正交回归(正交多项式回归)

正交回归(正交多项式回归)
正交回归(正交多项式回归)

正交回归(正交多项式回归)

多项式回归虽然是一种有效的统计方法,但这种方法存在着两个缺点:一是计算量较大,特别是当自变量个数较多,或者自变量幂较高时,计算量迅速增加;二是回归系数间存在着相关性,从而剔除一个变量后还必须重新计算求出回归系数。

当自变量x的取值是等间隔时,我们可以利用正交性原理有效地克服上述缺点。这种多项式回归方法就是本节将要介绍的正交多项式回归。

一、正交多项式回归的数学模型

设变量y和x的n组观测数据服从以下k次多项式

(2-4-17)

(2-4-18)

…分别是x的一次、二次,…k次多项式,a ij是一些适当选择的常数,如何选择将在下面讨论(i=1,2,…,n)。将(2-4-18)式代入(2-4-17)式,则有

(2-4-19)

比较(2-4-19)和(2-4-17)式可知,二者系数间存在简单的函数关系,只要求出,就可以求出。

若把…看作新的自变量,则(2-4-19)式就成为一个k元线性模型,其结构矩阵为

(2-4-20) 正规方程为

(2-4-21)

(2-4-22) 其中

在上节中我们遇到的困难是解正规方程系数矩阵的工作量太大,如果我们有办法使其对角线上的元素不为零,而其余元素均为零,那么计算就大大简化了,而且同时消去了系数间的相关性。

对于…我们可以通过选择系数a10,a21,a20,…,a k,k-,…,a k0使得

i

(2-4-23)

(2-4-24)

则正规方程组为

(2-4-29)

回归系数为

(2-4-30)

满足(2-4-23)和(2-4-24)式的多项式组…我们称之为正交多项式。显然这里关键的问题是如何找出一组正交多项式。换言之,就是如何选择系数a10,a21,a20,…,a k,k-i,…,a k0使(2-4-23)和(2-4-24)式成立。

在正交多项式回归中自变量的选择是等间隔的,设间隔为h,x0=a, 则

(2-4-31)

(2-4-32)

(2-4-33)

由此可见,是1至n的正整数。只要我们用代替x作为自变量,问题就变得简单了。在条件许可时,为简便起见我们在选取自变量时可直接取

x1=1,x2=2,…,x n=n。

当x1=1,x2=2,…,x n=n时有

这时可验证以下多项式是正交的,即

(2-4-34)

显然,当x取正整数时,不一定是整数,为了克服这给计算上带来的困难,取

(2-4-35)

为这样一个系数,它使x取正整数时是整数。可以验证用

正交多项式代替所求得的回归方程与用正交多项式

所求得的回归方程是完全一样的。

对于正交多项式有

(2-4-36)

不同的n相对应的,在时的值以及S i值都已制成正交多项式表(见附录),根据正交多项式表,可以计算出回归方程的系数。令

(2-4-37)

回归方程为

(2-4-40)

由于正交多项式回归系数之间不存在相关性,因此某一项如果不显著,只要将它剔除即可,而不必对整个回归方程重新计算。

二、回归方程与回归系数的显著性检验

正交多项式回归方程与回归系数的显著性检验可利用正交多项式的性质按表2-4-5进行。经检验不显著的高次项可以剔除,将其效应并入残差平方和,自由度也同时并入,如果对回归方程精度不满意,可以增加高次项,而已经计算出的结果不必重算。

表2-4-5 正交多项式回归方差分析表

一、应用举例

我们仍以例2-4-2为例讨论正交多项回归的应用。由图2-4-3我们知道,y是x的二次函数,现在我们利用正交多项式方法配一个三次多项式。

首先做变换其中a=36.5,h=0.5,则

然后查正交多项式表,将n=13表中数据抄录下来。

计算:

将以上结果列于计算表,见表2-4-6。

表2-4-6 计算表

由表2-4-6可得

S总=L yy=

S残=L yy-S回=L yy-=0.8139

b0=

方差分析结果列于表2-4-7。

表2-4-7 方差分析表

查F分布表,F0.01(1,9)=10.6,F0.05(1,9)=5.12,对照表2-4-7可知,一次项显著,二次项高度显著,三次项不显著,故可将三次项剔除,并将三次项的偏回归平方和并入残差项。

多项式回归方程为

为了利用回归方程进行予报和控制,常需要求出的估计值。当存在不显著项时,估计方法如下:

本例中

二、正交多项式回归分析程序框图

1.数学模型

2.变量及数组说明

J-正确读入数据的控制变量

N-试验组数

M-所取正交多项式项数

X(I)-存自变量数值

Y(I)-存因变量数值

Z(I)-存Y(I)的平方项

E(I,1)-存在正交多项式一次项

E(I,2)-存在正交多项式二次项

E(I,3)-存在正交多项式三次项(其中I=1,…N)

S(J)-结构矩阵逆矩阵元素J=1,2,3 B(J)-常数项矩阵B J=1,2,3

D(J)-回归系数J=0,1,2,3

Q(J)-偏回归平方和J=0,1,2,3

S0-剩余平方和

S-标准离差

S1-总平方和

F(J)-F检验值

3.程序框图:

