主成分分析法介绍.doc

主成分分析法介绍.doc
主成分分析法介绍.doc

主成分分析方法

我们进行系统分析评估或医学上因子分析等时,多变量问题是

经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂

性,而且在许多实际问题中,多个变量之间是具有一定的相关关

系的。因此,我们就会很自然地想到,能否在各个变量之间相关

关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的

信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析

方法就是综合处理这种问题的一种强有力的方法。

第一节主成分分析方法的原理

主成分分析是把原来多个变量化为少数几个综合指标的一种

统计分析方法,从数学角度来看,这是一种降维处理技术。假定

有 n 样本,每个样本共有 p 个变量描述,这样就构成了一个 n×p阶的数据矩阵:

x 11 x

12 ...

x

1 p

x 21 x

22 ...

x

2 p

X

... ... ... ????(1) ...

x

n1 x n 2 ... x np

如何从这么多变量的数据中抓住事物的内在规律性呢要解决

这一问题, 自然要在 p 维空间中加以考察, 这是比较麻烦的。为了克服这一困难, 就需要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的。那么,这些综合指标(即新变量 )应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量指标之间相互独立且代表性最好。

如果记原来的变量指标为

x 1

, x 2

, x

p ,它们的综合指标 —— 新

变量指标为 z 1 , z 2 , z m ( m ≤p)。则

z 1 l 11x 1 l 12 x 2 l 1 p x p

z 2

l 21

x

1

l 22

x

2

l 2 p

x

p

(2)

z m l m1x 1 l m2 x 2

l mp x p

在( 2)式中,系数 l ij 由下列原则来决定:

( 1)z i

与 z j ( i ≠j;i ,j=1,2, , m)相互无关;

( 2)z 1 是 x 1,x 2,?,x p 的一切线性组合中方差最大者;

z 2 是与 z 1 不相关的 x 1, x 2,?,x p 的所有线性组合中方差

最大者; ;z m 是与 z 1,z 2,??z m-1 都不相关的 x 1,

x 2, ?, x p 的所有线性组合中方差最大者。

且( 2)式要求:l i 12l i 22.... l ip2 1

这样决定的新变量指标z1,z2,?,z m分别称为原变量

指标 x1,x2,?,x p的第一,第二,,第m主成分。其中, z1在总方差中占的比例最大,z2,z3,?,z m的方差依

次递减。在实际问题的分析中,常挑选前几个最大的主成分,这

样既减少了变量的数目,又抓住了主要矛盾,简化了变量之间的

关系。

从以上分析可以看出,找主成分就是确定原来变量x j(j=1,2,,p)在诸主成分z i(i=1,2,,m)上的载荷l ij(i=1,2,,m;j=1,2,, p)。同时,(l i1, l i 2,...., l ip)不是别的,而恰好是

x1,x2,?,x p的相关矩阵的特征值所对应的特征向量。且

z1方差取到最大就是x1,x2,?,x p相关矩阵在第一个

特征值所对应特征向量处达到。z m方差取到最大就是x1,x2,?,x p相关矩阵在第m个特征值所对应特征向量处达

到。

第二节主成分分析的解法

主成分分析的计算步骤

通过上述主成分分析的基本原理的介绍,我们可以把主成分

分析计算步骤归纳如下:

(1)计算相关系数矩阵

r 11 r

12

r

1P

r 21 r

22

r

2P

R

(3)

...........................

r P1 r

P 2

r

PP

在公式( 3)中,r ij(i, j=1,2,,p)为原来变量x i与x j的相关系数,其计算公式为

n

(x ki x i )( x kj x j )

r ij

k 1 .(4) n n

(x ki x i ) 2 (x kj x j ) 2

k 1 k 1

因为 R 是实对称矩阵(即 r ij=r ji),所以只需计算其上三角元素

或下三角元素即可。

(2)计算特征值与特征向量

首先解特征方程|λI-R|=0求出特征值λi(i=1,2,,p),并使其按大小顺序排列,即λ1≥λ2≥ ,≥λp≥0;然后分别求出对应于特征值λi的特征向量 e i( i=1,2,, p)。

(3)计算主成分贡献率及累计贡献率

m

p k

主成分 z i贡献率: r i / k (i 1,2, , p),累计贡献率:k 1 p

k 1

k

k 1 一般取累计贡献率达85-95%的特征值1,2,m ,所对应的第一,第二,,第m(m≤p)个主成分。

(4)计算主成分得分矩阵

由此可以进一步计算主成分得分矩阵:

l 11 l

12

l

1m

l21 l 22 l2 m

Z=

... ... ... ... ( 5)

l n1 l

n 2

l

nm

z

1

l

11

x

1

l

12

x

2 z2l21x1l22 x2

进一步还可以根据式:

z m l m1x1l m2 x2

计算各主成分得分:Z j l j 1 X 1...

y j 1

z 2 z ...

