柴油机转速传感器故障诊断及其失效_跛行_控制

柴油机转速传感器故障诊断及其失效_跛行_控制
柴油机转速传感器故障诊断及其失效_跛行_控制

收稿日期:2010 05 13;修回日期:2010 07 10

作者简介:安晓辉(1987 ),男,在读博士,研究方向为柴油机电子控制技术;anx iaomope@https://www.360docs.net/doc/3a6757280.html, 。

柴油机转速传感器故障诊断及其失效 跛行!控制

安晓辉,刘波澜,张付军,崔 涛

(北京理工大学机械与车辆学院,北京 100081)

摘要:研究了时间控制式电控柴油机转速信号的特点及相位关系;设计了曲轴和凸轮轴传感器失效故障的检测方法及处理算法;开发了由M C68376微处理器和可编程复杂逻辑器件组成的柴油机故障处理系统;在T CD2015V06电控单体泵柴油机上,进行了起动和正常运行时转速传感器失效的试验研究。结果表明,转速传感器出现故障时,系统可识别出相应故障,并进行逻辑切换,使发动机能正常起动和运行。 关键词:柴油机;转速传感器;故障诊断;故障屏蔽

中图分类号:T K424 文献标志码:B 文章编号:1001 2222(2010)04 0056 05

随着对柴油机性能和排放要求的提高,控制系统结构日益复杂,发动机故障诊断和排除愈加

困难,车载自诊断技术成为当前研究的焦点。目前,电控系统故障状态下的运行策略分为四级,一级为缺省,二级为减扭矩,三级为跛行回家(Limp hom e),四级为停机[1]

。装配国?电控柴油机车辆特点之一便是具备 跛行回家!功能。曲轴、凸轮轴转速传感器是电控发动机重要的传感器,当其中之一出现故障时,需要采用跛行回家策略,确保车辆行驶到最近维修站进行维修。本研究将针对曲轴或凸轮轴传感器故障进行策略和试验研究。

1 转速信号分析

曲轴和凸轮轴位置传感器是电控燃油喷射系统的主要传感器之一,是控制喷油提前角和确定发动机转速不可或缺的信号源。曲轴信号用于确定发动机转速和提前角的精确控制;凸轮轴信号用于判缸,确定发火次序。

研究对象是T CD2015V06单体泵柴油机,曲轴和凸轮轴位置传感器均采用永磁式传感器,脉冲信号经调理电路处理后输送给微处理器相应模块进行采集。处理后的脉冲信号见图1,曲轴信号盘齿数为58齿(60缺2),每个齿对应6#曲轴转角,凸轮轴为6+1齿,第1缸凸轮齿后18#为多齿。

图1 凸轮轴相位信号与曲轴转速信号对应关系

2 故障诊断系统硬件设计

性能可靠的柴油机故障诊断系统硬件是实现柴油机在线故障诊断和离线故障分析的基础。完整的在线故障诊断系统除包括发动机控制器外,还包括诊断控制器硬件。下面主要从微处理器选择和转速处理电路两方面介绍诊断控制器数字电路。2.1 微处理器

微处理器(M CU )选用32位微处理器MC 68376,该款单片机基于模块化设计,芯片内部

的各个功能模块相对独立,拥有足够的运算速度和

丰富的接口资源[2],可以满足故障诊断的需要。2.2 转速信号处理模块

转速处理模块主要用于转速传感器信号失效时的故障应急处理。设计选用M AX7000S 系列的CPLD 和支持CPLD 的MAX +PLU S ?集成开发软件。转速处理模块电路示意见图2。图中曲轴和凸轮轴转速信号以及PF5~PF3为模块的输入信号。处理后的曲轴转速信号经管脚T2CLK 输出(该管脚与发动机控制器MCU 中T PU 模块的时钟

第4期(总第189期)2010年8月车 用 发 动 机V EH ICL E EN GIN E N o.4(Serial N o.189)

A ug.2010

图2 转速处理模块原理图

输入管脚相连);处理后的凸轮轴转速

信号经管脚CAM 输出(该管脚与发动机控制器M CU 中CTM 定时模块的CTD4管脚相连)。

PF5~PF3上的信号状态与相应故障和故障处理方式有关,对应关系见表1。

表1 故障处理方式

传感器状态PF5PF4PF3转速处理模块输出曲轴信号正常0%%T2CLK 输出原曲轴信号曲轴信号失效1%%T2CLK 输出原凸轮轴信号凸轮轴信号正常%0%C AM 输出原凸轮轴信号凸轮轴信号失效

%10C AM 输出凸轮轴信号1%

1

1

C AM 输出凸轮轴信号2

3 转速传感器故障诊断及后处理算法

3.1 曲轴位置传感器故障检测

在发动机运行过程中,曲轴信号出现的故障和故障的原因见表2。

表2 曲轴故障列表

故障现象故障原因故障导致的结果曲轴转速信号干扰

传感器、控制器或线束被干扰供油时刻出错曲轴信号时有时无

传感器插头松动或线束接触不良供油时刻出错或无法输出供油脉冲曲轴信号完全丢失

传感器损坏,线束短路,传感器处理模块损坏

无法输出供油脉冲

这三种类型故障的共同特征是:计算出的发动机曲轴转速出现跳变,且曲轴齿号与凸轮轴齿号无法对应。针对它们的特点分别采用曲轴信号自检、曲轴和凸轮轴信号互检来实现故障识别。3.1.1 曲轴信号自检

所用曲轴信号自检中,采取两种认定方法,它们的输出结果相与后,产生自检测结果。一种是基于发动机瞬时转速的认定方法,故障诊断控制器每一个曲轴齿计算一次发动机转速,并与上一次的结果比较,得到发动机相邻两齿的速差,该值必定小于发动机瞬时加速度最大值,否则认定出错;另一种是基于曲轴信号盘关系的认定方法,在曲轴信号盘中,两缺齿间共有58个齿,故在曲轴缺齿处所读到的齿号

(曲轴缺齿中断中读取)必定为最大齿号(第58齿),否则认定出现故障,如图1曲轴与凸轮轴信号对应关系所示。

3.1.2 曲轴与凸轮轴信号互检

当曲轴信号完全丢失时,无法采用自检方式判别,且正常使用条件下检测结果并不可靠,所以更合理的检测还应利用曲轴齿号与凸轮轴齿号对应关系。从曲轴与凸轮轴信号关系可知,在凸轮信号第CaTN 齿的上升沿中断中,读取的曲轴齿号应等于原始的曲轴齿号CrKTN _n,否则曲轴相位出错。正常时两者对应关系见表3。

表3 凸轮齿号与曲轴齿号对应关系

CaT N 1234567CrKT N_n

30

50

10

30

50

10

15

3.2 凸轮轴位置传感器故障检测

在发动机使用过程中,凸轮轴转速信号可能出现如表4所列的故障。与曲轴信号故障诊断类似,采用凸轮轴信号自检和凸轮轴与曲轴信号互检的方法,判断凸轮轴信号是否异常。

表4 凸轮轴故障列表

故障现象故障原因故障导致的结果凸轮轴转速信号干扰

传感器、控制器或线束被干扰无法判缸,供油次序错乱或无法供油凸轮轴信号时有时无

传感器插头松动或线束接触不良

无法判缸,供油次序错乱或无法供油

凸轮轴信号完全丢失

传感器损坏,线束断路,传感器处理模块损坏

无法判缸,供油次序错乱或无法供油

3.2.1 凸轮轴信号自检

所用凸轮轴信号自检中,采取两种认定方法,它们的输出结果相与后,产生自检测结果。一种是基于发动机凸轮轴瞬时转速的认定方法,在每个凸轮轴信号上升沿中断中,诊断系统计算转速,并与上一次的结果比较,相邻两齿的速差必须小于凸轮轴瞬时加速度最大值,否则认定出错;另一种是基于凸轮轴信号盘与转速关系的认定方法,在每个凸轮轴中