回归正交试验设计

回归正交试验设计 一、概述 (1)回归分析与正交试验设计的主要优缺点 回归分析的主要优点是可以由试验数据求出经验公式,用于描述自变量与因变量之间的函数关系。它的主要缺点是毫不关心试验数据如何取得,这样,不仅盲目地增加了试验次数,而且试验数据还往往不能提供充分的信息。因此,有些工作者将经典的回归分析方法描述成:“这是撒大网,捉小鱼,有时还捉不到鱼”。所以说,回归分析只是被动地处理试验数据,并且回归系数之间存在相关关系,若从回归方程中剔除某个不显著因素时,需重新计算回归系数,耗费大量的时间。 正交试验设计的主要优点是科学地安排试验过程,用最少的试验次数获得最全面的试验信息,并对试验结果进行科学分析(如方差分析),从而得到最佳试验条件,但是它的主要缺点是试验结果无法用一个经验公式来表达,从而不便于考察试验条件改变后,试验指标将作如何变化。 (2)回归正交试验设计 回归正交试验设计,实际上就是将线性回归分析与正交试验设计两者有机地结合起来而发展出的一种试验设计方法,它利用正交试验设计法的“正交性”特点,有计划、有目的、科学合理地在正交表上安排试验,并将试验结果用一个明确的函数表达式即回归方程来表示,从而达到既减少试验次数、又能迅速地建立经验公式的目的。 根据回归模型的次数,回归正交试验设计又分为一次回归试验设计和二次回归试验设计。

二、一次回归正交试验设计 (一)一次回归正交试验设计的概念 一次回归设计研究的是一个因素z (或多个因素z 1,z 2,……)与试验指标y 之间的线性关系。当只研究一个因素时,其线性回归模型: y =β0+β1z +e (1) 其回归方程为: z y ∧ ∧ ∧ +=10ββ (2) 式中∧ 0β、∧ 1β称为回归系数,e 是随机误差,是一组相互独立、且服从正态分布N(0,σ2 )的随机变量。可以证明,∧0β、∧1β和∧ y 是β0、β1和y 的无偏估计,即 E(∧0β)=β0,E(∧1β)=β1,E(∧ y )=y 一次回归正交试验设计是通过编码公式x =f(z) ?? 即变量变换,将式(2)变为: b b y 10+=∧ (3) 且使试验方案具有正交性,即使得编码因素X的各水平之和为零: ∑==m i i x 1 (4) 式中m 是因素x 的水平数。 在回归分析中,回归系数的计算公式为:

试验优化设计与分析(教材)

试验优化设计与分析(教材) 成果总结 成果完成人:任露泉,丛茜,杨印生,李建桥,佟金成果完成单位:吉林大学 推荐等级建议:二等奖

1.立项背景 在现代社会实现过程和目标的最优化,已成为解决科学研究、工程设计、生产管理以及其他方面实际问题的一项重要原则。试验优化技术因其具有设计灵活、计算简便、试验次数少、优化成果多、可靠性高、适用面广等特点,已成为现代设计方法中一个先进的设计方法,成为发达国家企业界人士、工程技术人员、研究人员和管理人员的必备技术,它对于创造利润和提高生产率起着巨大的作用。因此在我国为了赶超世界先进水平,促进科研、生产和管理事业的发展,编著相关教材,大力推广与应用试验优化技术,不仅具有普遍的实际意义,也具有一定的迫切性。 20世纪80年代初,鉴于国民经济建设实践和科学技术研究中对试验优化技术的广泛需求,为推动教学改革、提高教学质量,任露泉教授对试验优化理论与技术进行了深入系统研究,为本科生开设了“试验设计”课程,为研究生开设了“试验优化技术”课程,并于1987年由机械工业出版社出版了教材《试验优化技术》,产生了很高的学术与技术影响。 2001年任露泉教授在《试验优化技术》一书的基础上编著了《试验优化设计与分析》教材,由吉林科技出版社出版发行。该教材是对1987年出版的《试验优化技术》的修改、补充和发展。作者根据对试验优化的教学和科研应用的多年实践与体会,为适应读者学习与使用的实际需要,调整修改了原书中的部分内容和一些方法的设计程式;补充了一些试验优化设计的新方法、新技术;增添了试验优化的一些最新应用实例;并增加了试验优化分析一篇。 本教材2001年获吉林省长白山优秀图书一等奖,2002年被遴选为教育部全国研究生教学用书,再次出版发行,2004年获吉林省教学成果一等奖。 2.教材内容 本教材万字,共分三篇二十一章。第一篇试验设计,除正交设计、干扰控制设计与数据处理等常用技术外,还介绍SN比设计、均匀设计、广义设计、调优运算及稳健设计等正交试验设计技术的拓广应用和现代发展的最新方法;第二篇回归设计,除各种回归的正交设计、旋转设计、饱和设计、多项式设计、还介绍多次变换设计、交互作用搜索设计、混料设计以及D-最优设计等回归设计技术的进一步完善与最新应用技术;在第三篇试验优化技术分析中,介绍了试验数据处理过程中经常遇到的难题及其解决办法,数据分析的最新研究成果及其应用实例。例如:有偏估计、PPR分析、探索性数据分析等;此外还介绍了试验优化的常用统计软件。 3.教材特点

SAS学习系列25. 非线性回归

25. 非线性回归 现实世界中严格的线性模型并不多见,它们或多或少都带有某种程度的近似;在不少情况下,非线性模型可能更加符合实际。 对变量间非线性相关问题的曲线拟合,处理的方法主要有: (1)首先确定非线性模型的函数类型,对于其中可线性化问题则通过变量变换将其线性化,从而归结为前面的多元线性回归问题来解决; (2)若实际问题的曲线类型不易确定时,由于任意曲线皆可由多项式来逼近,故常可用多项式回归来拟合曲线; (3)若变量间非线性关系式已知(多数未知),且难以用变量变换法将其线性化,则进行数值迭代的非线性回归分析。 (一)可变换为线性的非线性回归

