升膜蒸发器设计计算说明书

升膜蒸发器设计计算说明书
升膜蒸发器设计计算说明书

《食品工程原理》课程设计

目录

一 《食品工程原理》课程设计任务书 ............................................................................. 1 (1).设计课题 ....................................................................................................................... 2 (2).设计条件 ....................................................................................................................... 2 (3).设计要求.......................................................................................................................... 2 (4).设计意义.......................................................................................................................... 2 (5).主要参考资料 .................................................................................................................. 3 二 设计方案的确定 ............................................................................................................. 3 三 设计计算 ......................................................................................................................... 4 3.1.总蒸发水量 ..................................................................................................................... 4 3.2.加热面积初算 ................................................................................................................. 4 (1)估算各效浓度 ............................................................................................................. 4 (2)沸点的初算 ................................................................................................................. 4 (3)温度差的计算 ............................................................................................................. 5 (4)计算两效蒸发水量1V ,2V 及加热蒸汽的消耗量1S ................................................. 6 (5)总传热系数K 的计算 ................................................................................................. 7 (6)分配有效温度差,计算传热面积 ............................................................................. 9 3.3.重算两效传热面积 ....................................................................................................... 10 (1)第一次重算 ............................................................................................................... 10 3.4 计算结果 ...................................................................................................................... 11 四 蒸发器主要工艺尺寸的计算 (13)

五 简图-----------------------------------------------------------------------------------------------------13 (1)工艺流程图-----------------------------------------------------------------------------------------13 (2)细节图-----------------------------------------------------------------------------------------------14

一《食品工程原理》课程设计任务书

(1).设计课题:

番茄汁浓缩工艺装置的设计计算

(2).设计条件:

题目1:番茄汁低温浓缩工艺装置的设计

设计任务及操作条件:

生产能力:1170kg/h

原料固形物含量:10%

浓缩要求:使固形物质量分数浓缩至36%

液加入温度料:25℃

原料最高许可温度:58℃

浓缩液经冷凝后出口温度:25℃

加热介质:100℃的饱和蒸汽。

物料平均比热为3.50 kJ/(kg·K),忽略浓缩热

试设计一套双效升膜蒸发系统,满足上述工艺要求。

(3). 设计要求:

1.设计一套双效升膜蒸发系统(满足上述工艺要求并包括料液输送系统,蒸发

系统,冷凝水分离排除系统及真空系统);

2.提交设计计算说明书一份(应包括目录、设计计算任务书、设计方案的确定、

各系统的设计计算及设备选型、简略的技术经济分析、参考文献资料等);

3.工艺布置简图一幅(可附在设计计算书上);

4.注意收集、阅读参考资料,形成设计方案;

5.提交日期:2014年12月30日。

(4). 设计意义:

1.蒸发可以除去番茄汁中的大量水分,减少包装、贮藏和运输费用。蒸发还能

提高番茄汁的糖分浓度,增加番茄汁的耐贮藏性。选用升膜蒸发,果汁在蒸发器内经过一次加热、汽化、分离过程,不进行循环,在蒸发器内停留时间短,这对热敏性的番茄汁是有利的。蒸发操作是一个能耗大的过程。采用多效蒸发是降低能耗的最有效方法。随着效数的增加,总蒸发量相同时所需新鲜蒸汽量减少,操作费用降低;但效数越多,设备费用越高,而且随着效数的增加,所节约的新鲜蒸汽量越来越少。因此本次设计效数选为Ⅱ效。

2.当料液进入后效时会产生自蒸发,且番茄汁浓度依效序增加,高浓度番茄汁

处于较低温度时对热敏性的番茄汁是有利的。

3.通过课程设计,要求学生综合运用本课程和前修课程基本知识,进行融会贯

通,独立思考,在规定的时间内完成指定的化工单元操作的设计任务,培养学生运用课本知识解决实际问题的能力,从而得到化工工程设计的初步训练,为以后更为复杂的设计打下良好的基础。

(5). 主要参考资料:

1.夏清、陈常贵主编,姚玉英主审,化工原理,天津大学出版社,2005,1

2.华南理工大学化工原理教研组,化工过程及设备设计,华南理工大学出版

社.1995

3.化工设备的选择与工艺设计,中南工业大学出版社. 1992

4.丛德滋等, 化工原理详解与应用, 化学工业出版社. 2002,7, 151-158

5.张承翼李春英,化工工程制图,化学工业出版社. 1997

6.张桂昭,三效逆流加料蒸发器的设计,化工设计. 1996(6):6-10

7.蒋迪清等,食品通用机械与设备,华南理工大学出版社,2001,7,111-13

8.各类化学工程学报、期刊、化工设备手册及其化工机械设备产品广告

二设计方案的确定

一.对果汁进行浓缩的好处:

1.减少包装、运输和贮藏的费用;

2.防止腐败;