断中,诊断控制器更新凸轮轴齿号CaT N,因此如在规定时间内CaTN 没有被更新,则认定凸轮轴信号丢失。

3.2.2 凸轮轴与曲轴信号互检

在曲轴缺齿处读取凸轮轴齿号CaT N_CrkS,并与固定的齿号CaTN _n 比较,如两者不等则认定故障出现。从图1信号关系可知,正常时在缺齿处

&57&2010年8月

安晓辉,等:柴油机转速传感器故障诊断及其失效 跛行!控制

CaT N_CrkS 等于4或者3。

3.3 曲轴凸轮轴故障检测解耦

由于在检测过程中引入曲轴和凸轮轴信号互检的方法,因此当曲轴或凸轮轴传感器任意一个出现故障时均会导致互检结果为真(故障出现),因此需要对曲轴和凸轮轴故障检测进行解耦,具体措施如下:

(1)引入曲轴或凸轮轴自检,两自检方法相互独立,互不干涉;

(2)依据故障状态标志CrkFltFlg,CaFltFlg 开启或关闭互检;

(3)检测周期不同,凸轮轴检测周期长,其故障判定时间也较曲轴判定长。

最后一条措施是指,凸轮轴故障检测周期大于等于166m s;曲轴检测与发动机转速有关,转速越高检测周期越短。因此两转速信号的故障判定结果不会同时出现,必定是先得出曲轴信号判定结果,然后再获得凸轮轴信号状态。同时鉴于互锁机制(第2条措施)的存在,可认为两者在故障检测过程中独立。

3.4 曲轴信号故障后处理

曲轴信号故障后处理措施是将凸轮轴信号替代曲轴信号引入发动机控制器中。在图3中,曲轴信号Cr kSig 和凸轮轴信号CaSig 均被引入CPLD 。正常状态下,曲轴故障标志CrkFltFlg =FALSE

(CrkFltFlg 状态由PF5给出),只有曲轴信号被接入TPU 模块;当故障被认定后Cr kFltFlg =T RU E,曲轴信号被屏蔽,将凸轮轴信号引入TPU 模块,切图3 曲轴故障后处理示意图

换逻辑见表1。与此同时,发动机控制系统软件根据Cr kFlt Flg 状态切换不同的油量计

算方法。

3.5 凸轮轴信号故障后处理

无故障时原凸轮轴信号CaSig 接入发动机控制器的CTM 模块。若故障出现后,故障标志CaChg Flg =T RU E(由PF4给出),原凸轮信号被切换为经CPLD 合成后的凸轮轴信号,然后送至CTM 模块。凸轮轴信号的合成利用了其与曲轴信号盘的关系,即凸轮轴多齿总位于曲轴缺齿后的第15齿;但由于曲轴信号与具体缸号无对应关系,且曲轴一圈有一处缺齿,因此CPLD 合成出的凸轮轴信号有两个,即PsudCaSig1和PsudCaSig2(见图4)。根据状态标志CaChgFlg (由PF3给出),切换CPLD 输出的凸轮轴信号(见表1)。图5为CPLD

中信号切换的逻辑路径。

图4 曲轴信号与合成的

凸轮信号间关系

图5 CPL D 信号切换的逻辑路径

正常起动后出现凸轮轴信号故障,并不需要判

断即可输出正确的凸轮轴合成信号(起动后已经判断)。若起动前凸轮轴信号就已经出现故障,则曲轴与凸轮轴相位关系未知,需通过发动机状态判断,来选择其中一个合成信号,即确定标志CaChg Flg 状态。默认条件下,CaChgFlg =FALSE 选择合成的凸轮轴信号PsudCaSig1。同时监测发动机起动状态,若发动机转速超过最小设定转速,且加速度始终大于设定加速度,并持续一段时间后,则可认定所选

凸轮轴信号正确,计数器Chg Cnt 加1。当Chg Cnt 超过Chg CntM ax 后,不再进行状态判断,标志

&58& 车 用 发 动 机 2010年第4期

CaChgFlg 状态被锁定。4 试验验证

4.1 试验设备

在TCD2015V06单体泵柴油机上进行试验验证,发动机的主要参数见表5。

表5 柴油机主要参数

缸数/个缸径/mm 行程/mm 排量/L 压缩比标定功率/kW 标定转速/r &min -16

132

145

11.88

17.5

300

2100

台架试验系统由南峰电涡流测功机及其控制系统、电子控制单元、油耗仪(小野测器FM 2500)及燃烧分析仪(DEWE5000)等组成。自行开发的电子控制单元辅助以在线数据标定系统,可以根据试验的需要,进行不同形式的燃油喷射,并采用CAN 协议网络,

将发动机控制器运行时的主要参数传给上位机电脑,从而进行数据采集。4.2 试验内容与分析

4.2.1 无凸轮轴信号起动

试验前将凸轮轴传感器拔去,诊断系统按照设计的凸轮轴故障检测算法和后处理算法,在起动过程中对凸轮信号进行自检和互检。凸轮轴互检速度与曲轴转速有关(取决于单位时间内曲轴齿号与凸轮轴齿号不匹配的次数),当起动经历多个工作循环后,互检结果计数值迅速增加立即得到互检结果。而自检结果认定受最小检测时间的限制,故比互检认定的要晚。当两者同时满足时,根据基于故障持续时间的故障认定方法,在几个循环内故障无法消除,即认定故障发生,并锁定曲轴检测程序(见图6)。

图6 凸轮轴传感器故障时起动试验

故障认定后,诊断系统利用曲轴转速判断发动机的发火时序。由于图6中发动机转速始终低于设定的300r/min,因此用于判断发火顺序的计数值逐渐减少。如果一段时间内发动机转速仍未满足条件,则在10s 处由诊断系统通知CPLD 对合成的凸

轮轴信号进行切换。虽然信号实现了切换但发动机

起燃仍需一段时间,因此在图中11s 处计数值还会减小几次。最终当起动成功后,发火时序被锁定。

故障认定时间与发火时序确认时间均导致发动机起动时间过长,其中发火时序确认时间大约为6~7s 。该参数应随起动条件(环境温度)的变化而改变,一味地减小确认时间会导致循环判缸的出现,从而不利于起动。

4.2.2 运行中凸轮轴传感器失效

发动机稳定在1200r /min,100N &m 工况点时,直接取掉凸轮轴传感器,转速、供油持续期与故障标志的关系见图7。由于在起动后已将正确的凸轮轴信号锁定,所以运行过程中拔掉凸轮轴信号传感器不需再进行发火时序判断;且供油信号由发动机控制器根据曲轴信号产生,在曲轴信号正常的条件下供油脉冲并不受影响(见图7)。故障发生后转速采集通道发生切换,发动机控制系统对曲轴转速计算与凸轮轴转速计算处理方式不同,导致控制中被控对象状态(转速采样值)发生细微波动,因此油量发生略微改变,进而导致发动机实际转速产生变化,如图7中7.5s 处故障认定标志置位所示。

图7 运行中凸轮轴传感器失效试验

在正常状态下,控制器默认采用凸轮轴信号,并通过CA N 总线上传发动机转速,所以在故障认定前,监控界面中转速不会被更新,如图7中6~7s 处。由于故障发生时转速较高,因此可立即得到互检结果。

4.2.3 无曲轴信号起动

该故障条件下,起动过程不需要进行判缸,因此起动时间较短;但供油信号有赖于曲轴信号产生,当

曲轴传感器失效后存在故障认定和信号通道切换的时间,所需起动时间将大于无故障时的起动时间,两者相差3s(见图8)。

起动时曲轴故障检测较凸轮轴检测速度要快,这是因为曲轴信号盘齿数较多,信号脉冲间隔较小,可在较短时间内判断有无曲轴脉冲。考虑到互检受凸轮轴转速的限制(在凸轮轴信号中断中判断),图

