LS-DYNA动力分析指南 第13章 热分析与热固耦合分析

LS-DYNA动力分析指南 第13章 热分析与热固耦合分析
LS-DYNA动力分析指南 第13章 热分析与热固耦合分析

热分析动力学

热分析动力学 一、 基本方程 对于常见的固相反应来说,其反应方程可以表示为 )(C )(B )(A g s s +→ (1) 其反应速度可以用两种不同形式的方程表示: 微分形式 )(d d αα f k t = (2) 和 积分形式 t k G =)(α (3) 式中:α――t 时物质A 已反应的分数; t ――时间; k ――反应速率常数; f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为: α αααd /)]([d 1 )('1)(G G f = = (4) k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示: )/exp(RT E A k -= (5)

式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。 方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式: t T T β0 += (6) 即: β/=t d dT 式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。 于是可以分别得到: 非均相体系在等温与非等温条件下的两个常用动力学方程式: )E/RT)f(A t d d αexp(/-=α (等温) (7) )/exp()(β d d RT E f A T -=αα (非等温) (8) 动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)

对于反应过程的DSC 曲线如图所示。在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。 二、 微分法 2.1 Achar 、Brindley 和Sharp 法: 对方程 )/exp()(β d d RT E f A T -=αα进行变换得方程: )/exp(d d )(βRT E A T f -=α α (9) 对该两边直接取对数有: RT E A T f - =ln d d )(βln αα (10) 由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度T 时的分解百分数,进行线性回归分析,就可以试解出相应的反应活化能E 、指前因子A 和机理函数f(α). 2.2 Kissinger 法

DSC 热分析方法简介

Interpretation of DSC curves Practice: The 15 diagrams on the next pages include the following effects:§melting §crystallization, cold crystallization §evaporation, vaporization, drying §solid-solid transition §polymorphic transitions via the liquid phase §glass transition §oxidation §curing, polymerization, polyaddition §decomposition §initial deflection §artifact, mechanical disturbances Write down the effects on the curves and try to find out what each substance is.

Diagram 1 Clear liquid Diagram 2 White powder Wg^-1-0.030 -0.025°C 299.5 300.0 300.5 mW 5°C 292 294296298300302304306308^exo Interpretation DSC 216.11.2000 17:43:26 MSG MT: G. Widmann System e R TA METTLER TOLEDO S Diagram 3 White powder, heated to 200 °C and shock cooled to ambient mW 10°C 120130140150160170180190 ^exo Interpretation DSC 310.11.2000 17:31:50 MSG MT: G. Widmann System e R TA METTLER TOLEDO S

三种热分析方法综合介绍.

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis) 1.DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以对t作图,所得DTA曲线如图Ⅱ-3-3所示, 在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原 理图图 II-3-2试样和参 比物的升温曲线 1.参比物; 2.试样; 3.炉体; 4.热电偶(包括吸热转变) 图Ⅱ-3-3 DTA吸热转变曲线 TA曲线所包围的面积S可用下式表示 式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。 2.DTA曲线起止点温度和面积的测量

热分析技术简介——DSC

热分析技术简介——DSC 摘要:差示扫描量热分析仪因其使用方便,精确度高等特点,多年来备受青睐。本文介绍了差示扫描量热法(DSC)的发展历史、现状及工作原理,并且简要地介绍了DSC在天然气水合物、食品高聚物测定和水分含量测定、油脂加工过程及产品、沥青性能研究及改性沥青的性能评定中的应用。 关键词:DSC 技术发展现状应用 一、差示扫描量热法( DSC ) 简史 18世纪出现了温度计和温标。 19世纪,热力学原理阐明了温度与热量即热焓之间的区别后,热量可被测量。 1887年,Le Chatelier进行了被认为的首次真正的热分析实验:将一个热电偶放入黏土样品并在炉中升温,用镜式电流计在感光板上记录升温曲线。 1899年,Roberts Austen将两个不同的热电偶相反连接显著提高了这种测量的灵敏度,可测量样品与惰性参比物之间的温差。 1915年,Honda首次提出连续测量试样质量变化的热重分析。 1955年,Boersma设想在坩埚外放置热敏电阻,发明现今的DSC。 1964年,Watson等首次发表了功率补偿DSC的新技术。 差示扫描量热法是六十年代以后研制出的一种热分析方法。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术,简称DSC(Differential Scanning Calovimetry)。根据测量方法的不同,又分为两种类型:功率补偿型DSC和热流型DSC。其主要特点是使用的温度范围比较宽、分辨能力高和灵敏度高。由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用。 二、差示扫描量热法的现状 2.1差示扫描量热法(DSC)的原理 差示扫描量热法(DSC)装置是准确测量转变温度,转变焓的一种精密仪器,它的主要原理是:将试样和参比物置于相同热条件下,在程序升降温过程中,始终保持样品和参比物的温度相同。当样品发生热效应时,通过微加热器等热元件给样品补充热量或减少热量以维持样品和参比物的温差为零。加热器所提供的热量通过转换器转换为电信号作为DSC曲线记录下来。它是一种将与物质内部相转变有关的热流作为时间和温度的函数进行测量的热分析技术。 2.2差示扫描量热分析技术发展 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