在很多场合,可以对非线性模型进行线性化处理,尤其是可变换为线性的非线性回归,运用最小二乘法进行推断,对线性化后的线性模型,可以应用REG过程步进行计算。 例1 有实验数据如下: 试分别采用指数回归(y =ae bx)方法进行回归分析。 代码: data exam25_1; input x y; cards; 1.1 109.95 1.2 40.45 1.3 20.09 1.4 24.53 1.5 11.02 1.6 7.39 1.7 4.95 1.8 2.72 1.9 1.82 2 1.49 2.1 0.82 2.2 0.3 2.3 0.2 2.4 0.22 ; run; proc sgplot data = exam25_1; scatter x = x y = y; run; proc corr data = exam25_1; var x y; run;

data new1; set exam25_1; v = log(y); run; proc sgplot data = new1; scatter x = x y = v; title'变量代换后数据'; run; proc reg data = new1; var x v; model v = x; print cli; title'残差图'; plot residual. * predicted.; run; data new2; set exam25_1; y1 = 14530.28*exp(-4.73895*x); run; proc gplot data = new2; plot y*x=1 y1*x=2 /overlay; symbol v=dot i=none cv=red; symbol2i=sm color=blue; title'指数回归图'; 运行结果:

正交函数族与正交多项式

正交多项式 正交函数族与正交多项式 1、什么是权函数? 定义4: 设[a,b]是有限或无限区间,在[a,b]上的非负函数ρ(x)满足条件: (1)∫x k ρ(x )dx b a 存在且为有限值(k=0,1,…); (2)对[a,b]上的非负连续函数g(x),如果∫g (x )ρ(x )dx =0b a ,则g(x)≡0. 则称ρ(x )为[a,b]上的一个权函数。 2、什么是内积? 内积:(f (x ),g (x ))=∫f (x )g (x )dx b a ρ(x)是[a,b]上的权函数,内积:(f (x ),g (x ))=∫ρ(x)f (x )g (x )dx b a ,常用ρ(x)≡1。 3、正交及正交函数族概念 定义5 若f (x ),g (x )∈C [a,b ],ρ(x )为[a,b]上的权函数且满足 (f (x ),g (x ))=∫ρ(x )f (x )g (x )dx =0b a , (2.1) 则称f(x)与g(x)在[a,b]上带权ρ(x )正交。若函数族φ0(x ),φ1(x ),…,φn (x ),…满足关系 (φj ,φk )=∫ρ(x )φj (x )φk (x )dx ={0 , j ≠k,A k >0,j =k.b a (2.2) 则称{φk (x)}是[a,b]上带权ρ(x)的正交函数族;若Ak ≡1,则称为标准正交函数族。 例如,三角函数 1,cos x ,sin x , cos 2x , sin 2x ,… 解: 在区间[?π,π]上的正交函数族,因为对k=1,2,…有(任意两个相同函数在区间[?π,π]上的内积k=j ): (1,1)=∫1×1dx =π?π π?(?π)=2π (sin kx,sin kx )=∫sin k 2x π ?π dkx =π 同理(cos kx,cos kx,)=π

正交多项式最小二乘法拟合.doc

《MATLAB 程序设计实践》课程考核 一、编程实现以下科学计算算法,并举一例应用之。(参考书籍《精通MALAB科学计算》,王正林等著,电子工业出版社,2009年) “正交多项式最小二乘法拟合” 正交多项式最小二乘法拟合原理 正交多项式做最小二乘法拟合: 不要求拟合函数y=f(x)经过所有点(x i ,y i ),而只要求在给定点x i 上残差δi=f(x i )-y i 按照某种标准达到最小,通常采用欧式范数||δ||2作为衡量标准。这就是最小二 乘法拟合。 根据作为给定节点x 0,x 1,…x m 及权函数ρ(x)>0,造出带权函数正交的多项式{P n (x )}。注意n ≤m,用递推公式表示P k (x ),即 ()()()()()()()01101 111,, (1,2,,1)k k k k k P x P x x P x P x P x P x k n ααβ++-=??=-??=--=...-? 这里的P k (x)是首项系数为1的k 次多项式,根据P k (x)的正交性,得 ()()()()()()()()()()()()()()()()()()()()2i 012i 02i 0211i 10x ,,x ,0,1,1,x ,0,1,1,x m i k i k k i k m k k k i i k k m k k k i k k i k m k k k i i x P x xP x P x a P x P x P x xP P k n P P P x P P k n P P P x ρρρβρ=+==---=???==???==???-???===???-????∑∑∑∑ 根据公式(1)和(2)逐步求P k (x )的同时,相应计算系数 ()()()020()(),(0,1,n (,)() m i j i k i k i k m k k i k i i x x x f P a k P P x x ρ??ρ?=====???,∑∑) 并逐步把*k a P k (x )累加到S (x )中去,最后就可得到所求的拟合函数曲线 ***0011n n y=S x =a P x +a P x ++a P x ???()()()(). 流程图 M 文件 function [p] = mypolyfit(x,y,n) %定义mypolyfit 为最小二乘拟合函数 %P = POLYFIT(X,Y,N)以计算以下多项式系数 %P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1). if ~isequal(size(x),size(y)) (2) (1)

