理工科学生学习大学物理的重要性电子教案

理工科学生学习大学物理的重要性电子教案
理工科学生学习大学物理的重要性电子教案

理工科学生学习大学物理的重要性

精品文档

理工科学生学习大学物理的重要性

理工科的学习与研究发展都是以自然科学为基础,而自然科学中最基础的学科便是物理。化学中反应的进行源于物理性质的改变,生物体的各种机能体现着物理规律,建筑物的性能构造、机械的运转也与物理息息相关...可以说所有理工学科都离不开物理知识的应用。

因此,物理成为了几乎每位理工科学生的必修课。大学物理可以说是中学物理的延伸扩展,在中学物理的基础上加入了更深刻本质的知识,特别是将高等数学微积分的思想方法引入大学物理,即扩宽了知识面,同时也为解决物理问题提供了更好的方法,解决了许多用简单运算不能解决的物理问题,极大地增加了物理的应用范围。

不仅如此,大学物理还为我们学习其他专业基础课程提供了帮助,加深了我们对这些课程的理解,如大学物理中讲述的热学内容为我们学习物理化学打下了较好的基础,下面以大学物理和物理化学中讲述热力学第一定律的不同为例说明:

收集于网络,如有侵权请联系管理员删除

大学实验报告模板三篇

大学实验报告模板三篇 篇一:大学物理实验报告格式 实验名称:杨氏弹性模量的测定 院专业学号 姓名 同组实验者 20XX年月日 实验名称 一、实验目的。。。。。。。。。 二、实验原理。。。。。。。。。。 三、实验内容与步骤。。。。。。。。。 四、数据处理与结果。。。。。。。。。 五、附件:原始数据 ****说明: 第五部分请另起一页,将实验时的原始记录装订上,原始记录上须有教师的签名。 篇二:大学实验报告册模板 实验课程名称开课学院理学院指导老师姓名学生姓名学生专业班级 200— 200 学年第学期 实验课程名称:

实验课程 名称: 篇三:浙江大学实验报告模板 专业:________________ 姓名:________________ 实验报告 学号:________________ 日期:________________ 地点:________________ 课程名称: _______________________________指导老师:________________成绩:__________________ 实验名称: _______________________________实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验名称:_______________________________姓名: ________________学号:__________________

大学物理实验报告-总结报告模板

大学物理实验报告 摘要:热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,具有许多独特的优点和用途,在自动控制、无线电子技术、遥控技术及测温技术等方面有着广泛的应用。本实验通过用电桥法来研究热敏电阻的电阻温度特性,加深对热敏电阻的电阻温度特性的了解。 关键词:热敏电阻、非平衡直流电桥、电阻温度特性 1、引言 热敏电阻是根据半导体材料的电导率与温度有很强的依赖关系而制成的一种器件,其电阻温度系数一般为(-~+)℃-1。因此,热敏电阻一般可以分为: Ⅰ、负电阻温度系数(简称NTC)的热敏电阻元件 常由一些过渡金属氧化物(主要用铜、镍、钴、镉等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成的,近年还有单晶半导体等材料制成。国产的主要是指MF91~MF96型半导体热敏电阻。由于组成这类热敏电阻的上述过渡金属氧化物在室温范围内基本已全部电离,即载流子浓度基本上与温度无关,因此这类热敏电阻的电阻率随温度变化主要考虑迁移率与温度的关系,随着温度的升高,迁移率增加,电阻率下降。大多应用于测温控温技术,还可以制成流量计、功率计等。 Ⅱ、正电阻温度系数(简称PTC)的热敏电阻元件 常用钛酸钡材料添加微量的钛、钡等或稀土元素采用陶瓷工艺,高温烧制而成。这类热敏电阻的电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对可以忽略。载流子数目随温度的升高呈指数增加,载流子数目越多,电阻率越小。应用广泛,除测温、控温,在电子线路中作温度补偿外,还制成各类加热器,如电吹风等。 2、实验装置及原理 【实验装置】 FQJ—Ⅱ型教学用非平衡直流电桥,FQJ非平衡电桥加热实验装置(加热炉内置MF51型半导体热敏电阻(Ω)以及控温用的温度传感器),连接线若干。 【实验原理】 根据半导体理论,一般半导体材料的电阻率和绝对温度之间的关系为(1—1) 式中a与b对于同一种半导体材料为常量,其数值与材料的物理性质有关。因

大学物理实验报告 制流电路、分压电路和电学实验基础知识

大学物理实验报告----------制流电路、分压电路和电学实验基础知识 姓名:_______柳天一__________ 学号:______2012011201 _______ 实验组号:____3______________ 班级:______计科1204_________ 日期:______2013.3.23__________

实验报告 【实验名称】 制流电路、分压电路和电学实验基础知识 【实验目的】 1、了解电学实验的要求、操作规程和安全知识。 2、学习电学实验中常用仪器的使用方法。 3、学习连接电路的一般方法,学习用变阻器连成制流电路和分压电 路的方法。 【实验原理】 制流电路的特性: 制流电路如图3所示,图中E 为直流(或交流)电源;R 1为滑线变阻器,A 为电流表;R 2为负载(本实验采用电阻);K 为电源开关。它是将滑线变阻器的滑动头C 和任一固定端(如A 端)串联在电路中,作为一个可变电阻,移动滑动头的位置可以连续改变AC 之间的电阻R AC ,从而改变整个电路的电流I 。 (a ) (b ) 1.分压电路的特性: 分压电路如图4所示,图中E 为直流(或交流)电源,滑线变阻器两个固定端A 、B 与电源E 相接,负载R 2接滑动端C 和固定端A (或B )上,当滑动头C 由A 端滑至B 端,负载上电压由0变至E ,调节的范围与变阻器的阻值无关。 (a ) (b ) 2.制流电路与分压电路的选择: 图3 制流电路 图4 分压电路