ANSYS热分析

第一章 简 介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 项目 国际单位 英制单位 ANSYS 代号 长度 m ft 时间 s s 质量 Kg lbm 温度 ℃ o F 力 N lbf 能量(热量) J BTU 功率(热流率) W BTU/sec 热流密度 W/m 2 BTU/sec-ft 2 生热速率 W/m 3 BTU/sec-ft 3 导热系数 W/m-℃ BTU/sec-ft-o F KXX 对流系数 W/m 2-℃ BTU/sec-ft 2-o F HF 密度 Kg/m 3 lbm/ft 3 DENS 比热 J/Kg-℃ BTU/lbm-o F C 焓 J/m 3 BTU/ft 3 ENTH 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: z 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q Δ+Δ+Δ=? 式中: Q —— 热量; W —— 作功; ΔU ——系统内能; ΔKE ——系统动能; ΔPE ——系统势能; z 对于大多数工程传热问题:0==PE KE ΔΔ; z 通常考虑没有做功:0=W , 则:U Q Δ=; z 对于稳态热分析:0=Δ=U Q ,即流入系统的热量等于流出的热量; z 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温

纤维素热分析动力学

廖艳芬,王树荣,骆仲泱,周劲松,余春江,岑可发.纤维素热裂解过程动力学的实验分析研究.浙江大学学报,2002,36(2). 摘要:尽管针对纤维素热裂解动力学方面的研究以已开展的比较广泛,但其表观动力学的确定认识一个具有争论性的问题,从而对纤维素热裂解机理的描述也就各不相同。廖艳芬等人试图通过纤维素的热裂解动力学研究,对此种想象作出合理的解释,并给出相应的机理描述。纤维素热裂解随温度的升高经历了五个不同的阶段,其中第三阶段是整个过程的主要是部分,期间大量灰分分析出并造成明显失重。实验发现随着升温速率的增加,热滞后现象的加重致使纤维素热裂解各个阶段向高温侧移动;同时高升温速率对炭的生成具有抑制作用,但有利于挥发分的生成。通过对热裂解主反应区的热重分析,采用微商法求得对应的反应动力学参数,以600K作为分界点,低温段的活化能约在267KJ/mol,较高温度段则体现为174 KJ/mol左右的低活化能。纤维素热裂解是一传热传质现象,与化学动力学机制相互影响控制的过程试验条件传热传质过程的影响是造成结论存在差异的内在原因。 随着世界经济持续发展导致对能源需求的高速增长以及大量化石燃料燃烧利用所造成的环境污染,生物质能这一可再生的清洁能源目前已引起了世界各国的高度重视。相比于煤炭等化石燃料,生物质具有低污染排放特点,而且其生产 的零排放,从而对于缓解“温室效应”具有特殊意义。 利用过程中能实现CO 2 生物质能的热化学转换技术是生物质能转换利用研究中的一个重点,其中生物质热裂解作为目前世界上生物质能研究开发的前沿技术,不仅是生物质气化或燃烧等转化过程中的必经步骤,而且其本身就是一种产生高能量密度产物的独立工艺。生物质热裂解是指生物质由于受到外界热效应的影响而发生的热化学转换过程,随着过程的进行,生物质的理化性质发生变化,研究这种变化的趋势不仅有助于了解生物质热裂解进程的演变情况,为生物质热裂解液化技术提供理论基础,同时对开发生物质高效直接燃烧和气化技术也具有重要的工程价值。纤维素作为生物质的主要组成部分,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,因而进行纤维素热裂解过程的研究对生物质热转化利用技术的规模化应用具有重要意义,而对于纤维素热裂解过程的研究通常从其动力学特点入手来解释其过程的发展。 本文采用Perkin-Elmer TGA-7型差示热重分析仪,在程控温度操作条件下以5~50K/min的不同升温速率对纤维素原料在300~1200K的温度下进行动态升温试验,测量物质的物理性质与温度的关系,从而研究其反应动力学。试验用的载气为高纯度氮气,以保持炉内惰性气氛,同时能及时将纤维素热裂解生成的挥发性产物带离样品,从而减少了由于二次反应对试样瞬时重量带来的影响。动力学分析采用的纤维素是从含纤维素为99%的纯棉花中提取,其灰份质量分数为0.01%,粒径为50~60μm,试样量均控制在8mg以内。 2 纤维素热裂解动力学试验结果 在给定的升温速率下,随着原料温度的升高,纤维素热裂解经历了几个不同阶段,主要分为五个区域(见图1)。 的部分,在该区域中生物质除了温度升高外,没有第一区域是从室温开始到T 发生失重,此时试样的性质基本未变化;第二区域是指T0到T1的这个范围,在这个过程中生物质开始失去自由水;在接下的T1至T2的第二区域内,热重曲线几乎成一平台,期间发生微量的失重,这是生物质发生解聚及“玻璃化转变“现象的一个缓慢过程;第三区域是从T2到T4阶段,该区域是生物质热裂解过程的