和总得分:m 1 m 2

i i

i i

l

1 p

x

p

l2 p x p

l mp x p

l

jp

X

p(6)m

m z

m

i

i

(7)

主成分分析应用实例

实证研究 1

本文是对实施西部大开发以来的经济增长状况作实证研究 ,把西部地区 10 个省(自治区、直辖市)的经济增长状况作为研究对

象集 ,即 ={ 重庆,四川,贵州,云南,西藏,陕西,甘肃,青

海,宁夏,新疆 }

选取 17 个经济指标值:

即:地区生产总值、财政收入、固定资产投资、城市用水普及率、城市燃气普及率、每万人拥有交通公共车辆、人均城市道路面积、普通高等学校数、每千人医疗卫生机构床位数、居民收入与消费指标等 17 个经济指标。

进行主成分分析:

西部地区 2011 横向因子分析解释的总方差

初始特征值提取平方和载入旋转平方和载入

成份合计方差的%累积%合计方差的%累积%合计方差的%累积% 1

2

3

主成分载荷量表:

西部地区 2011 年横向主成分

f 1

f 2

f 3

.173

.045

.186

.110 .151 .002 .172

.041

.240 .028 .085 .199 .091

.294

.100

.093 .163 .016 .037

.258

.261 .232

.330

.066 .056

.050

.138

.152

.034

.086

.025

.006

主成分得分函数:

f 1 0.173v 2011,1 0.019v 2001,2 0.151v 2011,3 0.172v

0.012v 2011,5 0.028v 2011,6 0.091v 2011,7 0.041v

2011,8

0.163v 2011,9

2011,4

0.037v 2011,10 0.022v 2011,11 0.003v 2011,12 0.098v 2011,13 0.066v 2011,14 0.138v 2011,15 0.152v 2011,16 0.086v 2011,17

f 2 0.070v 2011,1 0.186v 2001,2

0.012v 2011,3 0.064v 0.042v 2011,5 0.085v 2011,6

0.136v 2011,7 0.1v 2011,8 0.071v 2011,9

2011,4

0.073v 2011,10 0.261v 2011,11 0.232v 2011,12 0.33v 2011,13 0.056v 2011,14 0.021v 2011,15 0.005v 2011,16 0.025v 2011,17 f 3 0.045v 2011,1 0.11v 2001,2 0.002v 2011,3 0.041v 0.24v 2011,5 0.199v 2011,6 0.294v 2011,7 0.093v 2011,8 0.016v

2011,9

2011,4

0.258v 2011,10 0.021v 2011,11 0.14v 2011,12 0.155v 2011,13 0.05v 2011,14 0.015v 2011,15 0.034v 2011,16 0.006v 2011,17

各地区主成分得分表:

因子得分 f

1 因子得分 f 2

因子得分 f 3

因子综合得分 y 2011,i

排名

重 庆 3

四 川 1 贵 州 5 云 南 4 西 藏 10 陕

西

2

甘 肃 7 青 海 9

宁 夏 8

新 疆

6

第一类主成分: 经济实力、 社会基础以及对外开程度是影响经济

增长的主要因素 (地区生产总值、财政收入、固定资产投资、普

通高校数、客运量和货运量等)

第二类主成分:居民消费水平、城镇居民人均可支配收入、人均

公园绿地面积、人均生产总值。

第三类主成分有:城市用水普及率、城市燃气普及率、每万人拥

有交通公共车辆数、每千人医疗卫生机构床位数等。

例:

投资项目的风险评估模型

现在针对具体的综合投资项目,假设请N 名专家对可能次年在的 M 项风险指标进行打分评估,采用10 分制,分支越低,风

险越小。具体打分数据统计表形式如表5-13 所示:

某项目投资分先评估打分表

政策风险技术风险市场风险管理风险环境风险风险指标

专家序号

1 6 8 4 4 3

2 5 7

3 5 2

3 4 9 2 7 1

4 4 6 4 8 3

5 7 5 3 5 2

6 3 6 4 8 3

7 5 4 5 6 3

8 7 6 4 2 3

9 4 7 4 6 1

10 6 7 5 5 4

>>Matlab 命令窗口中输入语句: p=[6 8 4 4 3;4 9 2 7 1; ];

>>princomp(p)

风险指标

特征值

方差贡献率( %) 累计贡献率( %)

1

2

3

4

5

100

F=-0.5766x 1 +0.0094x 2 -0.1698x +0.6237x 4 +0.4997x

1

3 5

F 2 =0.1213x 1+ 0.8054x 2 +0.5409x 3 +0.0987x 4 +0.18545 pc

F 3 =-0.0984x 1-0.4107x 2 0.5037x 3 -0.4386x 4 +0.6128x 5

0.7880 -0.2358 -0.0214 0.4686 .03215

-0.1490 -0.3563 0.6515 0.4351 -0.4869

5.0592 2.6122

=

0.9544 0.3573

0.1168

从上表可知,前 3 个主成分的累计贡献率达到

%,因此取前

三个主成分:

F1 =-0.5766x1 +0.0094x 2 -0.1698x3 +0.6237x 4 +0.4997x 5

F2 =0.1213x1 + 0.8054x 2 +0.5409x3 +0.0987x 4 +0.18545

F3 =-0.0984x1 -0.4107x2 0.5037x3 -0.4386x 4 +0.6128x5 所以最终风险综合评估函数:

F 55.60F128.71F210.49F3

主成分分析实例 2

对于某区域地貌 -水文系统,其57 个流域盆地的九项地理要素:x1为流域盆地总高度( m)x2为流域盆地山口的海拔高度(m),x3为流域盆地周长(m),x4为河道总长度( km),x5为河等

表 2-14某57个流域盆地地理要素数据

道总数, x6为平均分叉率, x7为河谷最大坡度(度 ),x8为河源数及 x9为流域盆地面积( km2)的原始数据如表 2-14 所示。张

超先生( 1984)曾用这些地理要素的原始数据对该区域地貌-水文系统作了主成分分析。下面,我们将其作为主成分分析方法在地理学研究中的一个应用实例介绍给读者,以供参考。

表 2-15 相关系数矩阵

(1)首先将表 2-14 中的原始数据作标准化处理,由公式( 4) 计算得相关系数矩阵(见表 2-15)。

(2)由相关系数矩阵计算特征值,以及各个主成分的贡献率

与累计贡献率(见表2-16)。由表 2-16 可知,第一,第二,第三主成分的累计贡献率已高达%,故只需求出第一,第二,第三主

成分 z1, z2,z3即可。

表 2-16特征值及主成分贡献率

(3)对于特征值λ,e ,

1=,λ2=,λ3=分别求出其特征向量e1 2 e3,并计算各变量x1,x2,,x9在各主成分上的载荷得到主成

分载荷矩阵(见表2-17)。

表 2-17主成分载荷矩阵

从表 2-17 可以看出,第一主成分z1与 x1,x3,x4,x5,x8,x9 有较大的正相关,这是由于这六个地理要素与流域盆地的规模有关,因此第一主成分可以被认为是流域盆地规模的代表:第二主成分 z2与 x2有较大的正相关,与 x7有较大的负相关,而这两个

地理要素是与流域切割程度有关的,

是流域侵蚀状况的代表;第三主成分

因此第二主成分可以被认为

z3与 x6有较大的正相关,而地理要素x6是流域比较独立的特性——河系形态的表征,因此,第三主成分可以被认为是代表河系形态的主成分。

以上分析结果表明,根据主成分载荷,该区域地貌-水文系统的九项地理要素可以被归为三类,即流域盆地的规模,流域侵蚀状况和流域河系形态。如果选取其中相关系数绝对值最大者作为

代表,则流域面积,流域盆地出口的海拔高度和分叉率可作为这

三类地理要素的代表,利用这三个要素代替原来九个要素进行区

域地貌 -水文系统分析,可以使问题大大地简化。

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

主成分分析法运用

统计学简介及在实践中的应用 --以主成分分析法分析影响房价因素为例 姓名:阳飞 学号:2111601015 学院:经济管理学院 指导教师:吴东武 时间:二〇一七年一月六日