&59&2010年8月

安晓辉,等:柴油机转速传感器故障诊断及其失效 跛行!控制

8

中曲轴故障互检结果比自检结果出现的要晚。

图8 曲轴传感器故障时起动试验

4.2.4 运行中曲轴传感器失效

发动机稳定在1200r/m in,300N &m 工况点时拔去曲轴传感器,发动机转速,供油持续期与故障标志关系见图9

图9 运行中曲轴传感器失效试验

供油脉冲依靠曲轴位置信号产生,当信号丢失时虽然控制器计算出的供油持续期在增加,但实际

上并无控制信号输出,单体泵无法供油,发动机短时丧失做功能力,因此图9中转速突然下降100r/min 左右。由于判断的延迟,造成了发动机转速的突变,因此该后处理策略有待进一步完善。

5 结束语

在研究时间控制式喷油系统信号特点和相位关

系的基础上,设计了转速传感器失效检测的逻辑和算法,包括自检、互检和解耦三部分,以实现转速故障的识别。开发了由M C68376和可编程复杂逻辑器件组成的柴油机故障处理系统,用以识别故障和切换转速信号。在T CD2015V06单体泵柴油机上进行试验研究,验证了诊断逻辑和故障处理算法的合理性,表明采用所述策略可实现 跛行!控制。

参考文献:

[1] Seunghy un P ark.Develo pment o f ET C L imp ho me

Funct ion U sing T est A ut omatio n on HIL S [C].SA E Paper 060106,2006.

[2]

刘波澜,张付军,黄 英,等.单体泵柴油机电控系统开发及试验研究[J].内燃机学报,2004(5):450 455.

Fault Diagnosis and Limp Home Control of Diesel Engine Speed Sensor

AN Xiao hui,LIU Bo lan,ZH ANG Fu jun,CUI Tao

(Schoo l o f M echanical and V ehicular Eng ineering ,Beijing Inst itute of T echno lo gy ,Beijing 100081,China)

Abstract:T he character istic and phase o f speed sig nal fo r electr onic contro l diesel engine w ere researched.T he det ection

met ho d and a lg orithm of cr ankshaft and camshaft sensor failure w ere desig ned.T he diesel eng ine fault analy sis sy stem com posed of M C68376micr opro cessor and complex pr og rammable log ic device (CPL D)w as develo ped.T he speed sensor failures o f sta rt and r unning wer e r esear ched by the ex per iment o n T CD2015V06electr onic unit pump diesel eng ine.T he results sho w that the sy stem can identify the err or when the senso r failure occurs and can st art and r un the eng ine by a lo g ic sw itch.

Key words:diesel engine;speed senso r;fault diagnosis;fault masking

[编辑:潘丽丽]

&更正&

?车用发动机(2010年第3期 喷孔几何特征尺寸对柴油喷雾及柴油机性能影响的研究进展!一文的第4页左栏第8行叙述有误,原文为 HG 20%喷油嘴喷射平均速度较H G10%的相应值高50%!,应改为 H G20%喷油嘴喷雾末端平均速度较HG 0%的相应值高50%!。特此更正。

&60& 车 用 发 动 机 2010年第4期

柴油机常见故障诊断及排除教材

柴油机常见故障诊断及 排除教材 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

柴油机常见故障诊断及排除 (供参考) 玉柴营销公司客户服务中心质保车间-----邓凯 一、前言 柴油机在使用过程中,随着使用里程、工作小时增多,由于零部件的自然磨损,以及受到环境、温度变化影响,维护保养不及时或不遵守操作规程,维修质量差等因素,柴油机发生故障是必然的。因此,正确使用和及时维护保养柴油机是防止和减少故障的有效措施。 二、柴油机的组成 基础件——机体、缸盖、离合器壳。 曲轴连杆机构——曲轴、飞轮、离合器、 两大机构连杆、活塞、活塞环、缸 套。 配气机构——凸轮轴、齿轮室、气门组、摇臂 组件。 组成润滑系统——吸油盘、机油泵、机油滤清器、油 道、调压阀、感应塞、机油冷却 器。 冷却系统——水泵、水套、出水管、节温器、风 扇、散热器。 五大系统供油系统——油箱、柴油滤清器、油路、喷油 泵、喷油器。 进排气系统——空气滤清器、增压器、进气管、 排气管、排气刹、消声器。

电器系统—电瓶、起动机、充电机、仪表、线路。 三、两大机构、五大系统主要作用和工作要求 (一)两大机构 曲轴连杆机构 主要作用——承受燃料燃烧时膨胀气体的压力,将活塞的直线运动变成曲轴的旋转运动。 工作要求——确保运动机件可靠,保证压缩压力正常。 配气机构 主要作用——控制进、排气门的开启和关闭。 工作要求——确保运动组件可靠,保证配气相位准确。 (二)五大系统 冷却系统 主要作用——将燃烧对机件所产生的热散发到大气中去,保持内燃机在适宜温度下工作。 工作要求——确保循环、散热可靠,保证冷却温度正常。 润滑系统 主要作用——将润滑油不断地送到各机件的磨擦表面,以减少机件 的磨损和动力消耗。 工作要求——确保吸油过滤可靠,保证机油压力正常。 供油系统 主要作用——根据柴油机负荷的需要,按时定量地将燃油喷入气缸。工作要求——确保畅通雾化可靠,保证供油规律正常。 进排气系统 主要作用——根据柴油机工作的需要,把充足空气送入气缸内,燃烧后将废气排到大气中去。 工作要求——确保空气过滤可靠、保证进气足、排气畅。 电器系统

任务五:发动机转速传感器(G28)的检测

授课教案 课程:汽车发动机检测与维修授课专业:汽修类项目发动机电控系统各传感器的检测 任务名称任务五:发动机转速传感器(G28)的 检测 教学课时8学时 教学目标知识目标: 1.熟悉发动机转速传感器的结构、工作原理及连接线路。 2.掌握发动机转速传感器的检测方法。 能力目标: 1.能根据故障现象分析发动机转速传感器故障原因。 2.能正确规范使用工量具及检测仪器。 3.能借助检测仪器及工量具对发动机转速传感器部件进行检测,并判断故障点。 4.能提出故障点维修方案并对故障点进行恢复。 素质目标: 1.质量,规范,环保,安全意识,培养良好的团队精神; 2.培养吃苦耐劳的工作作风和严谨细致的工作态度。 教学重点、难点1.借助检测仪器及工量具对发动机转速传感器部件进行检测,并判断故障点; 2.根据故障点维修方案并对故障点进行恢复。 教学方法建议任务驱动法,现场演示,学做一体教学组织形式资讯-决策-计划-实施-检查-评价 教学内容与步骤一、工作任务展示 二、工作任务分析 三、以任务为导向的相关知识点(工作页) 四、工作任务实施 五、任务完成评价 六、任务总结

【工作任务展示】 图6-5-1 发动机转速传感器 【工作任务分析】 一辆桑塔纳2000,装用AJR发动机,有燃油供应、喷油器也是能接受到控制信号,就是没有高压点火,低压电也是有的,发动机不能正常工作。现在就是发现那位置。用故障阅读仪进入电控系统进行故障码阅读,显示发动机转速传感器正极接地或偶发故障。确诊造成上述现象的原因,首先要知道电控发动机电控系统的结构和工作原理,,这在电控发动机这门课程中已经学习了;其次要明确电控发动机转速传感器的检测方法及操作步骤。 本任务要求学生能按正常步骤使用检测仪器,并要求学生按规定对检测仪器和设备进行保养,对场地进行清理、维护。 【相关知识点】 知识点一:发动机转速传感器的作用 用来采集曲轴转角位置和发动机转速信号。 知识点二:发动机转速传感器的类型 目前发动机转速传感器有电磁式、霍尔式和光电式等几种。AJR发动机转速传感器是一个电磁感应式传感器。 知识点三:电磁感应式发动机转速传感器工作原理 转速传感器固定在缸体一侧,靠近飞轮一端。在曲轴上装了一个信号盘(脉冲轮),其工作原理如图6-6-2所示。当信号盘经过传感器的磁头时,传感器产生的交变电压信号频率随发动机转速变化而变化。ECU根据交变电压的频率识别发动机的转速。在信号盘上有一处缺两个齿,该处是ECU识别曲轴转角位置的基准标记,并作为点火正时信号的参考记号。 AJR发动机转速传感器把曲轴精确的转角位置和发动机转速信号输送给ECU,供ECU判别点火正时和计算基本喷油量。 当转速传感器发生故障时,ECU如果没有收到转速信号,发动机立即停止运转或者不能起动。使用专用阅读仪可以读出该故障的信息;“信号不可信、没有信号”。