(1) 调节范围 分压电路的电压调节范围大,可从E →0;而制流电路电压调节范围小,只能从 E E R R R →?+1 22。 (2) 细调程度 当2/21R R ≤时,在整个调节范围内调节基本均匀,但制流电路可调范围小;负载上的电压值小,能调得较精细,而电压值大时调节变得很粗。 (3) 功率损耗 使用同一变阻器,分压电路消耗电能比制流电路要大。基于两电路的差别,当负载电阻较大,调节范围较宽时选分压电路;反之,当负载电阻较小,功耗较大,调节范围不太大的情况下则选用制流电路。若一级电路不能达到细调要求,则可采用二级制流(或二段分压)的方法以满足细调要求。 【实验器材】 万用电表(指针式、数字式各一块),低压电源(直流型、交流型各一台),滑线变阻器,电阻箱,导线。 3.滑线变阻器: 滑动变阻器是根据接入电路的金属丝长短来改 变阻值大小,来达到控制电流的。 滑动片左右滑动即是在改变接入电路的金属丝 长短。 因为已知金属材料的电阻丝,其阻值跟电阻丝的 长度,横截面积,还有材质有关系。长度越长,阻值 越大;截面积越大,阻值越小,阻值与该种材料的阻 值系数成正比。 滑动电阻器结构图[1] 注意事项: 注意:要选择合适的滑动变阻器,每个变阻器都有规定的最大电阻和允许通过的最大电流,使用时要根据需要进行选择,不能使通过滑动变阻器的电流超过它允许通过电流的最大值,否则会烧坏变阻器。使用前应该将滑动变阻器连入电路的电阻值调到最大。接法:不管是有几个接线柱的滑动变阻器,在连入电路时,可采用“一上一下”的连接方法。“一上” 指上面金属棒两端的任一接线柱连入电路,“一下”指把下面线圈两端的任一接线柱连入电路中。 滑动变阻器连入电路中的电阻值大小的判断,可采用“近小远大”的判断方法。即如果滑动变阻器的滑片在移动过程中逐渐接“近”连入电路的下接线柱,则变阻器连入电路的阻值将逐渐减“小”,灯泡就越亮,反之,若滑片移动过程中逐渐“远”离连入电路的下接线柱,则连入电路的阻值将逐渐增“大”,灯泡就越暗。 滑动变阻器在电路中的作用是:(1)保护电路,即连接好电路,电键闭合前,应调节滑动变阻器的滑片P ,使滑动变阻器接入电路部分的电阻最大。(2)通过改变接入电路部分的电阻来改变电路中的电流,从而改变与之串联的导体(用电器)两端的电压。在连接滑动变阻器时,要求:一上一下,各用一个接线柱;实际连接应根据要求选择下面的接线柱。 4.电阻箱:

物理学的作用与意义

物理学的作用与意义 物理学是一门基础科学,它研究的是物质运动的基本规律。不同的运动形式具有不同的运动规律,因而要用不同的研究方法处理,基于此,物理学又分为力学、热学、电磁学、光学和原子物理学等各个部分。按照物理学的历史发展又可以分为经典物理与近代物理两部分。近代物理是相对于经典物理而言的,泛指以相对论和量子论为基础的20世纪物理学。由于物理学研究的规律具有很大的基本性与普遍性,所以它的基本概念和基本定律是自然科学的很多领域和工程技术的基础。由于物理学知识构成了物质世界的完整图象,所以它也是科学的世界观和方法论赖以建立的基础。 1、物理学是自然科学的带头学科 物理学作为严格的、定量的自然科学的带头学科,一直在科学技术的发展中发挥着极其重要的作用。它与数学、天文学、化学和生物学之间有密切的联系,它们之间相互作用,促进了物理学及其它学科的发展。 物理学与数学之间有深刻的内在联系。物理学不满足于定性地说明现象,或者简单地用文字记载事实,为了尽可能准确地从数量关系上去掌握物理规律,数学就成为物理学不可缺少的工具,而丰富多彩的物理世界又为数学研究开辟了广阔的天地。物理学与数学的关系密切,渊源流长。历史上有许多着名科学家,如牛顿、欧拉、高斯等,对于这两门科学都做出了重要贡献。19世纪末、20世纪初的一些大数学家如彭加勒、克莱因、希尔柏特等,尽管学术倾向不同,但都精通理论物理。近代物理学中关于混沌现象的研究也是物理学与数学相互结合的结果。 物理学与天文学的关系更是密不可分,它可以追溯到早期开普勒与牛顿对行星运动的研究。现在提供天文学信息的波段已经从可见光频段扩展到从无线电波到X射线宽广的电磁波频段,已采用了现代物理所提供的各种探测手段。另一方面,天文学提供了地球上实验室所不具备的极端条件,如高温、高压、高能粒子、强引力等,构成了检验物理学理论的理想的实验室。因此,几乎所有的广义相对论的证据都来自天文观测。正电子和μ子都是首先在宇宙线研究中观测到的,为粒子物理学的创建做出了贡献。热核反应理论是首先为解释太阳能源问题而提出的,中子星理论则因脉冲星的发现得到证实,而现代宇宙论的标准模型——大爆炸理论,是完全建立在粒子物理理论基础上的。 物理学与化学本是唇齿相依、息息相关的。化学中的原子论、分子论的发展为物理学中气体动理论的建立奠定了基础,从而能够对物质的热学、力学、电学性质做出满意的解释;而物理学中量子理论的发展,原子的电子壳层结构的建立又从本质上说明了各种元素性质周期性变化的规律。量子力学的诞生以及随后固体物理学的发展,使物理学与化学研究的对象日益深入到更加复杂的物质结构的层次,对半导体、超导体的研究,愈来愈需要化学家的配合与协助,在液晶科学、高分子科学和分子膜科学取得的进展是化学家、物理学家共同努力的结果。另一方面近代物理的理论和实验技术又推动了化学的发展。 物理学在生物学发展中的贡献体现在两个方面:一是为生命科学提供现代化的实验手段,如电子显微镜、X射线衍射、核磁共振、扫描隧道显微镜等;二是为生命科学提供理论概念和方法。从19世纪起,生物学家在生物遗传方面进行了大量的研究工作,提出了

