【数学】数学锐角三角函数的专项培优易错试卷练习题及详细答案

【数学】数学锐角三角函数的专项培优易错试卷练习题及详细答案
【数学】数学锐角三角函数的专项培优易错试卷练习题及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数

值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

【答案】6.4米 【解析】

解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3

6392

==米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米

首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高

2.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是

E 的切线;

(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG :

①当1

an 7

t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求

BG

CF

的最大值.

【答案】(1)见解析;(2)①143,031F ??

???

,2(5,0)F ;② BG CF 的最大值为12.

【解析】 【分析】

(1)连接DE ,证明∠EDO=90°即可;

(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ??,得1

2

BG CF ≤,从而得解. 【详解】

(1)证明:连接DE ,则:

∵BC 为直径 ∴90BDC ∠=? ∴90BDA ∠=? ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠ ∵

EB ED =

∴EBD EDB ∠=∠

∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=? ∴90EDO ∠=? ∴直线OD 为

E 的切线.

(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ??

11

NF AF AN AB BC AC

== ∴设3AN x =,则114,5NF x AF x ==

∴103CN CA AN x =-=-

∴141tan 1037F N x ACF CN x ∠===-,解得:10

31x = ∴150

531AF x ==

15043

33131

OF =-=

即143,031F ??

???

如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ??

∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241

tan 1037

F M x ACF CM x ∠===+ 解得:25

x =

∴252AF x ==

2325OF =+=

即2(5,0)F

②如图,作GM BC ⊥于点M , ∵BC 是直径

∴90CGB CBF ∠=∠=? ∴~CBF CGB ??

8BG MG MG

CF BC == ∵MG ≤半径4=

41

882BG MG CF =≤= ∴BG CF

的最大值为12.

【点睛】

本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.

3.如图13,矩形的对角线

相交于点

关于

的对称图形

(1)求证:四边形是菱形;

(2)连接,若,.

①求的值;

②若点为线段上一动点(不与点重合),连接,一动点从点出发,以

的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.

【答案】(1)详见解析;(2)①②和走完全程所需时间为

【解析】

试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;

②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.

试题解析:解:(1)证明:四边形是矩形.

与交于点O,且关于对称

四边形是菱形.

(2)①连接,直线分别交于点,交于点

关于的对称图形为

在矩形中,为的中点,且O为AC的中点

为的中位线

同理可得:为的中点,

②过点P 作

交于点

运动到

所需的时间为3s

由①可得,

点O 以的速度从P 到A 所需的时间等于以

从M 运动到A

即:

由O 运动到P 所需的时间就是OP+MA 和最小.

如下图,当P 运动到,即时,所用时间最短.

中,设

解得:

走完全程所需时间为

考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置

4.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点

A 、点

B ,且ABO ?的面积为8. (1)求k 的值;

(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.

【答案】(1)1k =;(2)4m t =+;(3)32BOCM

S =.

【解析】 【分析】

(1)先求出A 的坐标,然后利用待定系数法求出k 的值;

(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证

POD OCE ???可得OE PD =,进一步得出m 与t 的函数关系式;

(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出

QTB PTO ???;再证出KPB BPN ∠=∠;设KPB x ∠=?,通过计算证出PO PM =;

再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到

OD BO

PD MO

=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】

解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ?=,

1

42

AO BO ?=,4AO =, ∴(4,0)A -,

把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;

(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +

如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,

∴90PDO CEO ∠=∠=?, ∴90POD OPD ∠+∠=?,

∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=?,OP OC =, ∴90POD EOC ∠+∠=?, ∴OPD EOC ∠=∠, ∴POD OCE ???, ∴OE PD =,

4m t =+.

故答案为4m t =+.