异步电动机无速度传感器矢量控制系统设计

肖金凤 1971年1月 生,1994年毕业于湖南大学电气与信息工程学院电机专业,学士学位,2004年毕业于湖南大学电气与信息工程学院控制工程专业,硕士学位,讲师。主要研究方向为电机智能控制、工业过程控制及综合自动化。 异步电动机无速度传感 器矢量控制系统设计 * 肖金凤1 , 黄守道2 , 李劲松 1 (1.南华大学,湖南 衡阳 421001;2.湖南大学,湖南 长沙 410082) 摘要 文章提出一种基于模糊神经网络的模型参考自适应电机转速辨识方法,将其与SVP WM 调制技术控制的变频器系统结合起来,组成了一种基于DSP 的异步电机无速度传感器矢量控制系统。具体介绍了其结构及软硬件的设计。仿真结果表明此系统动态性能好,能准确跟踪电机转速的变化。 关键词 异步电动机 无速度传感器 SVP WM 矢量控制 数字信号处理器 Fiel d Oriented Control Syste m of Speed Sensorless Based on DSP X iao Jinfeng ,Huang Shoudao ,L i Jingsong (1.N anhua Un iversity ;2.H unan Un i v ersity ) Abstract :This paper presents a ne w m et h od of i n ducti o n m otor speed identifica -ti o n .It is the co m binati o n o f f u zzy neural net w ork (FNN )w ith m odel reference adap -ti v e syste m (MRAS).W e co m bi n e this m ethod w it h the i n verter contro lled by space vector pulse w idth m odu lati o n (SVP WM )to for m a field oriented con tro l syste m o f speed senso rless based on DSP . Its struct u re and soft w are and hardw are are ana -l y zed .The S i m u lation results sho w that the contro l syste m has better dyna m ic per -f o r m ance and can accurately track the variati o n of the m otor speed . K ey w ords :I nducti o n m oto r Speed sensorless SVP WM F ield oriented con -tro l (FOC) DSP *湖南省自然科学基金资助项目(编号:02JJ Y 2089) 1 引言 异步电动机的数学模型由电压方程、磁链方 程、转矩方程和运动方程组成,是一个高阶、非线性、强耦合的多变量系统。采用传统的控制策略对其进行控制时,动态控制效果较差。目前异步电动机控制研究工作正围绕几个方面展开:采用新型电力电子器件和脉宽调制控制技术;应用矢量控制技术及现代控制理论、智能控制技术;广泛应用数字控制系统及计算机技术;无速度传感器控制技术。本文以电机控制专用芯片 T M S320F240为核心,采用磁通、转速闭环的矢量控制策略,利用SVP WM 脉宽调制技术、无速度传感器及智能控制技术,设计了一电机控制系统。仿真结果表明该控制系统抗干扰能力强,动态性能好。 2 速度估计策略 模型参考自适应方法(MRAS)是应用较广的速度估计方法。本文设计的模型参考自适应速度估计系统为减少定子电阻的影响选择瞬时无功功率模型,同时为有效解决瞬时无功功率模型参考 40 异步电动机无速度传感器矢量控制系统设计《中小型电机》2005,32(2)

柴油发动机常见故障诊断与排除

这是由于柴油未完全燃烧而产生的黑色炭粒混在废气中引起的。 1、故障原因 (1)发动机负荷过大。 (2)喷油器雾化不良,喷油压力过低或有严重漏油现象。 (3)供油提前角太小致使供油过晚。 (4)空气滤清器堵塞,进气量少,氧气供应不足。 (5)喷油泵供油太多。 2、排除方法 (1)减轻负荷,不使拖拉机长时间超负荷工作。 (2)调整和更换喷油器。 (3)按规定调整供油提前角。 (4)对进气系统和滤清器进行保养,更换滤芯。 (5)调整喷油压力。 (二)发动机排气管冒蓝烟 这是由于燃烧室内进入了过量的机油而引起,俗称烧机油。 1、故障原因 (1)油底壳中机油过多。 (2)油环磨损严重,开口间隙过大,油环装反或有积炭胶结在槽内。 (3)活塞环开口未交错开。 (4)缸套与活塞间隙过大。 (5)空气滤清器(湿式)底壳油面过高。 (6)气门杆和导管配合间隙大。 2、排除方法 (1)排放出油底壳中多余的机油,使油面保持合适的高度。 (2)清洗或更换油环,重新安装活塞环。 (3)更换活塞和缸套。 (4)倒出空气滤清器底壳中多余的机油。 (5)更换新件。

这也是一种常见的现象,气温较低时,刚启动的发动机转速低易排放白烟(主要是水汽),当转速正常时会逐渐消除,此种情况不属故障。另外,是由于冷却水道及密封部件的损坏,造成冷却水窜入燃油供给系(或油底壳),然后到达燃烧室,同废气一起排出,即形成白色烟雾。 1、故障原因 (1)气缸盖螺母松动,气缸垫损坏以及气缸盖、气缸套、气缸体出现裂纹或阻水圈失效等,使冷水窜入气缸。 (2)柴油中含水。 (3)供油提前角过大。 (4)气门间隙过小。 (5)喷油器、喷油泵偶件磨损严重。 2、排除方法 (1)重新按规定拧紧缸盖螺母,更换已损坏部件。 (2)更换合格柴油。 (3)调整供油提前角。 (4)调整气门间隙。 (5)对喷油泵、喷油器偶件进行研磨、选配或更换。 (四)发动机响声异常 发动机出现异常响声,是由于不正常爆发而产生的敲击声或不正常的运转而产生的撞击声。 1、故障原因 (1)喷油时间过早或过晚。喷油时间过早,发动机工作粗暴引起敲缸;喷油时间过晚,出现过后燃烧会引起排气管放炮声。 (2)喷油器滴油,响声无一定规律。有时出现敲击声有时则出现放炮声。 (3)气门间隙太大或太小。 (4)活塞环侧向间隙过大。 (5)连杆铜套间隙过大。

发动机怠速转速升高-加不上油-(2015303-1)

发动机怠速转速升高-加不上油-(2015303-1)

发动机怠速转速升高,加不上油(2015303-1) 产品技术信息代号: 2015303/1 发动机怠速转速升高,加不上油发布日期: 2007-6-13 用户陈述/服务站结论 发动机怠速转速升高,加不上油。 发动机控制单元内记录故障 18047, 18039 或 00777 (油门踏板位置传感器)。 技术背景 油门踏板位置传感器的电压值没有传到发动机控制单元,或者传送错误(比如因接触电阻)。由于从油门踏板位置传感器到发动机控制单元就是导线连接,中间没有其它件,所以这个故障记录基本上只能是下面的原因: - 插头故障或没插好 (油门踏板模块插头,电器盒(E-BOX)插头或发动机控制单元插头), - 油门踏板模块和发动机控制单元之间布线 (绝缘层损坏,有折点等), - 触点潮湿或氧化 (接触电阻, 电器盒(E-BOX)密封不严), - 发动机控制单元与车身上的搭铁点接触不良, - 发动机控制单元损坏 (通过测量油门踏板模块在发动机控制单元输出端/油 门踏板模块线束插头的供电电压l), - 油门踏板位置传感器损坏, - 接上了其它5V传感器(与油门踏板模块采用同一供电) 即使发动机控制单元只是短时没有识别出油门踏板的位置,出于安全原因也会切换到应急程序状态。该状态的标志就是怠速转速升高,且功率下降。 生产线解决方案 修改了油门踏板模块的起始底盘号。 起始底盘号:

A6手动变速器:4B3N 091494 A6 自动变速器4B3N 091494 A4 手动变速器8E3A 330897 A4 自动变速器8E3A 335621 售后服务解决方案 ?也请参见 TPL 2005366(偶然故障记录,触点检查)。 ?目视检查、拉伸检查或触点松动检查不是对插头触点100%的检查。 ?在测量插头触点时请注意,只可以从后方来测量触点。 1. 按维修手册来测量踏板位置传感器(油门踏板模块)。 如果正常的话,请跳到第2点。 如果不正常,请更换踏板位置传感器(油门踏板模块)。 Audi A4: 左置方向盘及手动变速器的备件号: 8E1 721 523 B 左置方向盘及自动变速器的备件号: 8E1 723 523 F 右置方向盘的备件号: 8E2 721 523 C Audi A6: 左置方向盘及手动变速器的备件号: 8D1 721 523 J 左置方向盘及自动变速器的备件号: 8D1 723 523 N 右置方向盘的备件号: 8E2 721 523 C 2. 检查油门踏板模块线束插头上的供电(踏板位置传感器供电)。 拔下油门踏板模块可能导致记录下故障。 针脚2(5V供电)和针脚3(地)之间的输出电压规定值: = 5 Volt 直流。 针脚5(5V供电)和针脚6(地)之间的输出电压规定值: > 4,89 Volt 直流. > 不正常: 拔下其它的5V传感器(与油门踏板模块采用同一供电的)。

无速度传感器永磁同步电机发展与控制策略评述

无速度传感器永磁同步电机发展与控制策略评述潘萍付子义 中图分类号:TM351TM344.4文献标识码:A文章编号:1001-6848(2007)06-0091-02无速度传感器永磁同步电机发展与控制策略评述 潘萍,付子义 (河南理工大学,焦作454003) 摘要:介绍了永磁同步电机无速度传感器控制策略,分析了无速度传感器技术研究现状,指出状态观测器法及谐波注入法是目前无速度传感器技术的研究热点。 关键词:永磁同步电机;无速度传感器;评述;控制策略;状态观测器;谐波注入法 DevelopmentRenewandStrategyofPermanentM_agnetSynchronousMoOrSpeedSensorless PANPing,FUZi—yi (HenanPolytechnicUniversity,Jiaozuo454003,China) ABSTRACT:Thispapersummarizesthestrategyofpermanentmagnetsynchronousmotor.Itanalyzesthepresentofspeedsensorlesstechonologyofpermanentmagnetsynchronousmotor,indicatesthatthestateobserverandharmonicinjectionprocessarecurrentresearchfocus. KEYWORDS:Permanentmagnetsynchronousmotor;Speedsensorless;Review;Controlstrategy;Stateobserver;Harmonicinjectionmethod O引言 永磁同步电机控制系统离不开高精度的位置和速度传感器,但在实际的系统中,传感器的存在不仅增加了系统成本,还易受工作环境影响,同时也降低了系统的可靠性,因此,无速度传感器交流调速系统成为近年研究热点¨j。 1无速度传感器永磁同步电机研究及发展 无速度传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量,如定子电压、定子电流中提取出与速度有关的量,从而得出转子速度,并应用到速度反馈控制系统中。 国际上对永磁同步电机无速度传感器的研究始于20世纪70年代旧J。1975年,A.Abbondanti等人推导出了基于稳态方程的转差频率估计方法, 收稿日期:2006—09-26 基金项目:河南省杰出青年科学基金(0211060500);河南省重要攻关项目(9911020429)在无速度传感器控制领域作出首次尝试,调速比可达10:l。但由于其出发点是稳态方程,动态性能和调速精度难以保证。1979年,M.Ishida等学者利用转子齿谐波来检测转速,限于当时的检测技术和控制芯片的实时控制能力,仅在大于300r/rain的转速范围取得较好的结果。1983年R.Joetten首次将无速度传感器技术应用于永磁同步电机矢量控制。近年来,德国亚探工大(RWTHAachen)电机研究所的学者又先后开展了采用推广卡尔曼滤波器的永磁同步电机和感应电机无机械传感器调速系统的研究。美国麻省理工学院(MIT)电机工程系的学者在1992年发表了采用全阶状态观测器的无传感器永磁同步电机调速系统的论文。由于状态观测器受电机参数变化的影响较大,还需要另外一个状态观测器来估计电机的参数,这样使无传感器永磁同步调速系统的估计算法变得比较复杂,同时系统还存在对负载变化比较敏感等问题。国内自90年代中开始,也开始对永磁电机无速度传感器控制技术进行研究,但主要局限于各高等院校,研究主要还是着重于理论和仿真方面。 一91—   万方数据

BLDC无位置传感器控制技术

BLDC无位置传感器控制技术 2014.11.12 duguqiubai1234@https://www.360docs.net/doc/3a6757280.html, BLDC电机是一种结合了直流电机和交流电机优点的改进型电机。其转子采用永磁材料励磁,体积小、重量轻、结构简单、维护方便。BLDC电机又具有控制简便、高效节能等一系列优点,已广泛应用于仪表和家用电器等领域。 本文主要讨论高压BLDC风机无位置传感器起动和运行技术。 一、无位置传感器技术简介 BLDC电机最简单的控制方法是安装三个位置传感器,使用六步换相法控制。但传感器器会增大电机的体积和成本,另外传感器的位置精度影响电机的运行;特别对于极对数较多的电机,传感器偏差少许机械角度也可能引起电角度偏差很多。在某些恶劣环境下,如高温、潮湿、腐蚀性气体等环境,传感器易损坏,因而无法使用。 使用无位置传感器方式则可以克服上述缺点。 无传感器BLDC在性能上也存在一些不足: (1)难以实现重负载(例如额定转矩)起动。好在风机属于轻负载起动的情况。 (2)难以快速起动。例如很难实现1秒内从静止加速到全速。好在风机通常不要求很短时间内完成加速。 (3)无法实现全速范围内任意调速。有传感器BLDC能够实现0%~100%额定转速范围内的调速,而无传感器BLDC通常只能实现10%~100%额定转速范围内的调速。好在风机通常不要求10%额定转速以下运行。 经过以上分析,可以看出风机非常适合使用无位置传感器方式控制。 国内高压无位置传感器BLDC技术仍处于不成熟阶段。使用该技术的产品应以稳定可靠为主要要求,而不是以性能优越为主要要求。高压无传感器BLDC如果追求性能优越,则成本太高,技术难度过大。 风机类产品通常起动后连续工作时间较长,所以通常不要求快速起动,不也要求反复起停。

无速度传感器的矢量控制系统仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:武汉理工大学 题目: 无速度传感器的矢量控制系统仿真 初始条件: 电机参数为:额定电压U=380V、频率50 =、定子电阻s R=0.252Ω、 f Hz 额定功率P=2.2KW、定子自感 L=0.0016H、转子电阻r R=0.332Ω、额定转速 s n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2 要求完成的主要任务: (1)设计系统原理图; (2)用MATLAB设计系统仿真模型; (3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较 参考文献: [1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械 工业出版社,2005:212-215 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间设计内容 12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 12.6-12.9 开始查阅资料,完成方案的初步设计 12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析 12.12-12.13 撰写课程设计说明书 12.14 上交课程设计说明书,并进行答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。 关键词:矢量控制、无速度传感器、Matlab