大学物理实验报告优秀模板

大学物理实验报告优秀模板 大学物理实验报告模板 实验报告 一.预习报告 1.简要原理 2.注意事项 二.实验目的 三.实验器材 四.实验原理 五.实验内容、步骤 六.实验数据记录与处理 七.实验结果分析以及实验心得 八.原始数据记录栏(最后一页) 把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报,就叫实验报告。 实验报告的种类因科学实验的对象而异。如化学实验的报告叫化学实验报告,物理实验的报告就叫物理实验报告。随着科学事业的日益发展,实验的种类、项目等日见繁多,但其格式大同小异,比较固定。实验报告必须在科学实验的基础上进行。它主要的用途在于帮助实验者不断地积累研究资料,总结研究成果。 实验报告的书写是一项重要的基本技能训练。它不仅是对每次实验的总结,更重要的是它可以初步地培养和训练学生的逻辑归纳能力、综合分析能力和文字表达能力,是科学

论文写作的基础。因此,参加实验的每位学生,均应及时认真地书写实验报告。要求内容实事求是,分析全面具体,文字简练通顺,誊写清楚整洁。 实验报告内容与格式 (一) 实验名称 要用最简练的语言反映实验的内容。如验证某程序、定律、算法,可写成“验证×××”;分析×××。 (二) 所属课程名称 (三) 学生姓名、学号、及合作者 (四) 实验日期和地点(年、月、日) (五) 实验目的 目的要明确,在理论上验证定理、公式、算法,并使实验者获得深刻和系统的理解,在实践上,掌握使用实验设备的技能技巧和程序的调试方法。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 (六) 实验内容 这是实验报告极其重要的内容。要抓住重点,可以从理论和实践两个方面考虑。这部分要写明依据何种原理、定律算法、或操作方法进行实验。详细理论计算过程. (七) 实验环境和器材 实验用的软硬件环境(配置和器材)。 (八) 实验步骤 只写主要操作步骤,不要照抄实习指导,要简明扼要。还应该画出实验流程图(实验装置的结构示意图),再配以

大学物理实验习题和答案(整理版)

第一部分:基本实验基础 1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系? 答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。 7.光学元件 光学表面有灰尘,可否用手帕擦试? 答:不可以 8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测?

高等数学在大学物理中的重要性

高等数学在大学物理中的重要性 专业:应用化学学号:5503211017 学生姓名:胡吉林指导老师:吴评 摘要:数学是物理的基础,是研究物理的重要工具和手段。而高等数学的思想方法,渗透于大学物理学习过程的各个环节。高等数学是一门抽象性的学科,而大学物理正是借助其理论结晶将抽象的数学思维方法与具体的自然规律结合了起来。我校之所以选择在上完高等数学(上册)之后,再开设大学物理课程,就是考虑到大学物理的学习需要运用到高等数学中的很多知识。而高等数学中的学习成果在大学物理中的验证与利用,能让我们对其印象更深,理解得更透彻。下面,本文将结合作者自身在大学物理学习过程中的感悟与体会,探讨高等数学的思想方法在大学物理中的重要体现。 关键词:高等数学;大学物理;思想方法;自然规律 1 建模的思想 数学建模,理工科的学生对此都很熟悉,为了使问题简化,建立合适的数学模型,常常要作出一些理想化的假设,忽略次要因素,突出主要矛盾。在大学物理中,类似这样建立理想模型的例子也不胜枚举,如力学中的质点、刚体,电学中的点电荷等,都是把复杂的实际问题抽象成了一个个基本的理想模型。这种建立理想模型的方法,借鉴了数学建模的思想,是物理学的基本研究方法之一。 2矢量的思想 大学物理中,很多物理量是矢量,如位移、速度、角动量、电场强度、磁感应强度等,而矢量的运算正是高等数学中的向量代数在大学物理中的运用。如:力的分解与合成其实是向量的加减法运算,而计算力矩、角动量、安培力等则用到了向量代数中向量积的运算。合理地借助向量工具,可使一些物理研究问题大为简化。 3导数的思想 中学物理与大学物理的不同在于:中学物理中所讨论的物理量大多是均匀变化的,而大学物理中所讨论的物理量一般都是非均匀变化的,因而需要用求导数的方法来解决这类问题。力学中导数的应用问题可以分为两类:第一类是已知物体的运动方程,求解物体的运动速度和加速度;第二类则是已知物体的加速度和初始条件,求解物体的运动方程。通过求导,也可以计算角速度、角加速度及电场强度等物理量的值。此外,在求解物理问题的过程中,常碰到一些求极值的问题,