3.改善口感。

二.确定设计方案:

考虑到高温会破坏果汁的品质,故采用真空低温蒸发来对番茄汁进行浓缩操作;由处理物料(原料)的性质及设计要求知,番茄汁黏度大、不易生泡沫,考虑到经济和效率问题,选用双效升膜蒸发系统,根据设计要求,采用并流双效升膜式蒸发器蒸发。选用2m长φ38×3mm的无缝不锈钢管作加热管。

三 设计计算

3.1总蒸发水量

0.10(1)1170(1)845.0/0.36ωω=-

=?-=F P V F kg h

3.2加热面积初算 (1)估算各效浓度:

第一效蒸发后:1

11

11700.101170F F F V V ωω?=

=

--

由经验公式:1V : 2V =1:1.1

而 12845.0+==V V V

解得: 1402.4/=V kg h

2442.6/=V kg h

115.24%ω=(暂取15%)

(2)沸点的初算

查表:T=100℃时,P=101.33kpa ;T=25℃时,2P =3.1684kpa 设两效蒸汽压强相等

2101.33 3.168498.1616P P P kpa ?=-=-=

198.1616101.3352.249222

P P P kpa ?=-

=-= 解得1P 时,查表沸点182.19ω=t ℃;225126ω=+=t ℃, 第二效加热蒸汽2T =1ωt —1=82.19-1=81.19℃

(3)温度差的计算

①将该溶液当作蔗糖溶液处理,各效由于溶液的沸点升高引起的温度损失差为:

第一效时:

22113

16.2(t 273)16.20.2r 2301.710ω?+''''?=?=??a T 2

0.0162(82.19273)0.22301.7?+=? 0.18=℃

第二效时:

22223

16.2(t 273)16.20.84r 2432.710ω?+''''?=?=??a T 2

0.0162(26273)0.842432.7?+=? 0.50=℃

?1

2

0.180.500.68''''''?=?+?=+=℃ ②由液柱静压力引起的温度差损失: (取液层高度为2m )

第一效:111 1.06119.82

52.249262.652

2

m gh

p p KPa ρ??=+

=+

=

此压强下186.94m T =℃,1

11t 86.9482.19 4.75m T ω'?=-=-=℃ 第二效:p 3.7622 1.15369.82/215.093m KPa =+??=

此压强下253.66m T =℃,2

2253.662627.66m T t ω'?=-=-=℃ ?1

2

4.7527.6632.41'''?=?+?=+=℃ ③取管路引起的损失1

2

1''''''?=?=℃ ?1

2

112'''''''''?=?+?=+=℃ ④各效料液的沸点和有效总温差

各效温度差损失:Ⅰ效: 11

11''''''?=?+?+?=4.75+0.18+1=5.93℃ Ⅱ效: 2222''''''?=?+?+?=27.66+0.50+1=29.16℃ 各效溶液的沸点:Ⅰ效: 111t t ω=+?=82.19+5.93=88.12℃ Ⅱ效: 222t t ω=+?=26+29.16=55.16℃ 各效有效温差为:Ⅰ效: 11100t t ?=-=100-88.12=11.88℃ Ⅱ效: 222t T t ?=-=81.19-55.16=26.03℃ 最大可能温差:1002575T ?=-=℃

损失温差:99.34231.325.018.0=+++=?'''+?''+?'=?℃ 有效总温差:1211.88+26.03=37.91t t t ?=?+?=℃

(4)计算两效蒸发水量1V ,2V 及加热蒸汽的消耗量 1S

由题意知料液平均比热为 3.5/K g F C KJ K =?, 查表得水的比热为 4.220/Kg =?W C KJ K 作第一效热量衡算,得

1111

11

(S )s F F r T t V FC r r η-=+ 其中10.98η=

所以

1111

11112258.42588.12(S )0.98(1170 3.50)0.962110.052301.72301.7

η--=+=?+??=-s F F r T t V FC S S r r ----------------①

同理作第二效热量衡算,得

212212

1222()s F W r t t V V V S FC C V r r η?

?

-=-=+-???

?

其中20.98η= 所以

1112304.088.1255.16845.0(1170 3.50 4.220)0.982432.72432.7V V V ??

--=+?-??????

----------------②

整理得 1422.34/=V Kg h 代入①式可得:1553.42/=S Kg h

由②式可得:21845.0422.34422.66/=-=-=V V V Kg h

(5)总传热系数K 的计算

查表得不锈钢管的导热率为17.4/λ=?W m K

第一效时:

221170

0.3810/0.7850.0321061.13600

3600

4

l l F u m s

d π

ρ=

=

=????

4

0.0320.3810

1061.1

219275.910l l el l du R ρμ-??=

==?

1

22553.42

0.1995/0.7850.032958.43600

3600

4

v v S u m s

d π

ρ=

=

=????