1 简介 统计语源最早出现于中世界拉丁语的Status,意思指各种现象的状态和状况。后来由这一语根组成意大利语Stato,有表示“国家”的概念,也含有国家结构和 国情知识的意思。根据这一语根,最早作为学名使用的“统计”的是在十八世纪德国政治学教授亨瓦尔(G.Achenwall)。他在1749年所著《近代欧洲各国国家学纲要》一书的绪言中,就把国家学名定义为“Statistika”(统计)这个词。原意是 指“国家显著事项的比较和记述”或“国势学”,认为统计是关于国家应注意事项的学问。自此以后,各国就相继沿用“统计”这个词,更把这个词译成各国的文字,其中,法国译为Statistique;意大利译为Statistica;英国译为Statistics;日本最初译为“政表”、“政算”、“国势”、“形势”等,直到1880年在太政官中设立了统计院,这个时候才确定以“统计”二字正名。 在我国近代史上首次出现是在1903年(清光绪廿九年)由钮永建、林卓南等翻译了四本由横山雅南所著的《统计讲义录》一书,这个时候才把“统计”这个词从日本传到我国。1907年(清光绪卅三年),由彭祖植编写的《统计学》在日本出版,同时在国内发行。这本书是我国最早的一本“统计学”书籍。自此以后“统计”一词就成了记述国家和社会状况的数量关系的总称。 关于“统计”这个词,后来又引申到了各种各样的组合,包括:统计工作、统计资料、统计科学。 统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称,它是统计的基础,也称统计实践或统计活动。是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。

主成分分析法总结

主成分分析法总结 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。 因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息? 一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 主成分分析的具体步骤如下: (1)计算协方差矩阵 计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中 1 1()() 1n ij ki i kj j k s x x x x n ==---∑i ,j=1,2,…,p (2)求出Σ的特征值 i λ及相应的正交化单位特征向量i a Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单 位特征向量 i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

主成分分析法精华讲义及实例

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())], T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j V ar Y V ar l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l =

及 (,)0,1,2,..., 1.T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,) T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特 征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,, p e e e 则 X 的第 i 个主成分为 1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3) 此时 (),1,2,...,,(,)0,. T i i i i T i k i k V ar Y e e i p C ov Y Y e e i k λ?=∑==??=∑=≠?? 1.3 总体主成分的性质 1.3.1 主成分的协方差矩阵及总方差 记 12(,,...,) T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且 12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ= 由此得主成分的总方差为 1 1 1 ()()()()(),p p p T T i i i i i i V ar Y tr P P tr P P tr V ar X λ ==== =∑=∑=∑= ∑∑∑ 即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差

主成分分析-实例

§8 实例 实例1 计算得 1x =71.25,2x =67.5 分析1:基于协差阵∑ 求主成分。 369.6117.9117.9214.3S ?? = ??? 特征根与特征向量(S无偏,用SPSS ) Factor 1 Factor 2 11x x - 0.880 -0.474 22x x - 0.474 0.880 特征值 433.12 150.81 贡献率 0.7417 0.2583 注:样本协差阵为无偏估计11(11)1n n n S X I X n n ''= --, 所以,第一、二主成分的表达式为 112212 0.88(71.25)0.47(67.5) 0.47(71.25)0.88(67.5)y x x y x x =-+-?? =--+-? 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。1y 越大,综合成绩越好。(综合成分) 第二主成分的两个系数异号(反映了两科成绩的均衡性)。不妨将英语称为文科,数学称为理科。2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。(结构成分)

问题:英语的权数为何大?如何解释? 分析2: 基于相关阵R 求主成分。因为 1x =71.25,2x =67.5 所以相关阵 11R ? =? ? ? 解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为: Factor 1 Factor 2 11 1x x s - 0.707 0.707 22 2 x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率 0.709 0.291 所以,第一、二主成分的表达式为 12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --? =+=+?? ? --?=-=-?? 1122120.039(71.25)0.052(67.5) 0.039(71.25)0.052(67.5)y x x y x x =-+-?? =---? 112212 0.0390.052 6.273 0.0390.0520.671y x x y x x =+-?? =-+? * 2*11707.0707.0x x y += *2*12707.0707.0x x y -= 基于相关阵的更说明了: 第一主成分是英语与数学的加权总分。 第二主成分是对两科成绩均衡性的度量。 此例说明:基于协差阵与基于相关阵的主成分分析的结果不一致。结合此例的实际背景,经对比分析可知,基于协差阵的主成分分析更符合实际。