(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,

由(1)知,4AO BO ==,90BOA ∠=?, ∴ABO ?为等腰直角三角形,

∴45ABO BAO ∠=∠=?,9045BOT ABO ABO ∠=?-∠=?=∠, ∴BT TO =, ∵90BTO ∠=?, ∴90TPO TOP ∠+∠=?, ∵PO BM ⊥, ∴90BNO ∠=?, ∴BQT TPO ∠=∠, ∴QTB PTO ???, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,

∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,

∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=?, ∴BPN x ∠=?, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=?,

45POM PAO APO x ∠=∠+∠=?+?,9045NMO POM x ∠=?-∠=?-?, ∴45PMO PMB NMO x POM ∠=∠+∠=?+?=∠, ∴PO PM =,

过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,

9045OPD POD x BMO ∠=?-∠=?-?=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,

4

42t t t =+, 14t =,22t =-(舍)

∴8OM =,由(2)知,48m t OM =+==, ∴CM y 轴, ∵90PNM POC ∠=∠=?, ∴BM OC ,

∴四边形BOCM 是平行四边形,

∴4832BOCM

S

BO OM =?=?=.

故答案为32. 【点睛】

本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.

5.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.

(1)求证:CD是⊙O的切线;

(2)若AB=6,∠ABE=60°,求AD的长.

【答案】(1)详见解析;(2)9 2

【解析】

【分析】

(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.

【详解】

证明:如图,连接OE,

∵AE平分∠DAC,

∴∠OAE=∠DAE.

∵OA=OE,

∴∠AEO=∠OAE.

∴∠AEO=∠DAE.

∴OE∥AD.

∵DC⊥AC,

∴OE⊥DC.

∴CD是⊙O的切线.

(2)解:∵AB是直径,

∴∠AEB=90°,∠ABE=60°.

∴∠EAB =30°,

在Rt △ABE 中,AE =AB·

cos30°=6×3

=33, 在Rt △ADE 中,∠DAE =∠BAE =30°, ∴AD=cos30°×AE=3

×33=92.

【点睛】

本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.

6.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .

(1)求证:DE DF ⊥; (2)求证:DH DF =:

(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.

【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】

(1)根据正方形性质, CF AE =得到DE DF ⊥.

(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=?,BD 平分ABC ∠, 得45DBF ∠=?.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于

45DHF DBF BFH BFH ∠=∠+∠=?+∠,45DFH DFE EFH EFH ∠=∠+∠=?+∠,

所以DH DF =.

(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得

222BD AB AD AB =

+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得

HM HN =.因为4590HBN HNB ∠=?∠=?,

,所以22sin 45HN

BH HN HM ===?

.

由22cos 45DF

EF DF DH =

==?

,得22EF AB HM =-.

【详解】

(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=?. ∴90EAD FCD ∠=∠=?. ∵CF AE =。 ∴AED CFD △△≌. ∴ADE CDF ∠=∠.

∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=?. ∴DE DF ⊥.

(2)证明:∵AED CFD △△≌, ∴DE DF =. ∵90EDF ∠=?, ∴45DEF DFE ∠=∠=?.

∵90ABC ∠=?,BD 平分ABC ∠, ∴45DBF ∠=?. ∵FH 平分EFB ∠, ∴EFH BFH ∠=∠.

∵45DHF DBF BFH BFH ∠=∠+∠=?+∠,

45DFH DFE EFH EFH ∠=∠+∠=?+∠, ∴DHF DFH ∠=∠. ∴DH DF =.

(3)22EF AB HM =-.

证明:过点H 作HN BC ⊥于点N ,如图,

∵正方形ABCD 中,AB AD =,90BAD ∠=?,

∴222BD AB AD AB =

+=.

∵FH 平分,EFB HM EF HN BC ∠⊥⊥,,

∴HM HN =.

∵4590HBN HNB ∠=?∠=?,

, ∴22sin 45HN

BH HN HM =

==?

.

∴22DH BD BH AB HM =-=-.

∵22cos 45DF

EF DF DH =

==?

∴22EF AB HM =-. 【点睛】

本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.

7.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .

(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)

(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )

【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm . 【解析】 【分析】

(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .

(2)用扇形面积公式即可求得. 【详解】

(1)在Rt △ODE 中,15cm DE =,67ODE ∠=?. ∵cos DE

ODE DO

∠=, ∴15

0.39

OD ≈

, ∴()384614245cm OA OD AD =-≈-≈.

