理论力学13—动能定理

理论力学13—动能定理
理论力学13—动能定理

理论力学13—动能定理

理论力学课后习题答案 第10章 动能定理及其应用 )

C v ? A B C r v 1 v 1 v 1 ω?(a) C C ωC v ωO (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,= 45o(图a )。 2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上作 纯滚动,图示瞬时角速度为 (图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2 121(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]cos 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= 习题10-2图 习题10-3图 B v A C θ (a) v O ω A 习题10-1图 (b) (c) A

理论力学 (13)

3、质点相对地球表面的 运动微分方程

考虑在北半球地球表面北纬φ角处,一个质点相对地球表面的自由运动。假设质点M的质量为m,当地的重力加速度大小为g,计算质点的运动微分方程。建立固定于地球表面的O x’y’z’(东北天)坐标系为非惯性参考系. 其中x’轴水平向东,y’轴水平向北,z’轴铅垂向上。

落体偏差现象 例3在北半球地球表面北纬φ角处,以初速度v 0铅锤上抛一质量为m 的质点M ,计算质点M 落回地面的落点与上抛点的偏离量。 解:建立固定于地球表面的东北天坐标系O x ’y ’z ’为非惯性参考系. 其中x ’轴水平向东,y ’轴水平向北,z ’轴铅垂向上。

为了简单,仅取到ω的一次项,假设微分方程(1)的解为:0 10101 x x x y y y z z z w w w ¢¢¢=+ì?¢¢¢=+í?¢¢¢=+?代入方程(1)得到:010101012()sin 2()cos 2()sin 2()cos x y y z z y x x z g x x w w j w w j w w j w w j ¢¢¢¢¢=+-+ì? ¢¢¢=-+í?¢¢¢=-++?&&&&&&&&&&&&&&化简并整理成ω的级数形式: 200112012 012(sin cos )2(sin cos )2sin 2sin 2cos 2cos x y z y z y x x z g x x j j w j j w j w j w j w j w ¢¢¢¢¢ì=-×+-×?¢¢¢=-×-×í?¢¢¢=-+×+×? &&&&&&&&&&&&&&对假设的ω的级数解形式求二阶导数得到:010101x x x y y y z z z w w w ¢¢¢=+ì? ¢¢¢=+í?¢¢¢=+?&&&&&&&& &&&&&&&&&&上述两组方程应该一致,所以ω的各级级数系数应该一致。首先比较ω0的 系数,得到:000 0;0;x y z g ¢¢¢===-&&&&&&积分一次得到速度,为:010203;;x C y C z gt C ¢¢¢===-+&&&由速度初始条件(t =0时, v ’=v )得到:0;0;x y z gt v ¢¢¢===-+&&&3、质点相对地球表面的运动微分方程

理论力学(机械工业出版社)第十三章达朗伯原理习题解答

习 题 13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。试求此时飞机的加速度a 和悬线中的张力F T 。 图13-16 ma F =I 0cos sin 0 I T =-=∑β?F F F x ? βsin cos I T F F = 0sin cos 0 I T =--=∑mg F F F y β? 0sin cos sin cos I I =--mg F F β?? β 0sin ) cos(I =-+mg F ?β? mg ma =+? β?sin ) cos( ) cos(sin β?? += g a mg ma F F ) cos(cos sin cos sin cos I T β?β ?β? β+= == 13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢

球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。已知钢球脱离筒壁的最佳位置'4054?=?,滚筒半径R =0.6m 。试求使钢球在'4054?=?处脱离滚筒的滚筒转速。 图13-17 2n I ωmR ma F == 0cos 0 I N n =-+=∑F mg F F ? )cos (cos cos 22I N ?ω?ω?g R m mg mR mg F F -=-=-= 令0N =F 0cos 2=-?ωg R R g ?ωcos = min r/35.296 .00454cos 8.9π30cos π30π30='??=== R g n ?ω 13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。试求物块不致因转台旋转而滑出时水平转台的最大转速。 图13-18 2n I ωmr ma F == 00 N =-=∑mg F F y

理论力学(机械工业出版社)第十二章动能定理习题解答

习 题 12–1 一刚度系数为k 的弹簧,放在倾角为θ的斜面上。弹簧的上端固定,下端与质量为m 的物块A 相连,图12-23所示为其平衡位置。如使重物A 从平衡位置向下沿斜面移动了距离s ,不计摩擦力,试求作用于重物A 上所有力的功的总和。 图12-23 ))((2 sin 2st 2 st s k s mg W +-+ ?=δδθ 2st 2 sin s k s k mgs --=δθ 22 s k -= 12–2 如图12-24所示,在半径为r 的卷筒上,作用一力偶矩M=a ?+b ?2 ,其中?为转角,a 和b 为常数。卷筒上的绳索拉动水平面上的重物B 。设重物B 的质量为m ,它与水平面之间的滑动摩擦因数为μ。不计绳索质量。当卷筒转过两圈时,试求作用于系统上所有力的功的总和。 图12-24 3 22π40 π3 64π8d )+ (d b a b a M W M + ===? ????? mgr r mg W F π4π4μμ-=?-= )3π16π6π(3 4 π4π364π8232mgr b a mgr b a W μμ-+=-+=∑ 12–3 均质杆OA 长l ,质量为m ,绕着球形铰链O 的铅垂轴以匀角速度ω转动,如图12-25所示。如杆与铅垂轴的夹角为θ,