无速度传感器的高性能异步电动机调速系统

无速度传感器的高性能异步电动机调速系统 范钦德杜耀武 范钦德先生,上海电器科学研究所(集团)有限公司研究员级高级工程师; 杜耀武先生,上海格立特电力电子有限公司工学博士。 关键词:无速度传感器 矢量控制磁链观测 目前广泛使用的通用变频器多为VVVF控制的开环系统,明显地存在转矩小、低速性能差、稳态精确度低、动态性能(加减速性能和负载抗干扰性能)不理想等缺点。特别是低速时由于定子压降和死区电压误差的存在,使系统性能受到严重影响,甚至发生不稳定现象。而在高性能的交流电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。这样,由于速度传感器的安装会给系统带来一些问题:如安装的精确度将影响测速的精确度,并给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点,在恶劣环境下,速度传感器工作的精确度易受环境的影响。另外,因必须安装速度传感器,对推广应用也将造成一定的影响。 作为高性能通用变频器发展方向的无速度传感器矢量控制通用变频器就是解决上述缺点而提出的现实问题。其根本目的是在保持通用变频器方便、可靠等优点的前提下,不增加硬件成本,无需速度传感器,其性能却接近带速度反馈的矢量控制系统。 无速度传感器矢量控制的核心问题是对电机磁链的观测和转子的速度进行估计,控制系统性能好坏将取决于合理的控制方案与速度辨识环节的恰当结合。上世纪70年代末国外就已经开展了此项的研究。目前较典型的估计算法有:利用电机方程式直接计算法;模型参考自适应法;扩展卡尔曼滤波法;定子侧电量FFT分析法;非线性方法。但这些方法大多从理想条件下的电机数学模型出发,在不同程度上依赖于电机的参数和运行状态。当电机参数变化时,系统控制性能变差而且有些方法过于复杂,给具体方案的实现带来了很大的困难。基于电机磁链观测的转子速度估计方法计算简便,工程上易于实现,许多高性能无速度传感器矢量控制均采用该方法。 本调速系统基于一种电机磁链混合观测模型,设计了一种无速度传感器的控制方案,实现速度闭环控制。该方法简单实用,在整个速度范围内达到了良好的性能。 一控制原理 矢量控制技术得以有效实现的基础在于异步电机磁链信息的准确获取。为进行磁场定向和磁场反

浅谈交流电机无速度传感器控制策略

龙源期刊网 https://www.360docs.net/doc/3a6757280.html, 浅谈交流电机无速度传感器控制策略 作者:吴宏宇吴兴宇史运涛 来源:《科技风》2016年第24期 摘要:目前,随着工业自动化的不断发展,交流电机将会被广泛使用。同时由于无速度 传感器技术具有低成本与高可靠性等优点,所以发展交流电机无速度传感器技术,对于提高科技生产力以及工业自动化具有极其重要的意义。本文将简要介绍高性能无速度传感器交流电机控制策略,一种是异步电机与速度自适应全阶观测器相结合,另一种永磁同步电机与滑模观测器相结合的控制方法,旨在进一步促进高性能无速度传感器交流电机控制策略的发展。 关键词:交流电机;无速度传感器;全阶观测器;滑模观测器 随着电力电子技术、微电子技术、现代电机控制理论的迅速发展,交流电机获得快速的推广与应用[ 1 ]。目前,在高性能交流电机控制领域中矢量控制[ 2 ]已经被广泛应用。在实际应用中,为了进一步提高交流电机在不同环境下运行的可靠性,交流电机无速度传感器控制技术被提出。无速度传感器控制方法主要分为两大类,一种为外部信号注入,这种方法只适应于极低速的工况运行,同时额外的信号注入会带来高损耗、噪声等问题。另一种为基于交流电机模型的方法,如:模型参考自适应[ 3 ]、卡尔曼滤波[ 4 ]、滑模观测器[ 5 ]、自适应全阶观测器[ 6 ]等方法,这些方法具有很高的控制精度以及鲁棒性。 本文将重点介绍自适应全阶观测器、滑模观测器与矢量控制在交流电机无速度传感器技术中的应用。 1 速度自适应全阶观测器 对于异步电机来说,定子磁链和电磁转矩通常无法直接得到,一般是采用实时测量的电压电流信息和电机参数,并根据电机数学模型构造观测器来对内部的状态变量进行估计。全阶观测器在较宽范围内都有很高的观测精度[ 7 ],通过引入速度自适应环节后可以在观测定子磁链的同时估计电机转速,实现无速度传感器控制。 在全阶观测器的设计中,反馈增益矩阵与自适应率系数的设计直接关系到系统的稳定性、鲁棒性以及收敛速度[ 7 ]。为了保证系统的稳定性与收敛性,本文将介绍一种采用极点左移的方法来设计增益矩阵并对其进行简化,最终得到一个常数增益矩阵。引入速度自适应环节,可以利用李雅普诺夫函数推导出转速估计的自适应率[ 7 ],在实际应用中为了保证估计转速的收敛速度一般采用PI调节器来代替纯积分环节。 2 滑模观测器 在无速度传感器永磁同步电机控制策略中,滑模观测器被广泛应用,因为其具有结构简单、鲁棒性强以及快速的动态响应[ 8 ]。滑模观测器的主要思想是通过选取滑模面与滑模增益

转速曲轴位置传感器和凸轮轴位置传感器失效后对发动机的影响

转速曲轴位置传感器和凸轮轴位置传感器失效后对发动机 的影响 内容简介:当曲轴位置传感器信号中断后,大多数车辆不能启动,因为程序中没设计利用凸轮轴传感器信号替代的功能。然而少部分车辆曲轴位置传感器信号中断后,控制单元会以凸轮轴位置传感器信号替代,发动机可以启动和运行,但各项性能会下降!本例中的伊兰特启动困难、加速不无力就是因为曲轴位置传感器失效后产生的。 曲轴位置传感器的英文缩写是CKPS或CKP,也称作发动机转速传感器,大多采用磁感应式传感器,配合60齿减去3齿或60齿减去2齿的靶轮。凸轮轴位置传感器的英文缩CMPS 或CMP,也称作霍尔传感器,大多采用霍尔传感器,配合具有1个缺口或几个不等距缺口的信号转子。控制单元不停地接收和比对这两个信号电压,当两个信号都在低电位时,控制单元认为此时再经一定的曲轴转角就可到达1缸压缩行程上止点。如果经比对CKP与CMP都在低电位,控制单元就有了点火正时和喷油时刻的基准。 曲轴位置传感器靶轮图(位于发动机飞轮上)

曲轴位置传感器图 当凸轮轴位置传感器信号中断后,控制单元收到曲轴位置信号只能识别出再经一定的曲轴转角到达1、4缸的上止点,但不知1、4缸中的哪一个是压缩行程上止点。控制单元仍可喷油,但由顺序喷射改为同时喷射,控制单元仍可点火,但将点火正时向后推迟到绝对不爆震的安全角度,一般推迟1 5。此时发动机功率和扭矩都会降低,驾驶中的感觉就是加速不良,达不到规定的最高车速,燃油消耗增加,怠速不稳。 当曲轴位置传感器信号中断后,大多数车辆不能启动,因为程序中没设计利用凸轮轴传感器信号替代的功能。然而少部分车辆,例2000年上市的捷达2气门电喷车,当曲轴位置传感器信号中断后,控制单元会以凸轮轴位置传感器信号替代,发动机可以启动和运行,但各项性能会下降。