4

0.0320.1995958.4

216662.82410

v v ev v du R ρμ-??===? 45.9103940 4.20.55

l P rl

l C P μλ-??===

由管内沸腾传热系数i α的关联式有:

0.23

0.90.340.25e e r (1.3128)

R R P (

)()l

l v

i l v l v l

d d

λρμαρμ=+ 40.230.340.9

0.254

0.551061.1 2.82410(1.31280.032)2192721666 4.2()()0.032958.4 5.910

--?=+???????? =491882W/(℃)?m

饱和水蒸气的传热系数由下公式可求得:

231

3231/4v 40-4

v 12258.4109.8958.40.68211.13() 1.13()2.82410211.88

rg L t ρλαμ????==????? =26291W /(℃)

?m 传热外表面的总传热系数K 由下公式计算:

00

1

111i b d d K d d

αλα=+

?+? -4

10.0030.03810.038=3.8810629117.40.032491880.032

??=

++???

?212578.38W /(=?K m ℃)

同理可得,第二效时:

2

2

21170422.34

0.2230/0.7850.0321158.53600

3600

4

l l F u m s d π

ρ-=

=

=???? 2

0.0320.22301158.5

3792.1810l l el l du R ρμ-??=

==? 2

22422.34

0.1503/0.7850.032971.03600

3600

4

v v S u m s d π

ρ=

=

=????

e 4

0.0320.1503971.0

R 133363.50210

ρμ-??=

=

=?v v

v v

du 2r 2.18103353

P 133

0.55l p

l l u C λ-??===

由管内沸腾传热系数i α的关联式有:

0.23

0.90.340.25e e r (1.3128)

R R P (

)()l

l v

i l v l v l

d d

λρμαρμ=+ 40.230.340.9

0.252

0.551158.5 3.50210(1.31280.032)37913336133()()0.032971.0 2.1810

--?=+???????? 12571= 2W/(℃)?m

饱和水蒸气的传热系数由下公式可求得:

231

3231/4v 40-4

v 22304109.8971.00.67471.13() 1.13()3.50210226.03

rg L t ρλαμ????==????? 24918/(℃)

=?W m 传热外表面的总传热系数K 由下公式计算:

00

2

111i b d d K d d

αλα=+

?+?

410.0030.03810.038 5.0310491817.40.032125710.032

-??=

++=??? ? 221989.89/(=?K W m ℃)

(6)计算传热面积

为与加热蒸汽耗量符号S 区分,故以下面积符号采用S '

11

2111111553.422258.4100011.332578.3811.883600

??'=

===????S r Q S m K t K t 2222222

22422.342304.01000

5.22t t 1989.892

6.033600

Q S r S m K K ??'=

=

==????

3.3重算两效传热面积 (1)第一次重算

由于两效传热面积相差太大,故应调整各效的有效温度差,并重复上述计算步骤再算重新分配有效温度差

211221211.3311.88 5.2226.03

7.1411.8826.03

S t S t S m t t ''?+??+?'=

==?+?+

0111022211.3311.88

18.857.14

5.222

6.03

19.037.14

'??'?===''??'?==='S t t C

S S t t C

S

校正各效沸点、蒸发水量和传热量

因第二效完成液沸点不变,所以255.16=t ℃

第二效加热蒸汽温度为2255.1619.0374.19'+?=+=t t ℃ 该温度下对应的汽化热r=2321.40KJ/Kg

第一效二次蒸汽温度122174.19175.19''=+?+=+=T t t ℃

1111700.1

15.24%1170402.4

F F F V ωω?=

==--

由1ω和1T '得第一效沸点111

=75.190.1875.37T T '''+?=+=℃ 该温度下对应的汽化热r=2331.95KJ/Kg ,12==0.98ηη

111111

()s F F r T T V S Fc r r η-=+12258.42575.37

(

1170 3.5)0.982331.952331.95S -=+??? =0.94911S -86.68 ----------------①

2

122121222()

s F W r T t V V V S FC C V r r η??'-??=-=+-????

1112304.075.3755.16845.0(1170 3.50 4.220)0.982432.72432.7V V V ??

-?-=+?-??????

----------------②

①②解得:121428.6/845.0428.6416.4/542.9/==-==V kg h

V kg h S kg h

2

111112

222

22542.92258.41000

7.012578.3818.853600

428.62321.401000

7.301989.8919.033600

??'==='?????'===???S r S m K t S r S m K t

两效的传热面积比较接近,故不在重算

考虑留适当设计余量,通常加大10~15%,取2128.3S S m ''==

3.4 计算结果

四 蒸发器主要工艺尺寸的计算

(1)加热室 传热管数目

8.3423.140.0322根π'===??S n dL

管子采用正三角形排列

8根===c n 采用胀管法,取t=1.5d 0 t=1.5d 0=1.5×38=57mm 取b '=1.5d 0

b '=1.5d 0=1.5×38=57mm 加热室的直径

(1)257(81)257513'=-+=?-+?=c D t n b mm

圆整后,取加热室直径D 为550mm. (2)分离室

分离室体积计算式为:

U

W

V ρ3600=

()钟产生的二次蒸汽量;

即每立方米分离室每秒蒸发体积强度,密度,某效蒸发器的二次蒸汽流量,某效蒸发器的二次蒸汽分离室体积,,/m ;

/m k -;

/k ;

3333s m U g h g W m V ?---ρ其中,U 为蒸发体积强度,一般允许值为()

s m /m 1.5 1.1~33?,在此取

()

s m /m 1.233?。

将工艺计算中二次蒸气的温度和流量以及根据温度所查得的二次蒸气的密度列于下表:

3

111428.6

0.408360036000.2435 1.2W V m U ρ===?? 3

222416.4

3.94360036000.0245 1.2W V m U ρ=

==??

为方便起见,各效分离室的尺寸均取一致,所以体积V 取最大值33.94m V =。 确定需考虑的原则:

①H :D 12=~ ②H 1.8≥

③在允许的条件下分离室的直径应尽量与加热室相同

根据 2

πV D H 4

= 取 1.5:=D H

得 1.50, 2.25D m H m ==

五.简图

(1)工艺流程图

(2)细节图

①双效升膜蒸发器:

蒸发器选取理由:溶液以液膜的形式一次通过加热室,不进行循环。传热效率高,蒸发速度快,溶液在蒸发器内停留时间短,因而特别适用于热敏性物料的蒸发。

②金属丝除沫器:

除沫器选取理由:选用金属丝除沫器,利用液体的惯性使气液分离,以除去液沫,二次蒸汽通过多层金属丝网,液滴黏附于金属丝网,二次蒸汽透过,易于达到99%以上的除沫效率。

③填料式冷凝器:

1.冷水

2.二次蒸汽

3.冷凝水

4.不凝气

5.喷嘴

6.填料

冷凝器选取理由:选用填料式冷凝器,冷凝器中装有一定高度的填料层,填料层由许多瓷环或其他材料充填而成,瓷环体内外表面就是两种流体接触面。冷却水与上升的二次蒸汽在填料表面换热,混合后的冷凝水由底部引出,不凝气由顶部排出。

④水力喷射真空装置:

能又比较高,耗电量低,操作简单维修方便,不用专职人员管理,由

于无机械传动部份,所以噪声低,不需消耗润滑油。可以室外低位安装,占地面积少,可以节省厂房建筑面积与安装费用。

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

蒸发器尺寸设计

蒸发器工艺尺寸计算? 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;????? L---加热管长度,m;? 因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 ???? 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 ?? 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 ?? 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。 管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是:???? 确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。初步估计加热室Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作

降膜蒸发器的设计

齐齐哈尔大学 蒸发水量为2000的真空降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日

目录 摘要............................................................ I II Absract............................................................ I V 第1章蒸发器的概述. (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (1) 1.3蒸发器的类型及特点、 (2) 1.4蒸发器的维护 (5) 第2章蒸发器的确定 (6) 2.1 设计题目 (6) 2.2 设计条件: (6) 2.3 设计要求: (6) 2.4 设计方案的确定 (6) 第3章换热面积计算 (8) 3.1.进料量 (8) 3.2.加热面积初算 (8) 3.2.1估算各效浓度: (8) 3.2.2沸点的初算 (8) 3.2.3计算两效蒸发水量,及加热蒸汽的消耗量 (10) 3.3.重算两效传热面积 (11) 3.3.1.第一次重算 (11) 第4章蒸发器主要工艺尺寸的计算 (13) 4.1加热室 (13) 4.2分离室 (14) 4.3其他工件尺寸 (15) 第5章强度校核 (16) 5.1 筒体 (16) 5.2前端管箱 (17)

参考文献 (20) 致谢 (22)

摘要 蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。蒸发在操作广泛应于化学、轻工、食品、制药等工业中。工业上被蒸发处理的溶液大多数为水溶液。本次设计的装置为蒸发水量为2000降膜蒸发器,浓缩物质为牛奶。降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。 关键词:蒸发;换热;高效;使用广泛

多效蒸发器设计计算

多效蒸发器设计计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

多效蒸发器设计计算 (一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发 器、刮膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。(二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 沿气流方向的管间距为 沿气流方向套片的长度为 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: 每米管长翅片间管子表面积: 每米管长总外表面积: 每米管长管内面积: 每米管长的外表面积: 肋化系数: 每米管长平均直径的表面积: (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 空气在下C ?17的物性参数 ②最窄截面处空气流速