试求杆的动能。 图12-25 x x l m x x l m v m E d )sin 2()sin )(d (21)(d 21d 2222k θωθω=== θωθω2220222k sin 6 1 d )sin 2(ml x x l m E l ?== 12–4 质量为m 1的滑块A 沿水平面以速度v 移动,质量为 m 2的物块B 沿滑块A 以相对速度u 滑下,如图12-26所示。试求 系统的动能。 图12-26 ])30sin ()30cos [(2 1 2 122221k ?++?+=u v u m v m E )30cos 2(212 122221?+++=uv v u m v m )3(2 1 2122221uv v u m v m +++= 12–5 如图12-27所示,滑块A 质量为m 1,在滑道内滑动,其上铰接一均质直杆AB ,杆AB 长为l ,质量为m 2。当AB 杆与铅垂线的夹角为?时,滑块A 的速度为A v ,杆AB 的角速度为ω。试求在该瞬时系统的动能。 图12-27 AB A E E E k k k += 22222221)12 1(21])sin 2()cos 2[(2121ω?ω?ωl m l l v m v m A A ++++= )12 1cos 41(212122222 221ω?ωωl lv l v m v m A A A ++++= )cos 3 1(2121222 221?ωωA A A lv l v m v m +++= 12–6 椭圆规尺在水平面内由曲柄带动,设曲柄和椭圆规

《理论力学》第十三章-达朗贝尔原理

a I F F C N m 4.0m 4.0m 8.0A 第十三章 达朗贝尔原理 [习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。试求使货物既不倾拿倒又不滑动的刹车时间。 解: 以货物为研究对象,其受力如图所示。图中, )/(1536001000540s m s m v v =? == 0=t v t t v v a o t 15 -=-= t m ma F I 15= = G f N f F s s == 虚加惯性力之后,重物在形式上“平衡”。 货物不滑动的条件是: 0=∑x F 0=-F F I 015 ≤-N f t m s N f t m s ≤15 )(1.58 .910003.01000 1515s N f m t s =???=≥

N 即货物不滑动的条件是:) (1.5s t≥ (1) 货物不倾倒(不向前倾倒)的条件是: ) (≥ ∑i A F M 8.0 4.0≥ ? - ? I F N 8.0 15 4.0≥ ? - ? t m mg 30 ≥ - t g t g 30 ≥ ) ( 06 .3 8.9 30 30 s g t= = ≥ (2) (1)(2)的通解是) (1.5s t≥。即,使货物既不倾拿倒又不滑动的刹车时间是) (1.5s t≥。[习题13-2] 放在光滑斜面上的物体A,质量kg m A 40 =,置于A上的物体B,质量kg m B 15 =;力kN F500 =,其作用线平行于斜面。为使A、B两物体不发生相对滑动, 试求它们之间的静摩擦因素 s f的最小值。 解:以A、B构成的质点和系为研究对象,其受力如图所示。在质心加上惯性力后,在形式上构成平面一般“平衡”力系。 = ∑x F 30 sin ) (0= + - -g m m F F B A I

理论力学(13.8)--达朗贝尔原理

第13章作业 1、已知:图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。设零件与臂之间的摩擦系数 f s =0.2 。试求 :(1)降落加速度 为多大时,零件不致在水平臂上滑动;(2)比值h / d 等于多少时,零件在滑动之前先倾倒。 2、已知:图示均质矩形块质量m1 =100kg ,置于平台车上。车质量为 m2 =50kg ,此车沿光滑的水平面运动。车和矩形块在一起由质量为 m3 的物体牵引,使之作加速运动。设物块与车之间的摩擦力足够阻止相互滑动。 试求:能够便车加速运动的质量 m3 的最大值,以及此时车的加速度大小。 3、已知: 图示长方形均质平板,质量为 27kg ,由两个销 A 和 B 悬挂。如果突然撤去销 B 。 试求:在撤去销 B 的瞬时平板的角加速度和销 A 的约束力。

4、已知:转速表的简化模型如图示。杆 CD 的两端各有质量为 m 的 C 球和 D 球 ,杆 CD 与转轴 AB 铰接于各自的中点,质量不计。当转轴 AB 转动且外载荷变化时,杆 CD 的转角 j 就发生变化。设 ω=0 时, φ=,且盘簧中无力。盘簧 产生的力矩 M 与转角 j 的关系为M=k(φ-),式中 k 为盘簧刚度系数。 试求: (1)角速度 ω与角 j 之间的关系;(2)当系统处于图示平面时,轴承 A , B 的约束力。 5、已知:当发射卫星实现星箭分离时,打开卫星整流罩的一种方案如图所示。先由释放机构将整流罩缓慢送到图示位置,然后令火箭加速,加速度为 a ,从而使整流罩向外转。当其质心 C 转到位置 C ′ 时, O 处铰链自动脱开,使整流罩离开火箭。设整流罩质量为 m ,对轴 O 的回转半径为 r ,质心到轴 O 的距离 OC = r 。试求:整流罩脱落时,角速度为多大 ?

理论力学课后习题答案-第10章--动能定理及其应用-)

(a) A (a) O 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上 A 、 B 两点的速度方向如图示,B 点的速度为v B ,θ = 45o(图 a )。 2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上 作纯滚动,图示瞬时角速度为ω(图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2121(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]cos 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= 习题10-2图 习题10-3图 B (a) 习题10-1图 (b) (c)

清华大学版理论力学课后习题答案大全 第10章动能定理及其应用习题解

A (a) O (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为 v B ,θ = 45o(图a )。 2. 图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3 .质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上 作纯滚动,图示瞬时角速度为ω(图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2 1 21(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]c o s 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2 222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= )92(3P Q 22F F g r +=ω 习题10-2图 习题10-3图 B (a) 习题10-1图 (b) (c)

相关文档
最新文档