人教版高一数学必修一基本初等函数解析(完整资料)

人教版高一数学必修一基本初等函数解析(完整资料)
人教版高一数学必修一基本初等函数解析(完整资料)

此文档下载后即可编辑

一.【要点精讲】 1.指数与对数运算 (1)根式的概念:

①定义:若一个数的 n 次方等于 a (n

1,且 n

x n

a ,则x 称a 的n 次方根 n 1且n N ),

1)当 n 为奇数时, a 的n 次方根记作 n

a ;

2)当 n 为偶数时,负数 a 没有 n 次方根,而正数 a 有两个 n 次方根且互为相反数,记作 n

a (a 0)

(2).幂的有关概念

①规定: 1) a n a a a (n N *

;2) a 0

1(a 0);

n

a m

(a 0,m 、n N *

且 n 1)

0,r 、 s Q);

2)(a r

)s

a r s

(a 0,r 、s Q); 3) (a b)r

a r

b r

(a 0,b 0,r Q)。 (注)上述性质对 r 、 s R 均适用。 (3).对数的概念

①定义:如果 a (a 0,且a 1) 的 b 次幂等于 N ,就是 a b

N ,那么数 b 称以 a 为底 N 的 对数,记作 log a N b,其中a 称对数的底, N 称真数

1)以 10为底的对数称常用对数, log 10 N 记作lg N ;

基本初等函数

n

m

3) a p

1 1

(p Q ,

4)

a n

a p

②性质:

1) a r a s

a r

s

(a

N ) ,则这个数称 a 的 n 次方根。即若

3)当 n 为偶数时, n

a |a|

a(a 0) 。

a(a 0)

2)以无理数e(e 2.71828 )为底的对数称自然对数,log e N ,记作ln N ;

②基本性质:

1)真数 N 为正数(负数和零无对数) ;2) log a 1 0 ; 3) log a a 1 ;4)对数恒等式: a

logaN

N 。

③运算性质:如果 a 0,a 0,M 0, N 0, 则 1) log a (MN ) log a M log a N ; 2) log a M

log a M log a N ; a

N a a

3) log a M n

n log a M (n R) ④换底公式: log a N

log m N

(a 0,a 0,m 0, m 1, N 0), log m a

1) log a b log b a 1;2)log a m b n n

log a b 。

m

2.指数函数与对数函数 (1) 指数函数:

①定义:函数 y a x

(a 0,且a 1) 称指数函数, 1)函数的定义域为 R ;2)函数的值域为 (0, ) ; 1时函数为减函数,当 a 1 时函数为增函数。

1)指数函数的图象都经过点( 0, 1),且图象都在第一、二象限;

2)指数函数都以 x 轴为渐近线(当 0 a 1时,图象向左无限接近 x 轴,当 a 1时,图 象向右无限接近 x 轴);

3)对于相同的 a (a 0,且a 1),函数 y a x

与y a x

的图象关于 y 轴对称

③函数值的变化特征:

(2)对数函数:

①定义:函数 y log a x (a 0,且a 1) 称对数函数, 1)函数的定义域为 (0, ) ;2)函数的值域为 R ;

3)当 0 a ②函数图

3)当0 a 1时函数为减函数,当a 1 时函数为增函数;

4)对数函数y log a x与指数函数y a x(a 0,且a 1)互为反函数②函数图像:

1)对数函数的图象都经过点( 0, 1),且图象都在第一、四象限;

2)对数函数都以y 轴为渐近线(当0 a 1时,图象向上无限接近y 轴;当a 1时,图象向下无限接近y 轴);

4

)对于相同的a(a 0,且a 1),函数y log a x与y log 1x的图象关于x轴对称。

a

③函数值的变化特征:

(3)幂函数

1)掌握 5 个幂函数的图像特点

2)a>0 时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数

3)过定点( 1,1)当幂函数为偶函数过( -1,1 ), 当幂函数为奇函数时过( -1,-1 )当 a>0 时过( 0, 0)

4)幂函数一定不经过第四象限

四.【典例解析】 题型 1:指数运算

点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运 算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时, 化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。

x 2

11

解:∵ x 2 x 2

3 ,

11

∴ (x 2 x 2)2

9 , ∴x 2 x 1

9, ∴x x 1

7,

12

∴ (x x 1) 2

49,

22

x x 47 ,

例 1.( 1)计算: 3 [(3

38

2

3(594)0.5 2 (0.008)

3 11

(0.02) 2 (0.32) 2

]

0.06250.25 ;

4

a 3 2)化简:

2

a

4b 3 23

ab

1

8a 3

b

2 a 3

2

(a

3

23 b ) a

82

解:(1)原式 =[( 8 ) 3

1

(499)