math

数学组课程大纲 93.3.1 101 [024002] 微积分(一) [Calculus (I)] , 4学分. 大一必修 先修科目:无 极限及连续性, 微分及其应用, 不定积分, Riemann 积分. 102 [024001] 线性代数(一) [Linear Algebra (I)] , 3学分. 大一必修 先修科目:无 Gaussian 消去法, 矩阵计算, 行列式, 矩阵运算, 基底内积及垂直性. 103 [024021] 数学导论(一) [Introduction to Mathematics (I)] , 3学分. 大一必修 先修科目:无 叙述及量化逻辑,基数, 真值表, 证明法, 谬论, 集合运算, 等价关系, 函数. 111 [024003] 微积分(二) [Calculus (II)] , 4学分. 大一必修 先修科目:微积分(一) 瑕积分, 超越函数, 数列及级数, Taylor's 定理, 偏微分, 重积分及其应用. 112 [024004] 线性代数(二) [Linear Algebra (II)] , 3学分. 大一必修 先修科目:线性代数(一) 线性变换, 固有值, 固有向量, 对角化, 二次型, 及正定矩阵. 113 [024028] 数学导论(二) [Introduction to Mathematics (II)], 3学分. 大一选修 先修科目:数学导论(一) 实数, Schr?der-Bernstein定理, 次序, Zorn's 引理, 选择公理. 201 [024007] 高等微积分(一) [Advanced Calculus (I)] , 4学分. 大二必修 先修科目:微积分(一) , 微积分(二) 实数性质, 均匀连续, 函数序列与级数, 均匀收敛. 203 [024018] 离散数学(一) [Discrete Mathematics (I)] , 3学分. 大二必修 先修科目:微积分(一) , 微积分(二) 排列, 组合方式, 排演原理, 图的表示法, 图的结构, 二分图, 样本, 最小生成样本, 最短路, 欧拉回路, 组合数学和基本图论等. 204 [024020] 拓朴学(一)[Topology I ] , 3学分. 大二选修 先修科目:无 赋距空间, 子空间, 积空间, 商空间, 收敛及连续, 分离公设, 紧致性及连通性, 拓朴不变性. 211 [024008] 高等微积分(二) [Advanced Calculus (II)] , 4学分. 大二必修 先修科目:高等微积分(一) 反函数及隐函数定理, Rn之拓朴性, 连续映射, 重积分. [024008] 213 [024019] 离散数学(二) [Discrete Mathematics (II)] , 3学分. 大二选修 先修科目:离散数学(一) Recurrence relation ,生成函数(generating function),图的连通性,汉来尔顿路径,图的着色, matching. 214[024022] 代数学(一) [Algebra (I)] , 3学分. 大二必修 先修科目:无 群, 子群, 商群, 对称群, 置换群, 同态群的应用.

一次回归正交设计

第五讲回归设计及统计分析 设目标性状y与z1、z2……z m等因素有关,我们可以应用回归分析的方法建立y与诸因素的回归方程,以此对y进行预测和控制,或筛选y的最优指标。z1、z2……z m构成一个因子空间,每一组z1、z2……z m值对应一个y值。如何在因子空间中选择最适当的试验点,以最少的试验点寻求y的最优区域,这就要将回归分析与正交设计结合起来应用,称为回归正交设计。按回归模型的次数,回归正交设计又分为一次回归正交设计和二次回归正交设计。 一、一次回归正交设计 一次回归正交设计主要是应用2水平正交表进行设计,其设计和分析步骤如下。 1.确定试验因素的变化范围

例如研究m 个栽培因素z 1、z 2……z m 与作物产量y 的数量关系,首先需确定各个栽培因素的变化范围。设因素z j 的变化区间为(z 1j ,z 2j ),则z 1j 和z 2j 分别为因素z j 的下水平和上水平。那么 1202j j j z z z += 为因素z j 的零水平。 212j j j z z ?=- 为因素z j 的变化区间。 2.对各因素的水平编码 编码就是对各个因素的取值作如下线性变换: 0j j j j z z x =?-

式中x j 为编码值。如: 101211212 12j j j j j j j j j z z z z z x z z =?-+--==- 0000j j j j z z x =?-= 201222212 12j j j j j j j j j z z z z z x z z =?+--==- 这样就建立了z j 与x j 的一一对应关系: 下水平 z 1j x 1j (-1)

第四章 最佳逼近

第四章最佳逼 近 学习目标:掌握最佳一致逼近和最佳平方逼近的基本理论和 方法、以及最小二乘法常用 的正交多项式以及正交多项 式的性质。重点为最佳一致 逼近和最佳平方逼近的特征 性质(如契比雪夫定理等) 以及最佳一致逼近和最佳平 方逼近多项式的计算方法。

§1 C[a ,b ]上的最佳一致逼近 不难验证,[a ,b ]上所有连续函数的全体构成一无限维线性空间, 简记为C[a,b]。为描述方便,引进符号函数 ,称为C[a,b] 上的一致范数或契比雪夫(Chebyshev )范数,其定义为 ∞?],[] ,[,)(max b a b a x C f x f f ∈?=∈∞考虑所有n 次代数多项式的全体形成的集合 . 不难验证,P n 是C [a ,b ]上的n+1维线性子空间。 { }n n x x span P ,,,1 =

对给定的函数f (x )∈C [a ,b ]称量: ) ()(min ),(x p x f P f n P p n -=?∈为f (x )关于P n 的最佳一致逼近,简称最佳逼近,也称为契比雪夫逼近。满足上式的多项式p *(x )称为f (x )在[a ,b ]上的最佳逼近多项式,而线性空间 P n 也称为逼近子空间。 围绕这一问题,人们马上会问:最佳逼近多项式是否存在?是否唯一?如果存在,如何寻找或构造它?对这些问题的回答构成了最佳一致逼近研究的中心内容。

定理(契比雪夫定理) 对任意 是f 的最佳一致逼近多项式的充要条件是f - p 在[a ,b ]上存在的至少有n +2个点组成的交错点组。 n b a p p C f ∈∈,],[推论1 如果 ,那么在 中存在唯一的元素为f 的最佳一致逼近多项式 ],[b a C f ∈n p 推论 2 如果f 在[a ,b ]上有n +1阶导数,且 在 (a ,b )上保号(恒正或恒负),那么契比雪夫交 错组唯一,且区间[a ,b ]的端点属于契比雪夫交错组。 )1(+n f