大学物理实验电子教案模板

大学物理实验教案 实验题目 霍耳效应法测量磁场 实验性质 基本实验 实验学时 3 教师 冷雪松 教学目的 1、熟悉和掌握霍尔磁场测试仪器和霍尔效应装置的使用方法 2、了解霍尔效应产生的原理 3、学习和掌握了用霍尔效应的方法测量磁场 4、学习霍尔效应研究半导体材料的性能的方法以及消除副效应影响的方法重点 消除副效应对测量结果的影响 难点 霍尔效应的产生机理 怎样消除影响测量准确性的附加效应 教 学 过 程

设 计 课前的准备: 仪器设备的检查,注意要校准砝码。 实验的预做(采集三组以上数据进行处理)。 作出数据表格设计的参考。 课上教学的设计: 一、课上的常规检查(预习报告、数据表格的设计等)。(5 分钟) 二、讲解的设计(30分钟) 1、引言 德国物理学家霍尔(E.H.Hall)1879年研究载流导体在磁场中受力的性质时发现,任何导体通以电流时,若存在垂直于电流方向的磁场,则导体内部产生与电流和磁场方向都垂直的电场,这一现象称为霍尔效应,它是一种磁电效应(磁能转换为电能)。二十世纪五十年代以来,由于半导体工艺的发展,先后制成了多种有显著霍尔效应的材料,这一效应的应用研究也随之发展起来。现在,霍尔效应已在测量技术、自动化技术、计算机和信息技术等领域得到了广泛的应用。在测量技术中,典型的应用是测量磁场。 测量磁场方法不少,但其中以霍尔效应为机理的测磁方法因结构简单、体积小、测量速度快等优点而有着广泛的应用,本实验就是采用这种方法。通过本实验了解霍尔效应的物理原理,掌握用磁电传感器——霍尔元件测量磁场的基本方法,学习用异号法消除不等位电压产生的系统误差。 2、提出本实验的目的与任务,讲授为完成本实验设计思想和设计 原则 实验原理 霍尔效应实质上是运动电荷在磁场中受到洛仑磁力的作用后发生偏转而产生的,当霍尔电场力与洛仑磁力平衡时,霍尔片中载流子不在迁移,这样就在霍尔片的上下两个平面间形成了恒定的电位差——霍尔电位差UH,实验测定 系数RH=1/ne称为霍尔系数,是反映材料霍尔效应强弱的重要参数,载流子浓度n越小,则RH越大,UH也越大,所以只有当半导体(n比金属的小得多)出现以后,霍尔效应的应用才得以发展。对于特定的霍尔元件,其厚度d确定,定义霍尔灵敏度KH=RH /d,KH与霍尔片的材料性质、几何尺寸有关,对于一定的霍尔片,其为常数。这样 上式是霍尔效应测磁场的基本理论依据,只要已知KH,用仪器测出I及UH,则可求出磁感应强度B。 3、实验的拓展:(由本实验的完成深化和延伸所学的知识,启发学 生利用现有的设备拓展出新的实验内容,培养学生的创新思维和创新能力。) 1)、测量霍尔元件的不等位电势差 2)、测量霍尔片的特性曲线 4.数据的测量与处理要求用做图法处理数据. 5.介绍主要仪器设备与使用 6.强调实验中要注意的问题 1)、霍尔片又薄又脆,切勿用手摸。

大学物理电子教案运动学

大学物理电子教案 (electronic teaching plan for university physics) 绪论 (introduction) 一、什么是物理学what is physics 1、概念(conception) 研究物质结构及运动规律的学问 2、时间(time) 10-43s(普朗克时间)~1039s(质子寿命) 3、空间(space) 10-15m(质子半径)~1026m(至类星体距离) 二、为什么要学物理学(why study physics) 1、物理学是其它自然学的基础physics is basis of science (1)物理与化学(举例) (2)物理与生物学(举例) 2、物理学是工程技术的基础(physics is basis of technology) (1)工程技术是物理知识的一种应用(举例) (2)工程技术革命离不开物理学(举例) 3、物理学就在你身边(举例) (physics is your side) 三、如何学习物理学(how study physics) 1、抓住三个基本(grip three bases) 基本概念、规律、方法 2、注意理论联系实际(note integrate with practice) 工程实际(习题模拟),生活实际,培养应用能力 3、注意看书技巧(note skill at reading) 先广博,后精专 Know something about evening, Know evening about something 第一章运动学 (Kinematics) §1-1 质点参考系与坐标系 (particle reference system and coordinate system) 一、质点(particle ) 1、概念(concept) 形状大小可忽略,而仅有质量的物体 2、质点是个理想模型(particle is an ideal model) 突出主要矛盾,忽略次要矛盾 3、何物可视为质点(which body can look upon particle) 形状大小对讨论问题影响不大之物 二、参考系(reference system) 1、概念(concept) 被选作参考的物体 2、作用(use) 使运动描述具体化。 物体运动相对参考系而言才有意义 如黑板,对教室,静止,对太阳,在运动。 三、坐标系(coordinate system) 1、概念(concept) 固联在参考系上的正交数轴组成的系统。