1

2

1000

2

)3

50

4 2

] 10 ]

1

(10602050

)14

[94 7

3 25

1 52

4 2

] 10 ]

17

9

2) 2

9

2 )原式 = (a 3

) 1

a 3

[(a 3

)3

(2b )] 1

a 3 1

2b 3

1 a 3

11

2

(2b 3 )

21

a 3)2 1 1 1

(a 2

a 3

)5

(a

1 1 1

a 3 (a 3 2

b 3 )

a 11

a 3 2

b 3

5 a

6 1 a 6

1

a 3

2

a 3

1

例 2.(1)已知

x 2

x 2

3 ,求 3

x 2

2

的值

33

1

1

又∵ x 2

x 2

(x 2

x 2

) (x 1 x 1

) 3 (7 1)

18 ,

22 x x 2

47

2 3。

3 ∴

3 3

x 2

x 2 3

18

点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。

题型 2:对数运算

(2).( 江苏省南通市 2008 届高三第二次调研考试 )幂函数 y f(x) 的图象经过点 ( 2, 1

) ,则满足 f(x)=27的 x 的值是 .

8 答案 1

3

例 3.计算

2

(1) (lg 2)2

lg2 lg50 lg 25 ;(2) (log 3 2 log 92) (log 4 3 log 83);

(3)

lg5 lg 8000 (lg2 3)2

(3

)

1 1

lg 600 lg 0.036 lg0.1

22

22

解:(1)原式 (lg 2)2 (1 lg5)lg 2 lg52

(lg2 lg5 1)lg 2 2lg5

36 1 6

分母=(lg 6 2) lg lg6 2 lg 4;

1000 10 100

原式 =

3

4 点评:这是一组很基本的对数运算的练习题,虽然在考试中这些

运算要求并不高,但是数 式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变 换的各种技巧

例 4.设 a 、 b 、 c 为正数,且满足 a 2

b 2

c 2

(1 1)lg 2 2lg5

2(lg 2 lg5) 2 ; 2)原式

(

lg2 lg2) (lg3 lg3) (lg2 lg2 ) ( lg3 lg3 )

(

lg3 lg9) (lg4 lg8) (lg3 2lg3 ) (2lg 2 3lg2)

3lg 2 5lg 3 5

2lg 3 6lg 2

3)分子 =lg5(3 3lg2) 3(lg 2)2

3lg5 3lg 2(lg5 lg2) 3;

(1)求证:log 2 (1 b c) log 2 (1 a c) 1 ;

b

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

人教版高一数学《函数》复习教案(有答案)

高一函数复习 一、函数的概念与表示 1、映射 映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。 注意点:(1)对映射定义的理解; (2)判断一个对应是映射的关键:A 中任意,B 中唯一;对应法则f . 给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一; (2)B 中的元素未必有原象,即使有,也未必唯一; (3)a 的象记为f (a ). 【例题1】设集合A ={x |0 ≤ x ≤ 6},B ={y |0 ≤ y ≤ 2},从A 到B 的对应法则f 不是映射的是 ( ). A . f :x →y = 12x B . f :x →y =1 3 x C . f :x →y =14x D . f :x →y =16x 【变式练习1】若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B . A 、1个 B 、2个 C 、3个 D 、4个 2、函数 构成函数概念的三要素:①定义域;②对应法则;③值域 两个函数是同一个函数的条件:当且仅当函数定义域、对应法则分别相同时.

【例题1】下列各对函数中,相同的是( ) A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,1 1 lg )(--+=-+=x x x g x x x f C 、 v v v g u u u f -+= -+= 11)(,11)( D 、f (x )=x ,2)(x x f = 【例题2】}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集 合N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个 【变式练习】 1.下列各组函数中,表示同一函数的是( ) A . 1,x y y x == B . 211,1y x x y x =-+=- C . 33,y x y x == D . 2||,()y x y x == 2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ) 3.下列四个图象中,不是函数图象的是( ) 【巩固练习】 x x x x 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 y y y y 3 O O O O

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5 ≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 34522+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y .