③干表面传热系数 干表面传热系数用小型制冷装置设计指导式(4-8)计算 (4)确定空气在蒸发器内的变化过程 根据给定的进出口温度由湿空气的焓湿图可得kg g d kg g d kg kJ h kg kJ h 443.7,723.8,924.31,364.432121====。在空气的焓湿图上连接空气的进出口状态点1和点2,并延长与饱和气线()0.1=?相交于点w ,该点的参数是C t kg g d kg kJ h w w w ?===8,6.6,25。 在蒸发器中空气的平均比焓值 由焓湿图查得kg g d C t m m 8,2.16=?= 析湿系数 (5)循环空气量的计算 进口状态下干空气的比体积 循环空气的体积流量 (6)空气侧当量表面传热系数的计算 对于正三角形排列的平直套片管束,翅片效率f η小型制冷装置设计指导式(4-13)计算,叉排时翅片可视为六角形,且此时翅片的长对边距离和短对边距离之比4.24 .1025d B ,1b m ===ρ且B A 肋折合高度为 凝露工况下翅片效率为 当量表面传热系数 (7)管内R22蒸发时的表面传热系数 R22在C t ?=70时的物性参数为: 饱和液体密度 33.1257m kg l =ρ 饱和蒸气密度 343.26m kg g =ρ 液体粘度 s Pa l ??=-6102.202μ

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环 蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5), 直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) )110x x F W -=(n W W i =i i W W W F Fx x ---=210

对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; — 由于蒸发器中溶液的静压强而引起的温度差损失,℃; — 由于管路流体阻力产生压强降而引起的温度差损失,℃。 n p p p k '-=?1p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'?''?'''

蒸发器原理结构简介

蒸发器主要由加热室及分离室组成。按加热室的结构和操作时溶液的流动情况,可将工业中常用的间接加热蒸发器分为循环型(非膜式)和单程型(膜式)两大类。 一、循环型(非膜式)蒸发器 这类蒸发器的特点是溶液在蒸发器内作连续的循环运动,以提高传热效果、缓和溶液结垢情况。由于引起循环运动的原因不同,可分为自然循环和强制循环两种类型。前者是由于溶液在加热室不同位置上的受热程度不同,产生了密度差而引起的循环运动;后者是依靠外加动力迫使溶液沿一个方向作循环流动。 (一)中央循环管式(或标准式)蒸发器 中央循环管式蒸发器,加热室由垂直管束组成,管束中央有一根直径较粗的管子。细管内单位体积溶液受热面大于粗管的,即前者受热好,溶液汽化得多,因此细管内汽液混合物的密度比粗管内的小,这种密度差促使溶液作沿粗管下降而沿细管上升的连续规则的自然循环运动。粗管称为降液管或中央循环管,细管称为沸腾管或加热管。为了促使溶液有良好的循环,中央循环管截面积一般为加热管总截面积的40%一100%。管束高度为1—2m;加热管直径在25~75mm之间、长径之比为20~40。 中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来的,相对于这些老式蒸发器而言,中央循环管蒸发器具有溶液循环好、传热效率高等优点;同时由于结构紧凑、制造方便、操作可靠,故应用十分广泛,有“标准蒸发器”之称。但实际上由于结构的限制,循环速度一般在~/s以下;且由于溶液的不断循环,使加·热管内的溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点;此外,这种蒸发器的加热室不易清洗。 中央循环管式蒸发器适用于处理结垢不严重、腐蚀性较小的溶液。 (二)悬筐式蒸发器

升降膜蒸发器的设计和应用

升降膜蒸发器的设计和应用 李 壮① 杨得霞 (化工部沈阳化工研究院,沈阳110021) 摘 要 设计了一种升降膜蒸发器串联使用的工业化流程,主要用于蒸发因数较高或需要将溶剂完全脱净的场合,文中给出了该流程的技术要点和设计方法。关键词 膜式蒸发器;脱溶;设计 1 前 言 在农药、医药及其它的中间体合成中,许多化学反应都是在有机溶剂中进行的,反应完成后再把溶剂脱出。最简单的釜式脱溶,传热面小、设备庞大、脱溶时间长,特别是对热敏性物料很不适宜。膜式脱溶已经得到了广泛的应用,但普通的膜式脱溶蒸发因数不能过大,否则在蒸发管的末端将出现干壁现象,局部过热能引起物料分解。习惯的做法是进行两次脱溶,但这将引起投资费用和操作费用的成倍增长。 2 工艺流程说明 作者在多年实践的基础上设计出图1的 流程并成功地应用于工业化生产中。此流程的特点是将完全分开的升膜脱溶系统和降膜脱溶系统合并为一套系统,采用两台蒸发器而仅用一套附属设备。 溶液A 经流量计(FI101)计量后进入升膜蒸发器(E101)进行蒸发脱溶,再经汽液分离器(V101),汽体经冷凝器(E103)冷凝后,冷凝液(溶剂B )流入溶剂贮槽(V104);分离后的液体进入降膜脱溶器(E102)进行降膜脱溶,再经第二分离器(V102)进行汽液分离,液 体成品流入成品贮槽(V103),汽体与冷凝器(E103)的尾气合并后一同进入后凝器(E104),溶剂B 全部冷凝并流入溶剂贮槽, 气相接真空系统。 3 工艺技术要点 在此流程中,物料经升膜蒸发及气液分离后分两个途径,最后在后凝器处合并在一起。途径1经过PG 03管道、E103设备、PG 04管道,其压降为△P 1;途径2经过P L05管道、E102设备、P LG 06管道、V102设备、PG 07管 道,其压降为△P 2,设备V101至设备E102的位差为△H 。两条途径的压力降有以下的等式关系: ρ△h =△P 2-△P 1 式中:ρ表示液体的密度;△h —表示由V101至E102入口的液位高度,为了保证装置的正常操作,△h 的范围为0<△h <△H ,若△h ≥△H ,也就是说△P 2值过大,则V101中的液体将随气体一起进入E103;若△P 2≤△P 1,则将有部分气体随液体一起进入E102。△h 值随着两个途径压降差的改变而 改变。 ① 收稿日期:1997-06-18 ①男 ,38岁,高级工程师。 第27卷第4期1998年12月 沈阳化工Shenyang Chemical Industry Vol.27 No.4 Dec.,1998