论大学物理之重要性

谈大学物理之重要性 经济12 2111802045 崔天宇 摘要: 1,大学物理对经济专业的重要性:物理学作为万物之理和经济学有着千丝万缕的联系。很多诺贝尔经济学获奖者有着 深厚的物理学基础。 2,大学物理的学习收获和方法总结:注意应用高等数学与代数解题。 3,大学物理教学的建议:学习物理要注重实验和定理的推导。 关键词: 物理学计量经济学高等代数与微积分建立模型大学物理收获与建议 正文: 本来以为大学物理只是理工科的必修课,后来经过老师的指导,我了解到作为经济学学生学习大学物理的重要性。 (一)物理学与经济学 物理学与经济学是相通的。经济学家在研究经济问题时不仅需要

数学,需要其中的物理思想和物理模型。自1969年首届诺贝尔经济学奖颁发至2007年第39届的61位获奖者,有16届24位获奖者具有理工学科背景,其中有物理学背景就有4位,而4位中有3位以物理学博士作为进入经济学研究的起点,另外一位也是诺贝尔物理学奖得主知名实验室成员。共有1 1位获奖者以理工科学历进入经济学研究领域,其中物理学背景获奖者进入经济学研究领域的理工科学历最高。由此可见物理学对经济学的研究有着极强的借鉴价值。 举一个例子,计量经济学最早由挪威经济学家弗里希提出。是以经济理论为指导,以事实为依据,以数学、统计学为方法,以电脑为手段,对具有随机特征的经济关系进行研究,并以计量经济模型的建立和应用为核心的一门定量化的实证经济学学科。计量经济学的研究方法和特点,首先设定经济模型,即把所研究的经济变量之间的关系用适当的数学关系式表达出来,然后,估计参数。参数是计量经济模型中表现经济变量相互依存程度的因素,但其无法直接观测和精确计算,只能通过样本观测值估计,这是计量经济学的核心内容。然后,对模型和所估计的参数加以评定。最后,模型的应用,包括经济结构分析、经济预测和政策评价。其中,经济预测是用模型测算样本之外的数据及其变化,政策评价则是对政策方案作模拟测算,对其作出评价。用一句话来讲,经济研究者把计量经济模型作为经济活动的实验室,目的是从个别的具体事例概括为普遍的抽象结论。 而众所周知,实验和数学相结合是物理学的最基本的研究方法。物理学的基本研究方法是实验和数学的结合,在两者的结合上,还以

理工科大学物理实验课程教学基本要求

附件2: 理工科大学物理实验课程教学基本要求 物理学是研究物质的基本结构、基本运动形式、相互作用及其转化规律的自然科学。它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社会生活,是人类文明的基石,在人才的科学素质培养中具有重要的地位。 物理学本质上是一门实验科学。物理实验是科学实验的先驱,体现了大多数科学实验的共性,在实验思想、实验方法以及实验手段等方面是各学科科学实验的基础。 一.课程的地位、作用和任务 物理实验课是高等理工科院校对学生进行科学实验基本训练的必修基础课程,是本科生接受系统实验方法和实验技能训练的开端。 物理实验课覆盖面广,具有丰富的实验思想、方法、手段,同时能提供综合性很强的基本实验技能训练,是培养学生科学实验能力、提高科学素质的重要基础。它在培养学生严谨的治学态度、活跃的创新意识、理论联系实际和适应科技发展的综合应用能力等方面具有其他实践类课程不可替代的作用。 本课程的具体任务是: 1.培养学生的基本科学实验技能,提高学生的科学实验基本素质,使学生初步掌握实验科学的思想和方法。培养学 生的科学思维和创新意识,使学生掌握实验研究的基本方法,提高学生的分析能力和创新能力。 2.提高学生的科学素养,培养学生理论联系实际和实事求是的科学作风,认真严谨的科学态度,积极主动的探索精 神,遵守纪律,团结协作,爱护公共财产的优良品德。 二、教学内容基本要求 大学物理实验应包括普通物理实验(力学、热学、电磁学、光学实验)和近代物理实验,具体的教学内容基本要求如下: 1.掌握测量误差的基本知识,具有正确处理实验数据的基本能力。 (1)测量误差与不确定度的基本概念,能逐步学会用不确定度对直接测量和间接测量的结果进行评估。 (2)处理实验数据的一些常用方法,包括列表法、作图法和最小二乘法等。随着计算机及其应用技术的普及,应包括用计算机通用软件处理实验数据的基本方法。 2.掌握基本物理量的测量方法。 例如:长度、质量、时间、热量、温度、湿度、压强、压力、电流、电压、电阻、磁感应强度、光强度、折射率、电子电荷、普朗克常量、里德堡常量等常用物理量及物性参数的测量,注意加强数字化测量技术和计算技术在物理实验教学中的应用。 3.了解常用的物理实验方法,并逐步学会使用。 例如:比较法、转换法、放大法、模拟法、补偿法、平衡法和干涉、衍射法,以及在近代科学研究和工程技术中的广泛应用的其他方法。 4.掌握实验室常用仪器的性能,并能够正确使用。 例如:长度测量仪器、计时仪器、测温仪器、变阻器、电表、交/直流电桥、通用示波器、低频信号发生器、分光仪、光谱仪、常用电源和光源等常用仪器。 各校应根据条件,在物理实验课中逐步引进在当代科学研究与工程技术中广泛应用的现代物理技术,例如,激光技术、传感器技术、微弱信号检测技术、光电子技术、结构分析波谱技术等。 5.掌握常用的实验操作技术。