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

人教版高一数学函数及其性质知识点归纳与习题

O O O O (1) (2) (3) (4) 时间 时间 时间 时间 离开家的距离 离开家的距离 离开家的距离 离开家的距离 人教版高一数学函数及其性质知识点归纳与习题 第一部分 函数及其表示 知识点一:函数的基本概念 1、函数的概念: 一般地,设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数。记作: A x x f y ∈=,)(。 x 叫自变量,x 的取值范围A 叫做函数的定义域,y 叫函数值,y 的取值范围叫函数的值域。 说明:①函数首先是两个非空数集之间建立的对应关系 ②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的“一对一”或“多对一”。 ③认真理解)(x f y =的含义:)(x f y =是一个整体,)(x f 并不表示f 与x 的乘积,它是一种符号,可以是解析式,也可以是图象,还可以是表格; 2、函数的三要素:定义域,值域和对应法则 3、区间的概念:三种区间:闭区间、开区间、半开半闭区间 4、两个函数相等:同时满足(1)定义域相同;(2)对应法则相同的两个函数才相等 5、分段函数: 说明:①在求分段函数的函数值时,首先要确定自变量在定义域中所在的范围,然后按相应的对应关系求值。 ②分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同。 6、函数图像 练习 1.下列图象中表示函数图象的是 ( ) (A ) (B) (C ) (D) 2.下列各组函数中,表示同一函数的是( ) A .x x y y ==,1 B .1,112 -=+?-=x y x x y C .3 3 ,x y x y = = D . 2 )(|,|x y x y == 3.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( ) (1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。 A 、(1)(2)(4) B 、(4)(2)(3) C 、(4)(1)(3) D 、(4)(1)(2) 4.下列对应关系:( ) ①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根 ②,,A R B R ==f :x x →的倒数 ③,,A R B R ==f :2 2x x →- ④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方 其中是A 到B 的映射的是 A .①③ B .②④ C .③④ D .②③ 5.在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重()040x x <≤克的函数,其表达式为()f x =____ ____ 6.设函数? ??<+≥-=10110 2)(2x x x x x f ,则)9(f = ,)15(f = 7.设函数?? ?<-≥-=5 35 2)(2 x x x x x f ,若)(x f =13,则x= 。 8.函数()1,3,x f x x +?=?-+? 1, 1,x x ≤>则()()4f f = . 9.下列各组函数是同一函数的有 ①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =; ③0 ()f x x =与0 1()g x x = ;④2()21f x x x =--与2 ()21g t t t =--。 10.作出函数(]6,3,762 ∈+-=x x x y 的图象 x y 0 x y 0 x y 0 x y 0

高中数学函数最值问题的常见求解方法

高中数学函数最值问题的常见求解方法 一、配方法 例1.当01≤≤-x 时,求函数x x y 4322?-=+的最大值和最小值. 解析:3 4)322(32 + - -=x y ,当01≤≤-x 时, 12 2 1≤≤x .可得1min =y ,3 4max = y . 二、判别式法:若能将问题转化为一元二次方程有无实根的问题,则常利用判别式求得函数的最值. 例2.若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则max x = , min y = . 解析:由已知,变形得:0)()12(22=++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(2 2≥+--x x x ,于是018≥+-x ,即 8 1≤ x .即 8 1max = x . 同理,0)()12(22=-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(2 2 ≥--+y y y ,于是018≥+y ,即 8 1- ≥y .即 8 1min - =y . 例3.在2 0π ≤ ≤x 条件下,求2 ) sin 1()sin 1(sin x x x y +-= 的最大值. 解:设x t sin =,因0(∈x ,)2 π,故 10≤≤t ,则2 ) 1()1(t t t y +-= ,即 0)12()1(2 =+-++y t y t y 因为 10≤≤t ,故01≠+y ,于是0)1(4)12(2 ≥+--=?y y y 即 8 1≤ y 。 将8 1= y 代入方程得 0[3 1∈= t ,]1,所以8 1max = y . 注意:因0≥?仅为方程0)12()1(2 =+-++y t y t y 有实根0[∈t ,]1的必要条件,因此,必须 将8 1= y 代入方程中检验,看等号是否可取. 练习:已知函数)(1 2 R x x b ax y ∈++=的值域为]4,1[-,求常数b a ,.(答案: 3=b ,4±=a ) 三、换元法 (一)局部换元法 例4.求函数x x y 21-+=的最值. 解析:设x t 21-= (0≥t ),则由原式得11)1(2 12 ≤+-- =t y 当且仅当1=t 即0=x 时取 等号.故1max =y ,无最小值. 例5.已知20≤ ≤a ,求函数))(cos (sin a x a x y ++=的最值. 解析:2)cos (sin cos sin a x x a x x y +++= 令t x x =+cos sin 则 22≤ ≤- t 且2 1cos sin 2 -= t x x ,于是]1)[(2 12 2-++= a a t y 当2= t 时,21 22 max + + =a a y ;当a t -=时,)1(2 1 2 min -= a y . 注意:若函数含有x x cos sin 和x x cos sin +,可考虑用换元法解. (二)三角代换法(有时也称参数方程法) 例6.已知x 、y R ∈,4122≤+≤y x .求22y xy x u ++=的最值. 解析:设θcos t x =,θsin t y =,(t 为参数),因 4122≤+≤y x ,故 412≤≤t )2sin 2 11()sin sin cos (cos 2 2 2 2 θθθθθ+ =++=∴t t u 故当42=t 且12sin =θ时,6max =u ;当12=t 且12sin -=θ时,2 1max =u . 练习1:实数x 、y 适合:545422=+-y xy x ,设22y x S +=,则 max 1S +min 1S =____。 练习2:已知x 、y R ∈且x y x 6232 2=+,求y x +的最值. 解析:化x y x 6232 2=+为123)1(2 2 =+-y x ,得参数方程为?? ? ??=+=θθsin 26 cos 1y x )sin(2 101sin 26cos 1?θθθ++ =+ +=+∴y x , 故 2 101)(max +=+y x ,2 101)(min - =+y x . (三)均值换元法 例7.已知1=+b a ,求证:4 4b a +的最小值为 8 1. 解析:由于本题中a 、b 的取值范围为一切实数,故不能用三角换元,但根据其和为1,我们可