主成分分析法实例

1、主成分法: 用主成分法寻找公共因子的方法如下: 假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系: 11111221221122221122....................p p p p p p p pp p Y X X X Y X X X Y X X X γγγγγγγγγ=+++?? =+++??? ?=+++? 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到 X 得转换关系为: 11112121212122221122....................p p p p p p p pp p X Y Y Y X Y Y Y X Y Y Y γγγγγγγγγ=+++?? =+++??? ?=+++? 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为: 111121211 2121222221122................. ...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++??=++++????=++++? 上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根 i λ/i i i F Y λ=, 1122m m λγλγλγ,则式子变为:

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析案例

姓名:XXX 学号:XXXXXXX 专业:XXXX 用SPSS19软件对下列数据进行主成分分析: ……

一、相关性 通过对数据进行双变量相关分析,得到相关系数矩阵,见表1。 表1 淡化浓海水自然蒸发影响因素的相关性 由表1可知: 辐照、风速、湿度、水温、气温、浓度六个因素都与蒸发速率在0.01水平上显著相关。 分析:各变量之间存在着明显的相关关系,若直接将其纳入分析可能会得到因多元共线性影响的错误结论,因此需要通过主成份分析将数据所携带的信息进行浓缩处理。 二、KMO和球形Bartlett检验 KMO和球形Bartlett检验是对主成分分析的适用性进行检验。 KMO检验可以检查各变量之间的偏相关性,取值范围是0~1。KMO的结果越接近1,表示变量之间的偏相关性越好,那么进行主成分分析的效果就会越好。实际分析时,KMO统计量大于0.7时,效果就比较理想;若当KMO统计量小于0.5时,就不适于选用主成分分析法。 Bartlett球形检验是用来判断相关矩阵是否为单位矩阵,在主成分分析中,若拒绝各变量独立的原假设,则说明可以做主成分分析,若不拒绝原假设,则说明这些变量可能独立提供一些信息,不适合做主成分分析。

由表2可知: 1、KMO=0.631<0.7,表明变量之间没有特别完美的信息的重叠度,主成分分析得到的模型又可能不是非常完善,但仍然值得实验。 2、显著性小于0.05,则应拒绝假设,即变量间具有较强的相关性。 三、公因子方差 公因子方差表示变量共同度。表示各变量中所携带的原始信息能被提取出的主成分所体现的程度。 由表3可知: 几乎所有变量共同度都达到了75%,可认为这几个提取出的主成分对各个变量的阐释能力比较强。 四、解释的总方差 解释的总方差给出了各因素的方差贡献率和累计贡献率。

主成分分析法的步骤和原理

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。设随机向量X的均值为μ,协方差矩阵为Σ。对X进行线性变化,考虑原始变量的线性组合: Z=μX+μX+…μX Z=μX+μX+…μX ……………… Z=μX+μX+…μX 主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X,X…X的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij(i,j=1,2,…,p)为原始变量X i与X j的相关系数。R为实对称矩阵

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

主成分分析法概念及例题

主成分分析法 [ 编辑 ] 什么是主成分分析法 主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。 在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。它是一个线性变换。 这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。 主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。 这是通过保留 低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是, 这也不是一定的,要视具体应用而定。 [ 编辑 ] , PCA ) 又称: 主分量分析,主成分回归分析法 主成分分析( principal components analysis

主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [ 编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [ 编辑] 主成分分析的主要作用