一次回归正交设计例子

一次回归正交设计 某冶炼厂排出的废水中含有大量的镉、鉮、铅等有害元素,对环境造成严重污染。考察的试验因素为温度(x1)、碱与硫酸亚铁之比(x2)以及硫酸亚铁用量(x3)对指标除镉效率(y)的影响。不考虑交互作用。已知x l=60~80℃,x2=8~12,x3=1~3ml。 (1)因素水平编码及试验方案的确定 表1 因素水平编码表 编码z j温度(x1) 碱与硫酸亚铁之比 (x2)硫酸亚铁用量 (x3) -1 60 8 1 0 70 10 2 1 80 1 2 3 △j 10 2 1 由于不考虑交互作用,所以建立一个三元线性方程。因素水平编码如表1所示。选正交表L8(27)安排试验,将三个因素分别安排在回归正交表的第1、2、4列,试验方案及试验结果见表2,表中的第9、 10、11号试验为零水平试验。 表2 试验方案及试验结果 试验 号z1 z2 z3 温度(x1) 碱与硫酸亚 铁之比(x2) 硫酸亚铁用 量(x3) 除镉效率 y/% 1 1 1 1 80 1 2 3 8.0 2 1 1 -1 80 12 1 7. 3

3 1 -1 1 80 8 3 6. 9 4 l -1 -l 80 8 l 6.4 5 -1 1 1 60 12 3 6.9 6 -1 1 -1 60 12 1 6.5 7 -1 -1 l 60 8 3 6.0 8 -1 -1 -1 60 8 1 5.1 9 0 0 0 70 10 2 6.6 10 0 0 0 70 10 2 6.5 11 0 0 0 70 10 2 6.6 ⑵回归方程的建立 表3试验结果及计算表 提取率y y2 z1y z2y z3y 试验号z1 z2 z3 /% 1 1 1 1 8.0 64.00 8.0 8.0 8.0 2 1 1 -1 7. 3 53.29 7.3 7.3 -7.3 3 l -1 1 6.9 47.61 6.9 -6.9 6.9 4 1 -1 -1 6.4 40.96 6.4 -6.4 -6.4 5-1 1 1 6.9 47.61 -6.9 6.9 6.9 6 -1 1 -1 6.5 42.25 -6.5 6.5 -6.5 7 -1 -1 1 6.0 36.00 -6.0 -6.0 6.0 8 -1 -1 -1 5.1 26.01 -5.1 -5.1 -5.1

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

正交回归(正交多项式回归)

正交回归(正交多项式回归) 多项式回归虽然是一种有效的统计方法,但这种方法存在着两个缺点:一是计算量较大,特别是当自变量个数较多,或者自变量幂较高时,计算量迅速增加;二是回归系数间存在着相关性,从而剔除一个变量后还必须重新计算求出回归系数。 当自变量x的取值是等间隔时,我们可以利用正交性原理有效地克服上述缺点。这种多项式回归方法就是本节将要介绍的正交多项式回归。 一、正交多项式回归的数学模型 设变量y和x的n组观测数据服从以下k次多项式 (2-4-17) 令 (2-4-18) …分别是x的一次、二次,…k次多项式,a ij是一些适当选择的常数,如何选择将在下面讨论(i=1,2,…,n)。将(2-4-18)式代入(2-4-17)式,则有 (2-4-19) 比较(2-4-19)和(2-4-17)式可知,二者系数间存在简单的函数关系,只要求出,就可以求出。 若把…看作新的自变量,则(2-4-19)式就成为一个k元线性模型,其结构矩阵为

(2-4-20) 正规方程为 (2-4-21) (2-4-22) 其中 在上节中我们遇到的困难是解正规方程系数矩阵的工作量太大,如果我们有办法使其对角线上的元素不为零,而其余元素均为零,那么计算就大大简化了,而且同时消去了系数间的相关性。 对于…我们可以通过选择系数a10,a21,a20,…,a k,k-,…,a k0使得 i (2-4-23) (2-4-24)

则正规方程组为 (2-4-29) 回归系数为 (2-4-30) 满足(2-4-23)和(2-4-24)式的多项式组…我们称之为正交多项式。显然这里关键的问题是如何找出一组正交多项式。换言之,就是如何选择系数a10,a21,a20,…,a k,k-i,…,a k0使(2-4-23)和(2-4-24)式成立。 在正交多项式回归中自变量的选择是等间隔的,设间隔为h,x0=a, 则 (2-4-31)

正交多项式的性质

正交多项式的性质 (李锋,1080209030) 摘要:本文主要阐述了由基},,,,,1{2 n x x x 按G-S 正交化方法得到的正交多项式的一些有用性质及 其证明过程,包括正交性,递推关系,根的分布规律等。 正如在最佳平方逼近的讨论中看到的那样,正交多项式能够使得由其生成的Gram 矩阵 的形式极其简单,为非奇异对角矩阵,从而大大降低了求解最佳平方逼近多项式的系数的计算,也避免了计算病态的矩阵方程。同时在数值积分方面,它也有着非常重要的应用。因而,有必要分析正交多项式有用的性质。 在区间],[b a 上,给定权函数)(x ρ,可以由线性无关的一组基},,,,,1{2 n x x x ,利 用施密特正交化方法构造出正交多项式族{∞0)}(x n ?, 由)(x n ?生成的线性空间记为Φ。对于],[)(b a C x f ∈,根据次数k 的具体要求,总可以在Φ在找到最佳平方逼近多项式)(*x k ?。 )(x n ?的具体形式为: 2,1,)() ,() ,()(;1)(1 00=-==∑-=n x x x x x n k k k k k n n n ?????? 这样构造的正交多项式)(x n ?具有以下一些有用的性质: 1. )(x n ?为最高次数项系数为1的n 次多项式; 2. 任一不高于n 次的多项式都可以表示成 ∑=n k k k x 0 )(? α; 3. 当m n ≠时,0),(=m n ??;且)(x n ?与所有次数小于n 的多项式)(1x p n -正交, 即0)()()(1=-? dx x p x x n n b a ?ρ,其中)(x ρ为权函数; 4. 存在递推关系: ,2,1,0),()()()(11=--=-+n x x x x n n n n n ?β?α?, 其中:

试验设计习题及答案

【西北农林科技大学试验设计与分析复习题】员海燕版 一、名词解释(15分) 1.重复:一个条件值的每一个实现。或因素某水平值的多次实现。 2.因素:试验中要考虑的可能会对试验结果产生影响的条件。常用大写字母表示。 3.水平:因素所处的不同状态或数值。 4.处理:试验中各个因素的每一水平所形成的组合 5.响应:试验的结果称为响应; 响应函数:试验指标与因素之间的定量关系用模型 ε+=),,(1n x x f y Λ表示,其中 ),,(1n x x f y Λ=是因素的值n x x ,,1Λ的函数,称为响应函数。 6.正交表:是根据均衡分散的思想,运用组合数学理论在拉丁方和正交拉丁方的基础上构造的一种表格。 7.试验指标:衡量试验结果好坏的指标 8.随机误差:在试验中总存在一些不可控制的因素,它们的综合作用称为~ 9.交互作用:一般地说,如果一个因素对试验指标的影响与另一个因素所取的水平有关,就称这两个因素有交互作用。 10.试验设计:是研究如何合理地安排试验,取得数据,然后进行综合的科学分析,从而达到尽快获得最优方案的目的。 11.试验单元:在试验中能施以不同处理的材料单元。 12.拉丁方格:用拉丁字母排列起来的方格,要求每个字母不论在方格的行内还是列内都只出现一次。 13.综合平衡法:先对各项指标进行分析,找出其较优生产条件,然后将各项指标的较优生产条件综合平衡,找出兼顾各项指标都尽可能好的生产条件的方法。 14.综合评分法:是用评分的方法,将多个指标综合成单一的指标---得分,用每次试验的得分来代表试验的结果,用各号试验的分数作为数据进行分析的方法。 15.信噪比:信号功率与噪声功率之比。 16.并列法:是由相同水平正交表构造水平数不同的正交表的一种方法。 17.拟水平法:是对水平数较少的因素虚拟一些水平使之能排在正交表的多水平列上 的一种方法。 18.直和法:是先把一部分因素和水平放在第一张正交表上进行试验,如果试验结果 达不到要求,再利用第一阶段试验结果提供的信息,在第二张正交表上安排下一 阶段的试验,最后再对两张正交表上的结果进行统一分析的方法。 19.直积法: 在某些试验设计中,试验因素常可分为几类,为了考察其中某两类因素 间的交互作用,常采用的把两类因素所用的两张正交表垂直叠在一起进行设计和 分析的一种方法。 20.稳健设计:为了减少质量波动,寻找使得质量波动达到最小的可控因素的水平组合 二、简答题(10分) 1.试验设计的基本原则是什么? 答:一是重复,即一个条件值的每一个实现。作用是提高估计和检验的精度 二是随机化,是通过试验材料的随机分配及试验顺序的随机决定来实现的 三是区组化,也就是局部控制。 2.试验设计的基本流程是什么? 1明确试验目的 2选择试验的指标,因素,水平 3设计试验方案 4实施试验 5对获得的数据进行分析和推断。 3.试验设计的相关分析有哪几种? 一是相关系数,即用数理统计中的两个量之间的相关程度来分析的一种方法。 二是等级相关,是把数量标志和品质标志的具体体现用等级次序排序,再测定标志等级和标志等级相关程度的一种方法。有斯皮尔曼等级差相关系数和肯德尔一致相关系数) 4.为什么要进行方差分析? 方差分析可检验有关因素对指标的影响是否显著,从而可确定要进行试验的因素; 另外,方差分析的观点认为,只需对显著因素选水平就行了,不显著的因素原则上可在试验范围内取任一水平,或由其它指标确定。 5.均匀设计表与正交表,拉丁方设计的关系 6.产品的三次设计是什么? 产品的三次设计是系统设计,参数设计,容差设计。 三、(15分) 1.写出所有3阶拉丁方格,并指出其中的标准拉丁方格和正交拉丁方格

SAS讲义 第三十四课非线性回归分析

第三十四课 非线性回归分析 现实世界中严格的线性模型并不多见,它们或多或少都带有某种程度的近似;在不少情况下,非线性模型可能更加符合实际。由于人们在传统上常把“非线性”视为畏途,非线性回归的应用在国内还不够普及。事实上,在计算机与统计软件十分发达的令天,非线性回归的基本统计分析已经与线性回归一样切实可行。在常见的软件包中(诸如SAS 、SPSS 等等),人们已经可以像线性回归一样,方便的对非线性回归进行统计分析。因此,在国内回归分析方法的应用中,已经到了“更上一层楼”,线性回归与非线性回归同时并重的时候。 对变量间非线性相关问题的曲线拟合,处理的方法主要有: ● 首先决定非线性模型的函数类型,对于其中可线性化问题则通过变量变换将其线 性化,从而归结为前面的多元线性回归问题来解决。 ● 若实际问题的曲线类型不易确定时,由于任意曲线皆可由多项式来逼近,故常可 用多项式回归来拟合曲线。 ● 若变量间非线性关系式已知(多数未知),且难以用变量变换法将其线性化,则进 行数值迭代的非线性回归分析。 一、 可变换成线性的非线性回归 在实际问题中一些非线性回归模型可通过变量变换的方法化为线性回归问题。例如,对非线性回归模型 ()t i t i t i t ix b ix a y εα+++=∑=2 1 0sin cos (34.1) 即可作变换 t t t t t t t t x x x x x x x x 2sin ,2cos ,sin ,cos 4321==== 将其化为多元线性回归模型。一般地,若非线性模型的表达式为 ()()()t m m t t t x g b x g b x g b b y ++++= 22110 (34.2) 则可作变量变换 ()()() t m m t t t t t x g x x g x x g x ===* 2*21*1,,, (34.3) 将其化为线性回归模型的表达式,从而用前面线性模型的方法来解决,其中(34.3)中的x t 也 可为自变量构成的向量。 这种变量变换法也适用于因变量和待定参数 b i 。如 ()[]1exp 2132211-++=t t t t t x x b x b x b a y (34.4) 时上式两边取对数得 ()1ln ln 2132211-+++=t t t t t x x b x b x b a y (34.5) 现作变换 1,ln ,ln 2130*-===t t t t t x x x a b y y (34.6) 则可得线性表达式