第十三章 相图

1 画出含有两个化合物并包含共晶反应和包晶反应的二元相图,注明相应的共晶和包晶反应的成分点和温度,写出共晶和包晶反应式。 2简述相图在晶体生长中的应用 相图用途: 1.由材料的成分和温度预知平衡相; 2.材料的成分一定而温度发生变化时其他平衡相变化的规律; 3.估算平衡相的数量。 预测材料的组织和性能 3写出相律的表达式及其各参数的意义。 Gibbs 相律 热力学平衡条件下,系统的组分数、相数和自由度数之间的关系: P + F = C + 2 式中P----在所选系统中共存相的数目; F----自由度; C----系统中的组元数。 C 组元(组分) 系统中每一个能够单独分离出来并能够独立存在的化学纯物质。如元素、化合物或溶液。自由度 F 是当系统为平衡状态时,在不改变相的数目情况下,可独立改变的因素(如温度和压力)。 注意事项: 1. 相律是根据热力学平衡条件推导而得,因而只能处理真实的热力学平衡体系,不能预告反应动力学(即反应速度问题)。 2. 相律表达式中的“2”是代表外界条件温度和压强。如果电场、磁场或重力场对平衡状态有影响,则相律中的“2”应为“3”、“4”、“5”。如果研究的系统为固态物质,可以忽略压强的影响,相律中的“2”应为“1”。 3. 必须正确判断独立组分数、独立化学反应式、相数以及限制条件数,才能正确应用相律。 4.只表示系统中组分和相的数目,不能指明组分和相的类型和含量。 5. 自由度只取“0”以上的正值。如果出现负值,则说明系统可能处于非平衡态。 三、相律的一般推导: 假设一个平衡系统中有C个组分、P个相,对于每一个相来说,温度、压力及其相成分(即所含各组分的浓度)可变。确定每个相的成分,需要确定(C-1)个组分浓度,因为C个组分浓度之和为100%。现有P个相,故有P(C-1)个浓度变量。所有描述整个系统的状态有P(C-1)+2个变量。但这些变量并不是彼此独立的,由热力学可知,平衡时每个组分在各相中的化学势都必须彼此相等。 一个化学势相等的关系式对应一个浓度关系式,应减少一个系统独立变量。C个组分在P个相中共有C(P-1)个化学势相等的关系式,因此整个系统的自由度数应为