R语言主成分分析的案例

R 语言主成分分析的案例
R 语言也介绍到案例篇了,也有不少同学反馈说还是不是特别明白一些基础的东西,希望能 够有一些比较浅显的可以操作的入门。其实这些之前 SPSS 实战案例都不少,老实说一旦用 上了开源工具就好像上瘾了,对于以前的 SAS、clementine 之类的可视化工具没有一点 感觉了。本质上还是觉得要装这个、装那个的比较麻烦,现在用 R 或者 python 直接简单 安装下,导入自己需要用到的包,活学活用一些命令函数就可以了。以后平台上集成 R、 python 的开发是趋势,包括现在 BAT 公司内部已经实现了。 今天就贴个盐泉水化学分析资料的主成分分析和因子分析通过 R 语言数据挖掘的小李 子: 有条件的同学最好自己安装下 R,操作一遍。 今有 20 个盐泉,盐泉的水化学特征系数值见下表.试对盐泉的水化学分析资料作主成分分 析和因子分析.(数据可以自己模拟一份)
其中 x1:矿化度(g/L);

x2:Br?103/Cl; x3:K?103/Σ 盐; x4:K?103/Cl; x5:Na/K; x6:Mg?102/Cl; x7:εNa/εCl.
1.数据准备
导入数据保存在对象 saltwell 中 >saltwell<-read.table("c:/saltwell.txt",header=T) >saltwell
2.数据分析

1 标准误、方差贡献率和累积贡献率
>arrests.pr<- prcomp(saltwell, scale = TRUE) >summary(arrests.pr,loadings=TRUE)
2 每个变量的标准误和变换矩阵
>prcomp(saltwell, scale = TRUE)
3 查看对象 arests.pr 中的内容
>> str(arrests.pr)

主成分法及其应用

【作者简介】 苏键(1985-),男,广西钦州人,助理工程师,研究方向:食品科学。1主成分分析法 何谓主成分分析,就是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析[1]。主成分分析的中心思想是缩减一个包括很多相互联系着的变量的数量集,在数量集中保留尽可能多的有用的变量。 主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析是设法将原来众多具有一定相关性(比如P 个指标 ),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P 个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var (F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的, 故称F1为第一主成分。如果第一主成分不足以代表原来P 个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov (F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P 个主成分[2]。 主成分分析首先是由K.皮尔森对非随机变量引入的,而后H.霍特林将此方法推广到随机向量的情形[2]。信息的大小通常用离差平方和或方差来衡量。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。 2主成分分析法在食品领域的应用 2.1主成分分析在食品风味方面的应用 目前,主成分分析应用还是比较广泛的,但是就食品风味方面,关于该分析方法的文献鲜见报道。戴素贤等[3]人对七种高香型乌龙茶中的香气成分进行了主成分分析,他们尝试用主成分分析法来研究茶业香型的变化,并进而找到影响这些香型变化的主要化合物,同时还发现了不同的茶别中香气化合物变化的趋势并进行了模拟量化,直观地表现了各种香气化合物对香气的贡献程度。李华等[4]运用多元统计分析确定葡萄酒感官特性,多元统计分析中的主成分分析等数学工具能够把大量的描述葡萄酒感官特性的描述语精简成较少的综合性更强的描述语,这些精简后的描述语不但能够反映精简前描述语的信息,还可以筛选出科学合理的描述符,描述符是描述分析的语言和工具,根据描述符可以分类不同的葡萄酒。邵威平等[5]应用主成分分析法完成了不同品牌啤酒风味差异性的评价,同一品牌啤酒风味一致性的评价,同一品牌不同生产厂之间一致性的评价以及同一生产厂啤酒一致性的评价这些工作。 啤酒是个多指标的风味食品,主成分分析法可以帮助我们更好地研究啤酒理化指标和啤酒风格之间的相关性,从而达到更好地理解啤酒风味的目的。岳田利等[6]人则通过利用主成分分析的方法建立了苹果酒香气质量的评价模型,并以此来对苹果酒样品香气组分进行客观的统计分析。S.Kallithraka 等[7]采用高效液相色谱法和气相色谱法研究了希腊国内不同产地葡萄酒的化合物成分和感官特性,并运用了PCA 法(主成分分析法)对所得参数进行多元分析,最终达到给葡萄酒评价和分类的目的。2.2主成分分析在食品品质方面的应用 食品品质的评价往往是非常复杂的过程。因为影响食品品质的因素大量存在,非人为因素如食品环境中的微生物,温度及pH 等的变化带来的影响。另一方面,由于人为的因素掺假也会造成食品品质的低劣,进而损害广大销售者和消费者的利益。如黎海红等[8]人运用主成分分析法对掺伪芝麻油的检测方法进行研究分析。根据主成分分析的实验原理,可以选择芝麻油的折光率、酸价、色泽、水分及挥发物、皂化值和碘价等理化指标作为变量,将这些变量的所测数据做矩阵处理最后分析就 轻工科技 LIGHT INDUSTRY SCIENCE AND TECHNOLOGY 2012年9月第9期(总第166期) 食品与生物 主成分分析法及其应用 苏键,陈军,何洁 (广西轻工业科学技术研究院,广西南宁530031) 【摘要】 介绍了主成分分析法的定义、原理,概述了该法在食品及一些仪器分析领域的应用,目的是为其他还未应用该分 析方法的学术领域提供一种参考和借鉴,使得主成分分析法能够在越来越多的学术领域中得以推广和应用。 【关键词】主成分分析;应用;概述【中图分类号】TS262【文献标识码】A 【文章编号】2095-3518 (2012)09-12-02