.,

答:半径OA 的长约为24.5cm . (2)∵67ODE ∠=?, ∴157BOC ∠=?, ∴2

360

BOC

n

r S π=

扇形 2

157 3.1424.52360

??≈

()2822cm ≈.

答:扇形BOC 的面积约为2822cm . 【点睛】

此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.

8.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =

3

5

,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;

(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD

S 菱形?若存在,求出t 的值;若不存在,请说明理由.

【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =

24(04)

220

(410)3

3t t t t t ??

?-+

(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两

种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,2220

1233

t t -+= 【详解】

解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =

35

, 10cos OB

BC B

∴=

=

8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,

∴点D 的坐标为(10,8).

(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,

∴S =

1

2PQ ?OQ =4t , ∵4>0,

∴当t =4时,S 取得最大值,最大值为16;

②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:

4k b 010k b 8+=??

+=?,解得:4k 3

16b 3?=????=-??

, ∴直线AD 的解析式为416

33

y x =-. 当x =t 时,416

33

y t =

-, 4164

8(10)3

33PQ t t ??∴=--=- ???

21220

233

S PQ OP t t ∴=

?=-+ 22202502

(5),033333S t t t =-+=--+-<∴当t =5时,S 取得最大值,最大值为

503

. 综上所述:S 关于t 的函数关系式为S =24(04)

220(410)3

3t t t t t ??

?-+

(3)S 菱形ABCD =AB ?OC =80.

当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,2220

33

t t -

+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =

3

20

ABCD S 菱形,t 的值为3或5+7.

【点睛】

考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.

9.如图,正方形ABCD 的边长为2+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F , (1)求证:△ABF ∽△ACE ; (2)求tan ∠BAE 的值;

(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.

【答案】(1)证明见解析;(2)tan ∠EAB 2﹣1;(3)PE+PF 的最小值为

22+

【解析】 【分析】

(1)根据两角对应相等的两个三角形相似判断即可;

(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;

(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长; 【详解】

(1)证明:∵四边形ABCD 是正方形, ∴∠ACE =∠ABF =∠CAB =45°, ∵AE 平分∠CAB , ∴∠EAC =∠BAF =22.5°, ∴△ABF ∽△ACE .

(2)解:如图1中,作EH ⊥AC 于H .

∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB , ∴BE =EB ,

∵∠HCE =45°,∠CHE =90°, ∴∠HCE =∠HEC =45°, ∴HC =EH ,

∴BE =EH =HC ,设BE =HE =HC =x ,则EC =2x , ∵BC =2+1, ∴x+x =2+1, ∴x =1,

在Rt △ABE 中,∵∠ABE =90°, ∴tan ∠EAB =

221

BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.

作EM ⊥BD 于M .BM =EM =

2

2

, ∵AC 22AB BC +2,

∴OA =OC =OB =

12AC =222

+ , ∴OH =OF =OA?tan ∠OAF =OA?tan ∠EAB =22+ ?(2﹣1)=2

, ∴HM =OH+OM =

22

+, 在Rt △EHM 中,EH =2

2

22222EM HM 22????

+++

? ? ? ?????

= =22+.. ∴PE+PF 的最小值为22+.. 【点睛】

本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.

10.我市在创建全国文明城市的过程中,某社区在甲楼的A 处与E 处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A 点的仰角为45°,条幅底端E 点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)

【答案】AE 的长为(123)+ 【解析】 【分析】

在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解. 【详解】

过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形

12CF DB ∴==

在Rt ACF 中,45ACF ∠=?

tan 1AF

ACF CF

∴∠=

= 12AF ∴=

在Rt CEF 中,30ECF ∠=?

tan EF

ECF CF

∴∠=

12EF ∴

=

EF ∴=

12AE AF EF ∴=+=+

∴求得AE 的长为(12+

【点睛】

本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.

相关主题
相关文档
最新文档