多效蒸发器设计计算

多效蒸发器设计计算 Prepared on 22 November 2020

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮 膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所 求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

降膜蒸发器的设计

齐齐哈尔大学 蒸发水量为2000的真空 降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日 目录 摘要............................................. 错误!未指定书签。Absract............................................ 错误!未指定书签。 第1章蒸发器的概述................................ 错误!未指定书签。 1.1蒸发器的简介................................. 错误!未指定书签。 1.2蒸发器的分类................................. 错误!未指定书签。 1.3蒸发器的类型及特点、......................... 错误!未指定书签。 1.4蒸发器的维护................................. 错误!未指定书签。 第2章蒸发器的确定................................. 错误!未指定书签。 2.1 设计题目.................................... 错误!未指定书签。 2.2 设计条件:.................................. 错误!未指定书签。 2.3 设计要求:.................................. 错误!未指定书签。 2.4 设计方案的确定.............................. 错误!未指定书签。 第3章换热面积计算................................ 错误!未指定书签。 3.1.进料量...................................... 错误!未指定书签。

多效蒸发器设计计算

多效蒸发器设计计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

多效蒸发器设计计算(一)蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮 膜蒸发器)、流程和效数。 (2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。 (4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5)根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所 求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二)蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量(1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W1 + W2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即

(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'

单效降膜式蒸发器的设计

食品工程原理 课程设计说明书单效降膜式蒸发器的设计 姓名: 学号: 班级: 指导老师: 年月日

目录 1.前言 概述 蒸发器选型 2.单效蒸发工艺计算 物料衡算 热量衡算 传热面积计算 计算结果列表 3.蒸发器主体工艺设计 加热管的选择和管数的初步估计 3.1.1 加热管的选择和管数的初步估计 3.1.2 循环管的选择 3.1.3 加热室直径的确定 3.1.4 分离室直径与高度的确定 接管尺寸的确定 进料方式及加热管排布方式的确定 3.3.1进料方式的确定 3.3.2加热管排布方式的确定 仪表、视镜与人孔的确定 蒸发器主要部件规格列表 4.蒸发装置的辅助设备 气液分离器 蒸汽冷凝器 5.结语 致谢 附表 参考文献

任务书

一、设计意义 二、蒸发工艺设计计算 (1)蒸浓液浓度计算 多效蒸发的工艺计算的主要依据是物料衡算和、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量、各效溶剂蒸发量以及各效的传热面积。计算的已知参数有:料液的流量、温度和浓度,最终完成液的浓度,加热蒸气的压强和冷凝器中的压强等。 蒸发器的设计计算步骤多效蒸发的计算一般采用试算法。 ①根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸气压强及冷凝器的压强),蒸发器的形式、流程和效数。 ②根据生产经验数据,初步估计各效蒸发量和各效完成液的浓度。 ③根据经验假设蒸气通过各效的压强降相等,估算个效溶液沸点和有效总温差。 ④根据蒸发器的焓衡算,求各效的蒸发量和传热量。 ⑤根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤③至⑤,直到所求得各效传热面积相等(或满足预先给出的精度要求)为止。 43028*10*10*0.542735/300*24*0.13 X 13% W F*142735*131624/X 50% F kg h kg h ===-=-=蒸发水量:()()(2)溶液沸点和有效温度差的确定 由二次蒸汽压强从手册中查得相应的二次蒸汽温度和汽化潜热列与下表中: 蒸汽 压力(KPa ) 温度(℃) 汽化热(kJ/kg) 加热蒸汽 500 二次蒸汽 20 60 2355