主成分分析法的步骤和原理

主成分分析法的步骤和原理 (总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X 1,X 2 …X p 来表示,这p个变量构 成的p维随机向量为X=(X 1,X 2 …X p )t。设随机向量X的均值为μ,协方差矩阵 为Σ。假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为: Σ=E{(X-E[X])(X-E[X])}=(如图 对X进行线性变化,考虑原始变量的线性组合: Z1=μ11X1+μ12X2+…μ1p X p Z2=μ21X1+μ22X2+…μ2p X p ……………… Z p=μp1X1+μp2X2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2 ……Z p ,并且Z 1 是X1,X2…X p的线性组合 中方差最大者,Z 2是与Z 1 不相关的线性组合中方差最大者,…,Z p是与Z 1 , Z 2……Z p-1 都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始 数据可得矩阵X=(x ij ) m×p ,其中x ij 表示第i家上市公司的第j项财务指标数 据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分 析。其中,R ij (i,j=1,2,…,p)为原始变量X i 与X j 的相关系数。R为实对 称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式 为:

主成分分析法介绍.doc

主成分分析方法 我们进行系统分析评估或医学上因子分析等时,多变量问题是 经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂 性,而且在许多实际问题中,多个变量之间是具有一定的相关关 系的。因此,我们就会很自然地想到,能否在各个变量之间相关 关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的 信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析 方法就是综合处理这种问题的一种强有力的方法。 第一节主成分分析方法的原理 主成分分析是把原来多个变量化为少数几个综合指标的一种 统计分析方法,从数学角度来看,这是一种降维处理技术。假定 有 n 样本,每个样本共有 p 个变量描述,这样就构成了一个 n×p阶的数据矩阵: x 11 x 12 ... x 1 p x 21 x 22 ... x 2 p X ... ... ... ????(1) ... x n1 x n 2 ... x np

如何从这么多变量的数据中抓住事物的内在规律性呢要解决 这一问题, 自然要在 p 维空间中加以考察, 这是比较麻烦的。为了克服这一困难, 就需要进行降维处理, 即用较少的几个综合指标来代替原来较多的变量指标, 而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息, 同时它们之间又是彼此独立的。那么,这些综合指标(即新变量 )应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合, 适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为 x 1 , x 2 , x p ,它们的综合指标 —— 新 变量指标为 z 1 , z 2 , z m ( m ≤p)。则 z 1 l 11x 1 l 12 x 2 l 1 p x p z 2 l 21 x 1 l 22 x 2 l 2 p x p (2) z m l m1x 1 l m2 x 2 l mp x p 在( 2)式中,系数 l ij 由下列原则来决定: ( 1)z i 与 z j ( i ≠j;i ,j=1,2, , m)相互无关; ( 2)z 1 是 x 1,x 2,?,x p 的一切线性组合中方差最大者; z 2 是与 z 1 不相关的 x 1, x 2,?,x p 的所有线性组合中方差 最大者; ;z m 是与 z 1,z 2,??z m-1 都不相关的 x 1, x 2, ?, x p 的所有线性组合中方差最大者。

主成分分析计算方法和步骤

在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入

师生比重点高校数教工人数 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入(元) 表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。表5-7还显示,只有前2个特征根大于1,因此SPSS只提取了前两个主成分,而这两个主成分的方差贡献率达到了%,因此选取前两个主成分已经能够很好地描述我国高等教育地区现状。

相关文档
最新文档