《大学物理实验A》教学大纲

《大学物理实验》(A类)教学大纲 课程名称:大学大学物理实验课程编号:实验学时:实验学分: 面向专业:非物理学本科 一、本实验课的性质、任务与目的 (一)课程性质 大学物理实验课程是高等工科院校的一门必修课,是一门独立的、实践性很强的基础课,是学生进入大学后,受到系统实验方法和实验技能基本训练的开端,是理工科类专业对学生进行科学实验训练的重要基础。大学物理实验教学和物理理论教学具有同等重要的地位,它们既有深刻的内在联系,又有各自的任务和作用。 (二)课程的任务与目的 1、通过对实验现象的观察、分析和物理量的测量,学习物理实验知识,加强对相关物理学原理的理解。 2、培养与提高学生的科学实验能力: ①能自行阅读实验教材或资料,作好实验前的准备; ②借助教材或仪器说明书能正确使用仪器; ③能够运用物理理论对实验现象进行初步分析; ④能正确记录数据,掌握列表法、作图法和遂差法等数据处理方法,初步具备处理数据、分析 结果、用不确定度表示实验结果、撰写实验报告的能力,能撰写完整规范的实验报告;了解 并学会使用本课程的网上教学系统。 ⑤能够完成简单的设计性实验。 3、培养与提高学生的科学实验素质,要求学生具有理论联系实际和实事求是的科学作风、严肃认真的工作态度、主动研究的探索精神和遵守纪律、爱护公共财产的优良品质。 4、掌握实验的基本知识、基本方法、基本技能,为后继的实验课程的学习打下必备的基础。二、本实验课的基本理论 大学物理实验课程是高等工科院校的一门必修课,是国家教育部规定的一门独立的实验课程,本实验课是基于大学物理理论的重于实验方法和实验技能训练的实验课程。 (一)误差基本理论(在绪论课中介绍,并在各实验的学习中逐步掌握): 1、测量与误差的基本知识 2、测量的不确定度和测量结果评定 3、有效数字 4、数据处理方法(列表法、作图法和逐差法) (二)各实验原理所依据的物理理论知识 1、力学、热学、电磁学、光学以及近代物理的基本知识 2、各实验的设计思想和基本原理 三、实验方式与基本要求 实行分层次教学:基础(必做)实验教学→开放(选做)实验教学 1、基础实验教学 为了培养学生的基本实验知识和基本实验操作能力,对于基础(必做)实验的教学要求: (1)由指导教师讲解实验的基本原理、基本要求、目的、操作规程及注意事项。 (2)分组实验,循环进行,基本实验每人一套设备,每位教师同时指导学生人数一般为20-25人,每个实验3学时,由教师指导、学生独立操作完成。 (3)要求学生课前预习,并撰写实验预习报告,遵守实验课守则,认真实验,按时完成实验报

大学物理实验练习题

大学物理实验测量不确定度与数据处理基础知识练习题 学院 班号 学号 姓名 成绩 1.如下表所示,以不同精度的仪器各测量出一个数值,此时只用仪器误差计算不确定度。假设各仪器的误差可能值都服从均匀分布,试求不确定度、不确定度的相对值和结果表达式(要求置信概率约95%)。 B 类评定值,合成不确定度,扩展不确定度,并报告测量结果。 解:用L 表示长度,l = cm ,()A u s l == cm ,?仪= cm ,B u = cm , C u = cm ,2C U u == cm , L l U =±= ± cm 。 3.用米尺测得正方形一边长a 为:、、、、、、、、、。试分别求出正方形周长和面积的算术平均值,不确定度及相对值,测量结果表达式。 解:令L 为周长,S 为面积,则L =4a ,S =a 2 , a = , ()s a = , ?仪= ,B u = , ()C u a = = ,()rel u a = %, 4l a == cm ,()C u l = ()C u a = cm ,()rel u l = %,()U l = , L l U =±= ± cm 2 s a == cm 2,()rel u s = ()rel u a = %,()C u s =()rel s u s ?= cm 2 , ()U s = , S s U =±= ± cm 2 4.一个铝圆柱体,测得半径为R =±cm ,高度为h =±cm ,质量为m =±g ,试计算铝的密度ρ,其不确定度及相对值;写出结果表达式。 解:由U =2u C 和已知条件得:u C (R )= cm ,u C (h )= cm ,u C (m )= g , u rel (R )= %, u rel (h )= %, u rel (m )= %, 2 m R h ρπ= = g cm -3 ,()____%rel u ρ== ()()C rel u u ρρρ=?= g cm -3,()U ρ= g cm -3 ()U ρρρ=±= ± g cm -3 5.单位变换 (1)m =±kg= ± g= ± mg (2)L =±cm= ± mm= ± m (3)ρ=±mg/cm 3= ± kg/m 3

大学物理教案真空中的静电场

第五章真空中的静电场 第一节电荷、库仑定律 一、 电荷 电子具有电荷191.6021910e C -=-?(库仑),质子具有电荷 191.6021910p C e -=?,中子不带电。物理学对电荷的认识可概括为: (1)电荷和质量一样,是基本粒子的固有属性; (2)电荷有两种:正电荷和负电荷,一切基本粒子只可能具有电子或质子所具有电荷的整数倍; (3)电荷具有守恒性; (4)电荷之间的相互作用,是通过电场作媒质传递的。 不同质料物体相摩擦后,每个物体有若干电子脱离原子束缚,进入到对方物体中去,双方失去电子数目不一样,一个净获得电子,一个净失去电子,这就是摩擦起电。核反应中,电荷也是守恒的,例如 用α粒子42He 去轰击氮核147 N ,结果生成178O 和质子11H 反应前后,电荷总数皆为9e 。 根据(2),电荷€电场€电荷,质量€引力场€质量。 在电解液中,自由电荷是酸碱盐溶质分子离解成的正、负离子;在电离的气体中,自由电荷也是正、负离子,不过负离子往往就是电子;在超导中,传导电流的粒子是电子对(库珀对),还可能是极化子、双极化子、孤子等。