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

新人教版高一数学函数与方程知识要点

新人教版高一数学函数与方程知识要点 新人教版高一数学函数与方程知识要点 一、方程的根与函数的零点 教材内容分析新课程标准的要求是,结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。 2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即: 方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 求函数的零点: 1(代数法)求方程的实数根; 2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 二、用二分法求方程的近似解

用二分法求方程的近似解的方法,二分法,又称分半法,是一种方程式根的近似值求法。 1.二分法的概念 对于在区间[a,b]上连续不断且____________的函数y=f(x),通过不断地把函数f(x)的零点所在的区间__________,使区间的两个端点______________,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求 ___________________________________________________________ _____________. 2.用二分法求函数f(x)零点近似值的步骤: (1)确定区间[a,b],验证____________,给定精确度ε; (2)求区间(a,b)的中点____; (3)计算f(c); ①若f(c)=0,则________________; ②若f(a)·f(c)<0,则令b=c(此时零点x0∈________); ③若f(c)·f(b)<0,则令a=c(此时零点x0∈________). (4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理 高一数学必修一函数必背知识点 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题——一题多解 &指数函数y=a^x a^a*a^b=a^a+ba>0,a、b属于Q a^a^b=a^aba>0,a、b属于Q ab^a=a^a*b^aa>0,a、b属于Q 指数函数对称规律: 1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称 3、函数y=a^x与y=-a^-x关于坐标原点对称 幂函数y=x^aa属于R 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. 1所有的幂函数在0,+∞都有定义并且图象都过点1,1; 2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; 3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1 代数法求方程的实数根; 2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 感谢您的阅读,祝您生活愉快。

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

(完整版)人教版高一数学必修一基本初等函数解析

基本初等函数 一.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根。即若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 。 (2).幂的有关概念 ①规定:1)∈???=n a a a a n (ΛN * ;2))0(10 ≠=a a ; n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ); 2)r a a a s r s r ,0()(>=?、∈s Q ); 3)∈>>?=?r b a b a b a r r r ,0,0()( Q )。 (注)上述性质对r 、∈s R 均适用。 (3).对数的概念 ①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数 1)以10为底的对数称常用对数,N 10log 记作N lg ; 2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质: 1)真数N 为正数(负数和零无对数);2)01log =a ;

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

(新)高中数学必修一函数部分难题汇总

函数部分难题汇总 1.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 2.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A .沿x 轴向右平移1个单位 B .沿x 轴向右平移 1 2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1 2 个单位 3.设? ??<+≥-=)10()],6([) 10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13 4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052 , B. []-14, C. []-55, D. []-37, 5.函数x x x y += 的图象是( ) 6.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3()1(f f f <-<- C .)23()1()2(-<-

2020-2021年高一数学函数 新课标 人教版

2019-2020年高一数学函数新课标人教版 一、函数的概念与表示 1、映射 (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。 (2)象与原象:如果给定一个从集合A到集合B的映射,那么集合A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象。 注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。 2、函数 (1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值, y都有唯一确定的值与它对应,那么就称y是x的函数,x叫作自变量。 ②近代定义:设A、B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A 到B的映射f:A→B就叫做函数,记作y=f(x),其中,原象集合A叫做函数的定义域,象集合C叫做函数的值域。 (2)构成函数概念的三要素①定义域②对应法则③值域 3、函数的表示方法①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二、函数的解析式与定义域 1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式,解析式亦称“解析表达式”或“表达式”,简称“式”。(注意分段函数) 求函数解析式的方法: (1)定义法(2)变量代换法(3)待定系数法 (4)函数方程法(5)参数法(6)实际问题 2、函数的定义域:要使函数有意义的自变量x的取值的集合。 求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1; 如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

相关文档
最新文档