电源后,保持板间距离不变,在极板中部占极板间一半体积的空间填满(相对)介电常数为ε的电介质,如图5—18所示.试用已知量Q 0、S 和 ε在下列横线上空白处写出待求量表示式,不要求写出演算过程. 图5—17中极板间O 点电场强度E 0= ; 图5—18中极板间a 点电场强度 E a = ; 图5—

图5—18中与电介质接触那部分正极板上的电荷Q 1 = ; 图5—18中与空气接触那部分正极板上的电荷 Q 2 = 。 图5—18中与正极板相接触的那部分电介质界面上的极化电荷'1Q . 2. 有一无限大平面导体网络,它由大小相同的正六角 形网眼组成,如图5—19所示.所有六边形每边的电阻均为R 0, 求间位结点a 、b 间的等效电阻. 三、1,已知每摩尔单原子理想气体温度升高1开时, 内能增加1.50R (R 为摩尔气体恒量),现有(31 .800.2)摩尔的 单原子理想气体,经历ABCDA 循环过程,在p 一V 图上 是一个圆,如图5—20所示.图中横坐标表示气体容积V , 纵坐标表示气体压强p , (1) 试分析该循环过程中哪—点H ,气体温度最高.并求出该温度T H . (2) 气体从状态C 到状态D 过程中,内能增量,外界对气体做功,气体吸热各为多少? (3).是否可能设计一个过程,使2摩尔的单原子理想气体,从图5—21所示的初态A (p A. .V A . T A )到终态B (p B =p A ,V B = 2V A ,T B ),气体净吸热刚好等于内能增量? 四、1.图5—22所示为一凹球面镜,球心为C ,内盛透明液体。已知C 至液面高度CE 为40.0 cm ,主轴CO 上有一物A ,物离液面高度AE 恰好为30.0 cm 时,物A 的实像和物处于同一高度.实验时光圈直径很小,可以保证近轴光线成像,试求该透明液体的折射率n . 2. 体温计横截面如图5—23所示,已知细水银柱A 离圆柱面顶点O 的距离为2R , 图 5--19

相关文档
最新文档