从微观上去看,电荷是分立的,宏观上来看,其最小变化量与宏观粒子系统的总电荷量比较完全可被当作无穷小处理。所以宏观小微观大的带电体,电荷的连续性与分立性得到了统一。 二、 库仑定律 12301 4q q F r r πε=r r 或122014r q q F e r πε=r r 0ε为真空电容率(vacuumpermittivity), 其数值为()()1222122208.85418781810/8.8510/C N m C N m ε--=??≈?? 介质中的库仑力 0r εεε=是电介质的介电常数,r ε是相对介电常数。 电介质中作用力比真空中小,是因为介质极化后,在点电荷周围出现了束缚电荷。它削弱了原点电荷之间的作用。 三、 叠加原理 实验表明,如果同时存在多个点电荷相互作用,则任意两个点电荷之间的相互作用,并

大学物理学习心得体会5篇

大学物理学习心得体会5篇 大学物理学习感想 经过了一个学期的物理学习,让我从学物理有什么用的思维转换 为不学物理不行。我深切认识到物理学习的重要性,特别是作为一个工科的学生,物理显得尤为重要。物理学是关于自然界最基本形态的科学,是一切自然科学的基础。“大学物理”课是工科专业的一门重要的基础课。它对学生知识结构的形式、智能训练和能力培养等诸多方面都起着重要的作用。 因为大学物理和中学物理在学习方法等各方面有许多不同,若我 们已习惯于中学物理的学习方法,已经形成了一定的思维定势,将对 大学物理的学习带来负面影响,正如俗话所说:一张白纸上好画画。所以,尽量做好大学物理和中学物力的衔接,使我们尽快地从中学物 理过渡到大学物理的学习,是大学物理学习迫切需要解决的一个问题从内容上看,大学物理共分五大部分:力学、热学、光学、电磁学、近代物理,中学物理也是学习这五大部分,但它们所研究的外延有所不同,中学物理主要研究特殊情况,如力学部分中,对于运动学的研究,中学物理主要研究匀速或匀变速的直线运动和曲线运动,动力学中所涉及的功是恒力的功,所研究的对象是质点,而大学物理研究的运动是变速的运动,功是变力做的功,研究的对象不仅是质点,还包括质点系,对于概念、定理的阐述都在中学的基础上进行了扩展,需要矢量及微积分知识的支撑。在热学部分中,大学物理与中学物理最大的不同是研究的广度大了,从微观的角度解释了热学中的宏观量,

更能体现热学与力学的联系。在光学部分中,中学所研究的主要是几何光学,而大学物理研究的是波动光学,这是光学的两个不同的侧面,因此无论从内容上还是从方法上都有很大的不同,但其共同点是都能锻炼学生的形象思维,在波动光学的学习中,需要同学们多归纳多总结。电磁学部分中大学物理与中学物理的衔接比较大,从物理概念和定理、定律的理解相对来说要容易一些,但是在大学物理中,微积分知识在这里得到极大的发挥,在做题时,由于学生在高中时所形成的思维定式,所以往往用高中时所用的方法来解决他们所遇到的问题,这是大多数学生容易犯错误的地方,也是高数与物理结合的难点,近代物理的学习中,大学物理比中学物理要广泛的多,由于没有思维定式,反而不容易出现似是而非的问题。 通过对大学物理的学期,我也认识到大学物理更多地依赖于高等数学,因此对于我们大一新生来说,在高等数学的学习中,不仅要会计算微分与积分,更要理解微分与积分的物理意义,为大学物理的学习打下厚实的数学基础,另外,在学习大学物理过程中,对于基本概念、基本定理要有清晰的认识,充分认识这些概念、定理与中学物理的异同,在充分理解概念和定理的基础上要做一定量的习题,做题过程中充分体现题目中所涉及到的知识点,许多科学大师都曾津津乐道于他们早年在习题中的受益,虽然做习题本身不是科学研究,但对研究能力的培养却有重要的作用。 总之,物理是培养学生逻辑思维能力的一门最重要的学科,我们应该正确的对待物理,认识物理,认真学习物理知识。

大学物理实验报告模板(完整版)

报告编号:YT-FS-7848-78 大学物理实验报告模板 (完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

大学物理实验报告模板(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电 和火花放电等,通过此演示实验观察火花放电的发生 过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相 等。尖端电极放电,而球型电极未放电。这是由于电 荷在导体上的分布与导体的曲率半径有关。导体上曲 率半径越小的地方电荷积聚越多(尖端电极处),两极 之间的电场越强,空气层被击穿。反之越少(球型电极 处),两极之间的电场越弱,空气层未被击穿。当尖端 电极与平板电极之间的距离大于球型电极与平板电极 之间的距离时,其间的电场较弱,不能击穿空气层。

而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生 五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 这里填写您企业或者单位的信息 Fill In The Information Of Your Enterprise Or Unit Here