JMP试验设计

JMP试验设计 1.试验设计方法及其在国内的应用 (2) 2.试验设计(DOE)就在你身边试验设计(DOE)就在你身边 (7) 3.初识试验设计(DOE) (13) 4.多因子试验设计(DOE)的魅力 (18) 5.用DOE方法最优化质量因子配置 (26) 6.顾此不失彼的DOE (32) 7.试验设计(DOE)五部曲 (39) 8.稳健参数设计的新方法 (45) 9.JMP的试验设计优势——为什么用JMP做试验设计 (50)

试验设计方法及其在国内的应用 随着改革开放的深入,以市场经济为代表的西方先进文明及其方法论越来越多被国内企业界所接纳。在质量管理、产品(医药,化工产品,食品,高科技产品,国防等)研发、流程改进等领域,统计方法越来越多成为企业运营的标准配置。 试验设计作为质量管理领域相对复杂、高级的统计方法应用,也开始在国内被逐渐接受,推广。其实试验设计对于我国学术界来说并不陌生。比如均匀设计,均匀设计是中国统计学家方开泰教授(下图左)和中科院院士王元首创,是处理多因素多水平试验设计的卓有成效的试验技术,可用较少的试验次数,完成复杂的科研课题开发和研究。国内一些大学的数学系和统计系近年来已经逐渐开始开设专门的试验设计课程,比如清华大学,电子科技大学、复旦大学等高校。国内一些行业领先的企业,比如中石化,华为科技,中石油,宝钢等企业,也开始在质量管理和产品研发、工艺改进等领域采用DOE方法。尽管DOE越来越多的被国内产、学、研领域所接受,但是我们还是看到,国内对于DOE的研究和推广仍旧停留在比较浅的层次。以上述企业为例,中石化下属的石化科学研究院和上海石化研究院应该是我国石油化工研究领域的王牌单位了,不过不管是北京的石科院,还是上海石化研究院,在油品研发、工艺改进、质量管理等领域,对于DOE的使用还仅仅停留在部分因子和正交设计层面。笔者在网络

q-正交多项式及相关问题的研究

q-正交多项式及相关问题的研究 【摘要】:一、给出了Rogers-Szego多项式系列生成函数的新证明及其推广.首先,建立了指数算子与Rogers-Szego多项式之间的表示关系,从算子角度获得生成函数及其对偶形式的新证明.其次,构造了推广的指数算子,研究了双变量Rogers-Szego多项式的生成函数,并提出了一个公开问题.另外,进一步探讨了U(n+1)型Rogers-Szego多项式的生成函数及U(n+1)型的Kalnins-Miller变换公式的推广.二、给出了多重Rogers-Szego及Hahn多项式生成函数两项和展开的新证明.首先,通过了距量与正交多项式之间的关系得到Al-Salam-Carlitz正交多项式及相关的积分.其次,得到了双线性Hahn多项式的生成函数两项和的展开.另外,进一步研究了三线性及多线性Hahn多项式的生成函数两项和的展开.最后,给出了距量与Euler有限差分公式及Carlitz反演公式之间的相关结果.三、给出了多变量q-Laguerre多项式积分结果.首先,利用了单变量q-Laguerre多项式的正交性,研究其多变量性质.其次,获得了推广的q-Hermite多项式与q-Laguerre多项式之间的表示关系.另外,讨论了q-Hermite与q-Laguerre多项式的混合积分.最后,研究了多变量推广的离散型q-Hermite多项式的积分正交性.四、给出了多项式的Carlitz型生成函数的多重推广和Christoffel-Darboux公式.首先,利用了指数算子分解的方法研究了多项式的Carlitz型生成函数.其次,研究了Rogers-Szego多项式的Christoffel-Darboux公式.另外,纠正了Carlitz的结果.最后,借助了Carlitz的q-算子给出了二项式定理模拟的