降膜蒸发器的设计

齐齐哈尔大学 ?的真蒸发水量为2000kg? 空降膜蒸发器 ?的真空降膜蒸发器 题目蒸发水量为2000kg? 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日

目录 摘要............................................................ I II Absract............................................................ I V 第1章蒸发器的概述. (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (1) 1.3蒸发器的类型与特点、 (2) 1.4蒸发器的维护 (5) 第2章蒸发器的确定 (6) 2.1 设计题目 (6) 2.2 设计条件: (6) 2.3 设计要求: (6) 2.4 设计方案的确定 (6) 第3章换热面积计算 (7) 3.1.进料量 (8) 3.2.加热面积初算 (8) 3.2.1估算各效浓度: (8) 3.2.2沸点的初算 (8) 3.2.3计算两效蒸发水量W1,W2与加热蒸汽的消耗量D1 (9) 3.3.重算两效传热面积 (11) 3.3.1.第一次重算 (11) 第4章蒸发器主要工艺尺寸的计算 (12) 4.1加热室 (13) 4.2分离室 (13) 4.3其他工件尺寸 (14) 第5章强度校核 (15) 5.1 筒体 (15) 5.2前端管箱 (16) 参考文献 (19)

致谢 (21)

蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。蒸发在操作广泛应于化学、轻工、食品、制药等工业中。工业上 ?降被蒸发处理的溶液大多数为水溶液。本次设计的装置为蒸发水量为2000kg?膜蒸发器,浓缩物质为牛奶。降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。 关键词:蒸发;换热;高效;使用广泛

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

降膜,升膜蒸发器的区别

降膜和升膜不同,膜传热系数不取决于管内汽速,因此适于用在蒸发量较小的场合。例如有些二级蒸发的设备,常在第一级蒸发时采用升膜,而在第二级蒸发时采用降膜。由于降膜流动是依靠重力而成膜的,为了使每一根管内的液体都能均匀分布,因此在降膜蒸发器上部应有降膜分配器,通称降膜头。降膜头的安装必须呈水平,以免出现液体流动不均的现象。机理

解释一:是指为实现某一特定功能,一定的系统结构中各要素的内在工作方式以及诸要 素在一定环境条件下相互联系、相互作用的运行规则和原理。 解释二:机理是指事物变化的理由与道理。在化学动力学中,所谓“机理”是指从原子的结合关系中来描绘化学过程。在化学气相沉积中,机理的含义更加广泛。如果其过程是动力学控制的,机理是指原子水平的表面过程。 我们这里有一个塔下面就是一个降膜蒸发器 它由加热室和分离罐组成 物料从加热室顶部进入,沿加热管内壁呈膜状下降 在下降的过程中被不断的蒸发增浓 汽液混合物从加热室底部流出进入分离罐 蒸汽从分离罐顶部排出 完成液从分离罐底部排出 升膜蒸发器:是一种将加热室与蒸发室(分离室)分离的蒸发器。加热室实际上就是一个加热管很长的立式固定管板换热器,料 液由底部进入加热管,受热沸腾后迅速汽化;蒸汽在管内迅速上升,料液受到高速上升蒸汽的带动,沿管壁形成膜状上升,并继 续蒸发。汽液在顶部分离,二次蒸汽从顶部溢出,完成液则由底部排出。加热管一般采用25~5mm的无缝管,管长与管径比在常 压下约为100~150,在减压下约为130~180。这种蒸发器适用于蒸发量较大,有热敏性和易产生泡沫的溶液,不适于粘度很大, 容易结晶或结垢的物料。 降膜蒸发器:与升膜蒸发器结构基本相同,主要区别在于原料液是从加热室的顶部加入,在重力的作用下沿管内壁形成膜状下降,并进行蒸发,浓缩液从加热室的底部进入到分离器内并从底部排出,二次蒸汽由顶部溢出。由于二次蒸汽的流向与料液的流向一致,所以能促进料液的向下运动并形成薄膜。在每根加热管的顶部必须装有降膜分布器,以保证每根管子的内壁都能为料液所湿润,并不断有液体缓慢流过,否则,一部分管壁形成干壁现象,不能达到最大的生产能力,甚至不能保证产品质量。降膜蒸发器 适用于热敏性物料,不适于易结晶,结垢或粘度很大的物料。 对于膜蒸发器和升膜蒸发器的工作原理、区别及各自的优缺点,请参照下面的详细介绍。 如果液体黏度比较大,建议还是使用旋转刮板式蒸发器好,此种蒸发器适用于高粘度、易结晶、结垢的浓溶液,我以前的厂用的 就是它,效果不错,如果在它上面加装抽真空装置,效果会更好。 我原来用过三效降膜蒸发器和四效降膜蒸发器,主要用于浓缩葡萄糖浆和玉米浆,记得粘度范围要求好像是<400CP,具体我们使 用的是多少不记得了。 升膜和降膜的区别还在于:升膜的动力消耗较大!但蒸发效果要好!对于国外一般选择升膜蒸发器,原因是他们的主要是风力、水、发电,不像国内是火力发电,所以电的成本低!国内建议选择降膜蒸发器!淀粉的玉米浆、酒精的浓缩液、牛奶的蒸发,都 可以用降膜蒸发器!至于粘度,没有作统计! 补充一点:升膜和降膜的流速控制不同。升膜的流速要大好多。 升膜的气速常压下要20~30m/s,减压下80~200m/s,加热管长径比100/300。一般一个流程即达到要求。 降膜一般用于粘度不太大的溶液,一次达不到要求可以循环蒸发。 粘度较大或者有结晶的一般使用强制循环蒸发,粘度很大的可以考虑刮膜蒸发 如果是聚合物脱单还是要谨慎一些,低于聚合物熔融态粘度的都没问题。 升膜蒸发器和降膜蒸发器都属于单程蒸发器。这类蒸发器主要特点是:溶液在蒸发器中只通过加热室一次,不做循环流动即从浓 溶液排出。升膜蒸发器,其加热室由许多垂直长管组成,料液经预热后由蒸发器底部引入,进入加热管内受热沸腾后迅速汽化, 生成的蒸汽在加热管内高速上升。溶液则被上升的蒸汽所带动,沿管壁成膜状上升,并在此过程中连续蒸发,汽液混合物在分离 器内分离,完成液由分离器底部排出,二次蒸汽则在顶部导出。 降膜蒸发器,料液是从蒸发器顶部加入,在重力作用下沿管壁成膜状下降,并在此过程中不断被蒸发而蒸浓,在其底部得到完成液。 升膜蒸发器适用于蒸发量较大(即稀溶液)、