R175A单缸柴油机常见故障诊断与排除

R175A单缸柴油机常见故障诊断与排除 (部分节选) 一、怎样诊断活塞敲缸声? 答:1)柴油机活塞敲缸声发生在气缸体上、中部(相当于气缸套全长),是一种有节奏的“嘎嘎嘎”响声,呼气连续不断且较沉闷,转速较高时比较明显。造成呼声的主要原因是:连杆轴颈与主轴轴颈的轴线不平行、连杆小端铜套孔的轴线水平倾斜或连杆弯曲等,使活塞在气缸内纵向摆动,碰击缸壁。检查时可卸下气缸盖,摇转曲轴,观察活塞在上下止点对其纵向摆情况,并仔细检查气缸壁是否有敲打撞击的痕迹。如活塞摆,应卸下活塞连杆组进行检查。 2)柴油机活塞敲缸声只发生在气缸体中部(相当于气缸套下部),是一种有节奏的“嗒、嗒”间断声响,严重时可见从加机油口处冒烟。冷车时响声较大,热车时响声减轻或消失;怠速时,响声较大,加大油门到中速时,响声减轻或消失。造成这种响声的原因有: ①气缸与活塞配合间隙过大,活塞裙部撞击气缸壁而发出响声。 ②机体温度过高或机油油路阻塞造成润滑条件恶化,虽然配合间隙不大,但也容易出现此呼声。检查时,可卸下气缸盖,检查气缸壁是否有拉伤的痕迹,润滑条件是否良好。 如果是润滑条件不良引起敲缸,可检查润滑系统,如果是间隙过大引起敲缸,可将活塞连杆组抽出,检查活塞有无损伤,并测量气缸间隙,如磨损严重,间隙过大,则应更换。 二、怎样检查活塞销与连杆衬套间隙? 答:小型农用柴油机活塞销均为“浮动式活塞销”连杆衬套与活塞销为间隙配合,使活塞销能在连杆衬套中转动自如。间隙过小(小于0.02mm),会使活塞销活动不灵,甚至被咬死;间隙过大(超过0.10mm),则易产生敲击,引起衬套损坏或连杆弯扭变形。 检查活塞销与连杆衬套配合间隙方法:将活塞销表面涂上机油,插入衬套内,用拇指推动活塞销,若活塞销平滑地进入衬套,且没有明显晃动,则说明活塞销与衬套配合正常;若感觉

交流感应电动机无速度传感器的高动态性能控制方法综述

交流感应电动机无速度传感器的 高动态性能控制方法综述 清华大学 杨耕 上海大学 陈伯时 摘要:文章分析了交流感应电机无速度传感器的高动态性能控制方案的控制要点。在介绍国内外产业界已实用化的、以及正在研发中的几种代表性的控制策略的同时,讨论了各种方法理论要点和实际应用中的特点。最后,介绍了当前的几个研究热点问题并就发展方向提出了一点设想。 关键词:异步电动机控制 无速度传感器 转矩控制 磁链观测 速度辨识 Rev iew the M ethods for the Speed Sen sor-less Con trol of I nduction M otor Yang Geng Chen Bo sh i Abstract:T h is paper analyzes theo retical po ints of the i m p lem entati on fo r h igh perfo r m ance contro l of in2 ducti on mo to r w ithout speed senso r.A fter that,typ ical app roaches of the contro l strategy,w h ich are used in p ractical p roducts o r are being developed recently,are p resented and the characteristic of each app roach is dis2 cussed.F inally,som e unso lved p roblem s being researched as w ell as the develop ing po tentials are introduced. Keywords:contro l of inducti on mo to r speed senso r2less to rque contro l flux observer speed identifica2 ti on 1 前言 交流感应电机的无速度传感器高动态性能控制,是为了实现与有速度传感器的矢量控制(或直接转矩控制)相当的转矩和速度性能的方案,被用于无法设置速度传感器的设备或新一代高性能通用变频器之中[1,2]。相关的理论与技术也成为近10年来交流传动领域的热门研发内容之一。 本文主要综述在无速度传感器的前提下,具有速度反馈控制环的矢量控制方案(V C)和直接转矩控制方案(D TC),而不讨论诸如“V F控制+为补偿负载变动的滑差补偿”等只考虑静态的方法。本文在介绍各种方法的同时,综述其理论要点和实际应用中的特点、介绍所应用的厂家,从中总结出实现高动态性能控制的要点及主要成果。最后,介绍当前几个研究热点问题。 2 控制方法 211 方法分类的出发点 一般地,由转矩控制环及速度控制环构成的无速度传感器矢量控制(或直接转矩控制)系统由图1所示的3个环节构成。即:①速度调节器;②磁链和转矩控制器;③速度推算或辨识器(含磁链计算或观测) 。 图1 无速度传感器控制系统构成 对于环节②,需要控制转矩和磁链。由此可以分为:a以转子磁链定向控制为基础的矢量控制策略。目前常用的有计算滑差频率的被称为间接法(I V C)和把状态观测器观测到的转子磁链进行反馈控制的直接法(DV C)。b以控制定子磁链为特点的,被称之为直接转矩控制策略(D TC)。 环节③的结构依存于环节②的结构。实际上在计算或推定速度值时,常常也要获得(计算或观测)磁链(转子的或是定子的)值。因此,按其理论上的特点,可以把获得转速和磁链的方法大致分 3 电气传动 2001年 第3期

无速度传感器简介

无速度传感器 在高性能的异步电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。但是,由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。国外在20世纪70年代就开始了这方面的研究,但首次将无速度传感器应用于矢量控制是在1983年由R.Joetten完成,这使得交流传动技术的发展又上了一个新台阶,但对无速度传感器矢量控制系统的研究仍在继续。 2无速度传感器的控制方法 在近20年来,各国学者致力于无速度传感器控制系统的研究,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。国内外学者提出了许多方法。 (1)动态速度估计法主要包括转子磁通估计和转子反电势估计。都是以电机模型为基础,这种方法算法简单、直观性强。由于缺少无误差校正环节,抗干扰的能力差,对电机的参数变化敏感,在实际实现时,加上参数辨识和误差校正环节来提高系统抗参数变化和抗干扰的鲁棒性,才能使系统获得良好的控制效果。 (2)PI自适应控制器法其基本思想是利用某些量的误差项,通过PI自适应控制器获得转速的信息,一种采用的是转矩电流的误差项;另一种采用了转子q轴磁通的误差项。此方法利用了自适应思想,是一种算法结构简单、效果良好的速度估计方法。 (3)模型参考自适应法(MRAS)将不含转速的方程作为参考模型,将含有转速的模型作为可调模型,2个模型具有相同物理意义的输出量,利用2个模型输出量的误差构成合适的自适应律实时调节可调模型的参数(转速),以达到控制对象的输出跟踪参考模型的目的。根据模型的输出量的不同,可分为转子磁通估计法、反电势估计法和无功功率法。转子磁通法由于采用电压模型法为参考模型,引入了纯积分,低速时转子磁通估计法的改进,前者去掉了纯积分环节,改善了估计性能,但是定子电阻的影响依然存在;后者消去了定子电阻的影响,获得了更好的低速性能和更强的鲁棒性。总的说来,MRAS是基于稳定性设计的参数辨识方法,保证了参数估计的渐进收敛性。但是由于MRAS的速度观测是以参考模型准确为基础的,参考模型本身的参数准确程度就直接影响到速度辨识和控制系统的成效。 (4)扩展卡尔曼滤波器法将电机的转速看作一个状态变量,考虑电机的五阶非线性模型,采用扩展卡尔曼滤波器法在每一估计点将模型线性化来估计转速,这种方法