正交多项式拟合在解决实际问题的应用

正交多项式拟合在解决实际问题的应用为了避免正规矩阵的“病态”问题,提出了正交多项式拟合方法。尤其是实际工作中的误差是不可避免的,而正交多项式拟合能够更好的考虑到自变量和因变量的误差,拟合出来的曲线更合理,也更便于计算机实现。 正交多项式拟合的实用性和一般性使得它在工程项目,机械制造,甚至人工智能等领域应用广泛,先简要介绍其中的几个方面。 1、边缘识别是利用数字图像法检测结构变形的一种方法,其中一种是需要多项式拟合,且拟合的精度决定了识别的精度,为提高拟合精度,就需要高次多项式,但又会产生“病态”,因此采用正交多项式拟合方法就十分必要了。将基于正交多项式拟合的边缘识别应用到梁变形检测中,拟合程度高,检测效果好。 2、提高零炮检距地震道的拟合精度是保幅地震资料处理的关键环节之一。相对于常规地震叠加技术,二阶多项式拟合技术能够提高零炮检距地震道的拟合精度。但是不同时刻地层反射信号的A VO特性是变化的,仅仅利用二阶多项式来实现零炮检距地震道拟合是达不到精度要求的。采用正交多项式描述CMP道集上不同时刻地层反射信号的A VO特性,建立正交多项式系数谱;并根据SVD估计有效波的能量,自适应地确定不同时刻拟合零炮检距地震道信号所需的阶次,实现高精度的零炮检距地震道拟合。合成记录和实际数据的处理表明该方法能够有效地减小零炮检距地震道拟合误差,提高拟合精度。 3、水泵性能曲线一般是用图表或曲线图给出,但在水泵选型或泵站经济运行中,常常有必要知道水泵性能曲线的函数表达式。对此,可以根据试验数据或性能图上的数据进行拟合。目前,在水泵性能曲线拟合中较常用的一般多项式的最小二乘拟合,需要求解一非线性方程组,增加了数据存贮量,而且在多项式次数较高时方程容易出现病态。如果采用正交多项式,则对n组数据,可以一直拟合到n-1次多项式而结果仍然稳定,因此提出对离心泵性能曲线的等流量间距的正交多项式回归法。 采用Forsythe递推法生成正交多项式,根据显著性检验来确定拟合的多项式次数,并在计算中佐以作图程序来进行直观分析。并证明了这种方法的实用性。 采用正交多项式并最终转化为一般多项式来拟合水泵性能曲线,避免了解联立方程组的繁琐和不稳定性,并根据数据分析来确定多项式的次数m,使m的取值不受人为经验限制。另外,各正交多项式之间互相正交,增减(最高)项次时,低次项的拟合系数并不改变,这就避免了重复计算。

一次回归正交设计、二次回归正交设计、二次回归旋转设计

一次回归正交设计 某产品的产量与时间、温度、压力和溶液浓度有关。实际生产中,时间控制在30~40min,温度控制在50~600C,压力控制在2*105~6*105Pa,溶液浓度控制在 20%~40%,考察Z 1~Z 2 的一级交互作用。 因素编码 Z j (x j ) Z 1 /min Z 2 /o C Z 3 /*105Pa Z 4 /% 下水平Z 1j (-1)30 50 2 20 上水平Z 2j (+1)40 60 6 40 零水平Z 0j (0)35 55 4 30 变化间距 5 5 2 10 编码公式X 1=(Z 1 -35)/5 X 2 =(Z 2 -55)/5 X 3 =(Z 3 -4)/2 X 4 =(Z 4 -30)/10 选择L8(27)正交表 因素x 1,x 1 ,x 3 ,x 4 依次安排在第1、2、4、7列,交互项安排在第3列。 试验号X0 X1(Z1) X2(Z2) X3(Z3) X4(Z4) X1X2 Yi 1 1 1 1 1 1 1 9.7 2 1 1 1 -1 -1 1 4.6 3 1 1 -1 1 -1 -1 10.0 4 1 1 -1 -1 1 -1 11.0 5 1 -1 1 1 -1 -1 9.0 6 1 -1 1 -1 1 -1 10.0 7 1 -1 -1 1 1 1 7.3 8 1 -1 -1 -1 -1 1 2.4 9 1 0 0 0 0 0 7.9 10 1 0 0 0 0 0 8.1 11 1 0 0 0 0 0 7.4 Bj=∑ xjy 87.4 6.6 2.6 8.0 12.0 -16.0 aj=∑ xj2 11 8 8 8 8 8 bj = Bj /aj 7.945 0.825 0.325 1.000 1.500 -2.00 Qj = Bj2 /aj 393 5.445 0.845 8.000 18.000 32.000 可建立如下的回归方程。 Y=7.945+0.825x1+0.325x2+x3+1.5x4-2x1x2 显著性检验: 1、回归系数检验

石河子大学2016级研究生《试验设计与数据处理》

石河子大学 2016至2017年第1学期 2016级硕士生《试验设计与数据处理》试题 题号 一 二 三 四 五 总分 得分 1、某钢厂为了研发弹簧用镍铜合金代用材料,优选8%磷青铜生产中的加工度A 与退火温度B ,以便获得以下四种规格的材料: 第一种 抗拉强度75kgf/mm 2以上 第二种 抗拉强度70kgf/mm 2以上 第一种 抗拉强度65kgf/mm 2以上 第一种 抗拉强度60kgf/mm 2以上 取A 、B 水平如下: 加工度A :A 1=30,A 2=40,A 3=50,A 4=60(%) 退火温度B :B 1=150,B 2=200,B 3=250,B 4=300(O C ) 将A 、B 各取四水平,按随机顺序作全面试验,然后随机抽取试样测量其抗拉强度,得数据如下表: B y A B 1 B 2 B 3 B 4 A 1 A 2 A 3 A 4 试分析下述问题: 1)加工度A 、退火温度B 与抗拉强度间的关系式(试配二元三次多项式回归方程) 提示:3033302022 2011011000^ B b A b B b A b AB b B b A b b y +++++++= 2)求出满足第一种到第四种抗拉强度的加工度与退火温度的范围。 2、设有四个自变量1234,,,Z Z Z Z ,拟合线性回归的小区域为:[10,15],[1,2],[25,35],[75,85],选用78(2)L 正交表作试验计划,试验结果如表2: 自 然 变 量 规 范 变 量 试验结果 y 1Z 2Z 3Z 4Z 1x 2x 3x 4x 15 2 35 85 1 1 1 1 15 2 25 75 1 1 -1 -1 15 1 35 75 1 -1 1 -1 15 1 25 85 1 -1 -1 1 10 2 35 75 -1 1 1 -1 10 2 25 85 -1 1 -1 1 10 1 35 85 -1 -1 1 1 10 1 25 75 -1 -1 -1 -1 试拟合一次回归模型并进行相关回归方程检验。用手工计算后再用统计软件计算,要求

相关文档
最新文档