四效降膜蒸发器设计参数及操作规程

v1.0 可编辑可修改1. 规格、参数、性能 蒸发器规格、型号 1.1.1 蒸发器名称、型号:RHJM-6000四效降膜蒸发器 1.1.2 蒸发水量规格:6000kg/h 蒸发器工艺参数 1.2.1 总物料流量:10000 kg/hr 1.2.2 总蒸发速率:6000 kg/hr 1.2.3 物料流程:四效→一效→二效→三效→出料 1.2.4 蒸汽流程:一效→二效→三效→四效→冷凝器 1.2.5 各效传热面积:一效(140m2)二效(100m2)三效(140m2)四效(100m2) 蒸发器性能 1.3.1 物料:糖浆 1.3.2 物料进口:进四效 数量:10000kg/hr 温度:50-60℃ 浓度:30-32%(DS) 1.3.3 物料出口:从三效出料 数量:4000kg/hr 温度:65-70℃ 浓度:75-80%(DS) 蒸汽消耗量:1800kg/h () 冷却水从35℃至43℃ 150m3/h 电能(安装功率) 29kw 电流 380/220v, 50赫兹,3相 设备的布置四效蒸发器、冷凝器 温度一效二效三效四效 加热温度℃ 90 76 60

蒸汽温度℃91 77 61 43 2. 工艺说明 为了更好地理解请利用工艺流程图 为了得到正确的结果,你应该了解现场安装,每条工艺线。 如果出现故障或紧急情况,必须非常熟悉和组件的物理位置和管道的工程布置。 物料 将要浓缩的物料输送到进料罐,通过进料泵将物料经过流量计打到四效上端管板上的分布器以保证进入每一根加热管的液量相同。 液膜在管子顶部向下流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道运到分离器蒸汽与液体在此分离,留存在顶部的水蒸汽进入冷凝器冷凝。从第四效蒸发器出来的物料通过四效出料泵送到一效管板上的分布器,液膜在向管子底部流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道输送到分离器,蒸汽与液体在此分离,留存在顶部的水蒸汽进入二效加热室或者通过热泵再次进入一效加热室,从第一效蒸发器出来的物料通过一效物料转移泵输送到二效管板上的分布器。依次类推,物料经过三效蒸发器出料,合格物料通过出料螺杆泵输送到成品罐,不合格物料打回流至蒸发前罐。 蒸发前储罐—→Ⅳ效—→Ⅰ效—→Ⅱ效—→Ⅲ效—→出料 加热设备蒸汽流程 Ⅰ效—→Ⅱ效—→Ⅲ效—→Ⅳ效—→冷凝器 冷凝液流程 Ⅰ效加热室冷凝水—→Ⅱ效加热室冷凝水—→Ⅲ效加热室冷凝水—→Ⅳ效加热室冷凝水—→分水罐—→冷凝水泵 空气流程(蒸发器排气) ①空气可通过以下途径进入系统 法兰连接、仪表连接、阀门连接泄露等。

相关文档
最新文档