大学物理实验气垫导轨实验报告

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

再谈大学物理量子部分教学嵌入物理学史重要性

课程教材改革总第258期 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。[1]它是20世纪初在大量实验事实和旧量子论基础上建立起来的,是人们认识和理解微观世界的基础。量子物理和相对论的成就使得物理学从经典物理学发展到现代物理学,奠定了现代自然科学的主要基础。量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步作出了重要贡献。通过量子物理的教学,有利于培养大学生的科学素质、科学思维方法和科研能力,培养学生的探索精神、创新精神、科学思维能力以及辩证唯物主义的科学观。另外,量子物理是处于发展中的理论,怎样将量子论和广义相对论(引力作用)统一起来仍是困扰人们的问题。“弦理论”的提出使人们看到了希望,通过这部分的教学可以培养学生的横、纵向思维和不断追求科学真理的精神。因此,在大学物理的教学中应适当增加量子物理的教学内容。由于量子物理里好多概念、思想和宏观世界里的完全不同,叫人无法理解,以致量子论的奠基人之一玻尔(Niels Bohr)都要说:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”[2]那么怎样让学生在轻松愉快的状态下学好量子物理呢?在教学过程中适当引入物理学史有利于学生掌握其核心,既培养了学生的学习兴趣,又有利于实现启发式教学,而非纯粹的概念和公式的教学。下面主要从几个方面阐述物理学史在大学生学习中的重要作用。 一、非物理专业大学生学习量子物理的需要 即使是物理专业的学生,多数人在学习量子物理时一直如在云里雾里,虽然知道微观粒子的波粒二象性,也知道不确定原理,了解原子的轨道理论,但是却不知道为什么这样。这一方面是由于量子物理里好多概念、思想和宏观世界里的完全不同。另一方面,学生没有掌握量子物理的核心,没有从整体上把握量子物理的基石。一些教材对这部分的介绍也较少。如果在教学中能够引入量子物理的发展史,不仅能吸引学生的注意力,调动学生的学习兴趣,还有利于学生理解量子物理的概念和思想,使学生能够身临其境地感受到那场史诗般壮丽的革命,深刻体会量子论的伟大,有利于学生辩证唯物主义观的形成。而非物理专业的学生与物理专业的学生相比,在学习量子物理时难度更大。这是由于物理专业的学生开设了许多物理专业课,如原子分子物理、物理学史等课程,为量子物理的学习奠定了基础。而非物理专业的学生没有前期的知识铺垫,对知识的掌握难度增大。如果能适当加入量子发展史的介绍,不仅降低了学生学习难度,还激发了学生学习兴趣,这就更突显出物理学史在大学物理教学中的重要作用。 从整体上介绍量子物理的发展史可以使学生掌握量子物理的核心,从整体上把握量子物理的基石,即波恩的概率解释、海森堡的不确定性原理和玻尔的互补原理。[2]这三大核心原理中,前两者摧毁了经典世界的因果性理论,互补原理和不确定原理又合力捣毁了世界的客观性和客观实在性理论。一些实验和理论斗争的介绍不仅可以吸引学生的学习兴趣,还可以培养学生的科学思维方法。19世纪末20世纪初,好多物理学家认为物理学大厦已经基本建成,后辈的工作只是做些细枝末节的修补和完善。但当时物理学天空漂浮着两朵小乌云,一朵是“以太的绝对参考系”,另一朵是“黑体辐射的紫外线灾难”。前者导致了相对论的建立,后者导致了量子物理的建立。 对量子物理三大基石的掌握,即波恩的概率解释、海森堡的不确定性和玻尔的“互补原理”是量子物理的三大支柱。大学所学的量子物理学是基于这三个支柱的。这就像数学中的公理一样,对于大学生而言不能去讨论为什么,只能是是什么。 二、大学生素质教育的需要 大学物理的量子部分教学不同于物理专业学生的量子物理教学。大学物理教学的目的主要是增强学生分析问题和解决问题的能力,培养学生科学的思维方法、辩证唯物主义观等素质教育,重在方法而非纯理论教学。因此,大学物理的教学目的与任务是使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。更为重要的是,在大学物理课程的各个教学环节中,都应在传授知识的同时注重培养学生分析问题和解决问题能力,注重培养学生科研探索精神和辩证唯物主义世界观的形成。量子物理发展史的介绍和讲解有助于培养学生这方面的能力。 1.辩证唯物主义世界观的培养 在大学物理的教学过程中融入物理学史的内容有利于培养学生的辩证唯物主义世界观。如关于光的本性的争论持续了300年, 再谈大学物理量子部分的教学嵌入物理学史的重要性 丁艳丽 母继荣 摘要:量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步作出了巨大贡献。很多大学生对量子物理非常感兴趣,但对怎么学好这门课程却很迷茫。如果在教学过程中适当引入量子发展史有利于学生学好大学物理,不仅能调动学生的学习兴趣,实现启发式教学,还能培养学生的科学观察能力、分析问题和解决问题能力、思维能力、求实精神、创新精神及辩证唯物主义世界观。 关键词:大学生;量子物理;物理学史 作者简介:丁艳丽(1979-),女,回族,辽宁辽阳人,沈阳化工大学数理系,讲师;母继荣(1964-),女,河北乐亭人,沈阳化工大学数理系,副教授。(辽宁 沈阳 110142) 中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2012)35-0067-02 DOI编码:10.3969/j.issn.1007-0079.2012.35.034

相关文档
最新文档