朗动轿车曲轴位置传感器导致的动力不足等故障诊断与排除

朗动轿车曲轴位置传感器导致的动力不足等故障诊断与排除 发表时间:2016-10-26T11:10:58.383Z 来源:《探索科学》2016年7期作者:吴威 [导读] 在故障维修诊断时,首先要详细了解它的基本结构及工作原理,已达到正确、快捷地排除故障。 广东轻工职业技术学院 510300 摘要:本文主要介绍了别克轿车发动机曲轴位置传感器的结构,重点阐述该车曲轴位置传感器的故障诊断,通过列举维修工作中的实例对曲轴位置传感器的工作原理和故障排除进行分析。 关键词:曲轴位置传感器;启动困难;动力不足;分析诊断 前言 随着中国汽车市场的成熟,汽车电控技术在国内得到了很好的发展,电控汽车的维修也对维修工有着更高的要求。 曲轴位置传感器是汽车发动机电控系统的重要传感器之一,在汽车发动机上的主要作用是为点火控制模块提供参考信号,精确控制发动机点火正时。曲轴位置传感器工作的好坏,将直接影响发动机的启动性能,是导致汽油发动机不能正常发动的原因之一,只有准确判断、检测曲轴位置传感器的故障,才能尽快排除发动机系统故障。因此,在故障维修诊断时,首先要详细了解它的基本结构及工作原理,已达到正确、快捷地排除故障。 一、故障现象 一辆2012款朗动轿车,行驶里程10万余km。据驾驶员反映,最近一段时间,车辆启动时比较困难,需多次启动才能点着火,怠速有时候会不稳、驾驶过程中急加速无力,一段时间后,发动机又能工作正常,在最近一段时间的用车过程中,故障频率有所增加,同时油耗增加明显。观察仪表板,发现发动机故障警报灯不亮,用故障诊断仪读取故障码,没有读取到任何故障码。车主已经清洗了油路和进气歧管,更换了空气滤清器和火花塞,但故障现象依然存在。 二、故障检测与分析 1、基本检查 在对车辆的燃油、机油、冷却液等进行基本检查后,首先决定用LAUNCH—X431故障诊断仪读发动机系统的故障码,未发现故障码。启动发动机,刚开始发动机难以启动,多次尝试后发动机顺利打着火,但怠速不太正常,时高时低,有时又很稳定。空档踩下油门踏板,急加速有力,发动机转速正常。用LAUNCH—X431读取发动机电控系统的数据流,没有发现异常数据。接着对该车的燃油系统的压力、配气正时(含CVVT系统)、单缸独立点火系、曲轴位置传感器及凸轮轴位置传感器、节气门位置传感器及怠速电机等进行检查,多次检查后,都未发现故障。 2、路试还原故障 在轿车静止状态已对能影响发动机怠速和动力的系统进行了多次检查后仍然没有发现故障点。为重现故障,和车主协商后决定外出试车,试车过程中,由车主驾驶车辆进行故障模拟,始终连接LAUNCH—X431故障诊断仪。 当车辆行驶约30km、车速接近100k m/h时,忽然感觉车辆行驶很吃力,观察发动机转速表,发现发动机转速下降。继续踩油门车速也不能提高,同时观察到发动机故障灯并没有亮,故障前也没有其他征兆。此时,迅速靠边停车,发动机不熄火,读到代号为P0339的故障码,显示其含义为当ECU收到CMPS(凸轮轴位置传感器)信号,而未接收到来自CKPS(曲轴位置传感器)时,ECM记录该故障码。观察轿车,还发现发动机怠速不稳定,打开发动机舱盖,发现汽车抖动明显,将油门踩到底,发动机的转速只能达到不足3500r/min。读取发动机电控系统的数据流,发现发动机怠速、氧传感器、燃油喷射持续时间、短期燃油修正、长期燃油修正等多个不正常的数据流,同时发现发动机转速表工作正常、发动机故障灯始终未亮,然后打印故障码和数据流。初步判断曲轴位置传感器故障。 3、朗动轿车的发动机曲轴位置传感器 朗动轿车曲轴位置传感器为电磁感应式。 (1)曲轴位置传感器的作用 曲轴位置传感器是发动机电子控制系统中最主要的传感器之一,它提供点火时刻、确认曲轴位置的信号,用于检测活塞上止点、曲轴转角及发动机转速。假如缺少曲轴位置传感器信号,大多数车不能启动。 (2)朗动轿车曲轴位置传感器结构 磁感应式传感器主要由永久磁铁、叶轮(信号转子)、电磁线圈等组成(如图1)。 图1 朗动轿车曲轴位置传感器结构 (3)电磁式曲轴位置传感器工作原理 发动机带动信号轮旋转,当信号轮凸齿接近并对正电磁线圈时,磁场增强;当信号盘凸齿离开电磁线圈时,磁场减弱,在感应线圈两端产生交变的感应电动势,其频率和幅值随发动机转速的增大而增大,根据频率(脉冲数)计量转速。其中宽齿槽对正电磁线圈时,产生

感应电机高性能无速度传感器控制系统--回顾、现状与展望

电气传动2004年第l期 感应电机高性能无速度传感器控制系统 ——回顾、现状与展望 李篡嚣才m3月 摘要文章对感应电机岛|生能无速度传感;}{}控制的策略进行分析和分类,将当前该研究领域的土要控制策略分为基1:电机理想模型的方案和基于电机非理想特性的方案加以介绍.并且列…了无速度传感器控制的研究热点。 关键词:感应电机无速度传感器柠制磁通观测 speedsensorlesscontroJofInduction MotorwithHighPerformance LiYo“gdo“gl』iMingc“ Abstract:ThI。”畔7(Il…sesthe8pced scns。rle…nductJ。…ac¨㈣untrolmeth。dswIthhlghper【ormⅢ1ce.a11d【1.1sslflPsthemintotwocatezorIesmet】10dsb…d…dea】mot…odcIandbased01111。n】de“chtlractcrlstIcs l'he…renⅢse…hfu“I…dprobkmslnthlsareaa…Jsolnlrod…d Keywords:¨1(1ucIlotl¨Iott……orle引ontrolfl…bs…atIoll 1引言 随着感应电机无速度传感器控制理论和电机控制专用cPU的发展,感应电机高性能无速度传感器控制的实现有了很好的硬件和软件条件,可以实现更完整的电机建模及更先进复杂的观测和控制算法。 在电机的动态方程中,转速是电机模型的一个参数,无速度传感器控制省去了复杂昂贵的转速榆测器件.因此带来一系列问题。 1)转速闭环只能采用辩识的转速进行反馈,转速控制的精度依赖于速度辨识的精度。 2)一些磁通观测方法不能独立使用。例如:包含转速的电机电流模型和全阶观测器无法独立应用。在无速度传感器控制时,这些模型可作为模型参考自适应系统的参考模型或可调模型用于转速和磁通同时计算。因此无速度传感器系统不仅是少r转速闭环所需的反馈信号,更重要的是少了一个稳定磁通计算的电机参数——转速。 3)低频范围磁链观测难度大。感应电机的无速度传感器控制的关键在于磁链的准确观测,而磁链的观测在本质上都是对电机反电势的积4分o]。直接对反电势积分会存在积分初值和飘移问题,因此在无速度传感器控制中如何避免纯积分的问题是关键所在。异步电机在定子供电频率为零时,定子电压电流中不包含转子转速和参数的信息;在定子供电频率很低时电压和反电势很低,电压电流检测误差、PwM脉冲宽度的误差、开关器件的压降等对于电机线电压的重构和反电势计算的影响较大,定子电阻的误差对反电势计算误差影响也变大。所以零频率附近无速度传感器控制具有理论上和实际中的双重限制。 4)多参数辨识受到限制:shinnaka等人从理论上证明了在无速度传感器控制中,在转子磁通幅值恒定的条件下,转子电阻和转速不可能同时辨识出来o。,这给无速度传感器控制中转子电阻辨识增加了难度。转子电阻误差影响滑差计算的精度,在无速度传感器控制中,速度精度主要受滑差精度的影响[3]。 本文对感应电机高性能无速度传感器控制的策略进行分析和分类,将当前该研究领域的主要控制策略分为基于电机理想模型的方案和基于电机非理想特性的方案加以介绍,并且列出了无速度传感器控制的一些结论和研究热点。文中讨论  万方数据

相关文档
最新文档