第十三章 热分析技术

第十三章热分析技术 热分析:在程序控温条件下,测量物质的物理性质随温度变化的函数关系的分析技术。 热分析的基础是当物质的物理状态和化学状态发生变化时(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应时),往往伴随着热力学性质(如焓、热容、导热系数等)的变化,因此可通过测定其热力学性能的变化,来了解物质物理或化学变化过程。 研究高分子材料的热分析方法有:差热分析(DTA)、示差扫描量热法(DSC)、热重分析(TGA)、热机械分析(TMA)。

13.1 差热分析(DTA) 13.1.1 差热分析的原理 差热分析:在程序控温条件下,测量试样与作为参比的基准物质之间的温度差△T随环境温度T变化的函数关系的一种分析技术。 许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理化学变化。这些变化必将伴随有体系焓的改变,因而产生热效应。其表现为该物质与外界环境之间有温度差。 选择一种在测量温度范围内没有任何热效应(对热稳定)的惰性物质作为参比物,将其与试样一起置于程序控温的电炉中。记录试样与参比物间的温度差,以温度差对温度(或时间)作图即可得一条差热分析曲线(DTA曲线),或称差热谱图。从差热曲线可以获得有关热力学和动力学方面的信息。 13.1.2 差热分析曲线 理想条件下的差热分析曲线如下图。若试样和参比的热容大致相

同,试样无热效应时,两者温 度基本相同,得到的是平滑的 曲线,称为基线,如ab-de-gh 段。一旦试样发生变化产生了 热效应,曲线上就有峰出现, 如bcd或efg。吸热过程,试 样的焓变大于零,试样温度的 升高变慢,且试样的温度低于参比,故峰顶向下的峰为吸热峰;放热过程,试样的焓变小于零,试样温度的升高加速(高于程序控温速度),且试样的温度高于参比,故峰顶向上的峰为放热峰。热效应越大,峰面积也越大。 由于测量温度差的热电偶的不对称性,试样、参比物的热容和导热系数不同,等速升温时差热分析曲线的基线并非△T=0的线,而是接近△T=0的线,如图。基线位置△T a与试样和参比的热容C s和C r有关:

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

第七章 热应力分析

第七章 热应力分析 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 7.1热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,则可以通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度 间接法:首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。 直接法:使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法—间接法。因为这种方法可以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法—使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 7.2间接法进行热应力分析的步骤

热单元结构单元 LINK32 LINK1 LINK33 LINK8 PLANE35 PLANE2 PLANE55 PLANE42 SHELL57 SHELL63 PLANE67 PLANE42 LINK68 LINK8 SOLID79 SOLID45 MASS71 MASS21 PLANE75 PLANE25 PLANE77 PLANE82 PLANE78 PLANE83 PLANE87 PLANE92 PLANE90 PLANE95 SHELL157 SHELL63 表7-1热单元及相应的结构单元 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 重新进入前处理,将热单元转换为相应的结构单元,表7-1是热单元与结构单元的对应表。可以使用菜单进行转换: Main Menu>Preprocessor>Element Type>Switch Element Type,选择Thermal to Structual。 但要注意设定相应的单元选项。例如热单元的轴对称不能自动转换到结构单元中,需要手工设置一下。在命令流中,可将原热单元的编号重新定义为结构单元,并设置相应的单元选项。 设置结构分析中的材料属性(包括热膨胀系数)以及前处理细节,如节点耦合、约束方程等。 读入热分析中的节点温度, GUI:Solution>Load Apply>Temperature>From Thermal Analysis。输入或选择热分析的结果文件名*.rth。如果热分析是瞬态的,则还需要输入热梯度最

热分析指南复习题附件

单元,理论 无操作 第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。 2、热对流 热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量

13第十三章 热分析与热固耦合分析

211 第十三章 热分析和热固耦合分析 LS-DYNA 除了强大的结构动力分析功能外,还可以进行稳态或瞬态的热分析,和热固 耦合分析,可以处理热传导、对流和辐射各种热问题,在焊接、冲压、锻压及碰撞等过程中 方便的考虑热问题(如塑性能转化为热能的问题)及热应力问题。 13.1 LS-DYNA 求解热问题所涉及到的关键字求解热问题所涉及到的关键字:: *CONTROL_SOLUTION *CONTROL_THERMAL_SOLVER *CONTROL_THERMAL_TIMESTEP *CONTROL_THERMAL_NONLINEAR *CONTACT_SURFACE_TO_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_SINGLE_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_NODE_TO_SURFACE_THERMAL *CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE_THERMAL *BOUNDARY_CONVECTION_OPTION *BOUNDARY__FLUX_OPTION *BOUNDARY_RADIATION_OPTION *BOUNDARY_TEMPERATURE_OPTION *BOUNDARY_THERMAL_WELD *INITIAL_TEMPERATURE_OPTION *LOAD_HEAT_GENERATION_OPTION *PART *MAT_THERMAL_OPTION 13.2 13.2 进行热分析和热固耦合分析的步骤进行热分析和热固耦合分析的步骤进行热分析和热固耦合分析的步骤:: 13.2.1 LS 13.2.1 LS--DYNA 激活热分析的关键字激活热分析的关键字 *CONTROL_SOLUTION :

热分析技术综述

热分析技术综述 摘要综述了近年来热分析技术在化合物表征、有机质研究、药品分析等领域 的应用情况 前言:热分析及热分析仪器的起源与发展 热分析一词是1905年由德国的Tammann提出的。但热分析技术的发明要早的多。热重法是所有热分析技术中最早发明的。公元前25世纪古埃及壁画中就有火与天平的图案。14世纪时欧洲人将热重法原理应用于黄金的冶炼。1780年英国人Higgins在研究石灰黏结剂和生石灰的过程中第一次用天平测量了试样受热时 所产生的重量变化。1786年,Wedgwood在研究黏土时测得了第一条热重曲线,发现黏土加热到暗红(500~600℃)时出现明显失重。最初设计热天平的是日本东北大学的本多光太郎,1915年他把化学天平的一端秤盘用电炉围起来制成第 一台热天平,并用了“热天平”(thermobalance)一词,但由于测定时间长未能达到普及。第一台商品化的热天平是1945年在Chevenard等工作的基础上设计制作的。Cahn和Schultz于1963年将电子天平引入现代自动热天平中,使 仪器的灵敏度达到0.1μg,质量变化精度达10-5。我国第一台商业热天平是20 世纪60年代初由北京光学仪器厂制造的[1]。常用的热分析方法有:差示扫描量 热(DSC)法、差示热分析(DTA )法和热重(TGA )法。近年来,热分析法得到了迅猛发展,出现了多种新型测量仪器和方法,如动力机械热分析(DMTA )法、热机械分析(TMA )法、声纳热分析法、发散热分析法等。联用技术的大量开发和使 用更加推动了这一技术的蓬勃发展,如TG-MS、TGA-FTIR、TG /DTA、MR-MS法等。本文对近年来我国热分析技术在几个具体领域的应用现状作了一些归纳。 1、热分析技术在化合物热分解研究中的应用 热分析作为一种表征化合物(配合物)的重要手段获得了非常广泛的应用。测 试者通过热分析获得化合物的对热稳定性,热分解机理,分解过程的热力学数 据及动力学参数等。如马荣华等人[2]对过氧铌杂多钨酸盐热分解行为进行了研 究,薛岗林等人[2]研究了新合成的化合物[Ce(NO 3) 5 H 2 O ](C 3 H 5 N 2 ) 2 的热分解机理, 胡远芳等人[3]合成了[Nd(C 3H 7 NO 2 ) 2 (C 3 H 4 N 2 )(H 2 O)](ClO 4 ) 3 稀土配合物并对其进行了 热分析研究,杨锐等[4]合成了超分子化合物 [Eu(C1OH 9N 2 O 4 )(C1OH 8 N 2 O 4 )(H 2 O) 3 ] 2 ·phen·4H 2 O并对其热稳定性进行了研究等。 又如陆美玉[5]运用热重法与压力差示扫描量热法进行高温抗氧化剂的研究。另 外在对高分子材料进行改性以增加其热机械性能能扩大高分子材料的应用领域中,用 TMA 可检测高分子材料的链受热断裂的温度等,如于俊荣等[6]用 TMA 研究纯 UHMWPE 纤维在 140℃受热断裂,而纳米 SiO 2 改性UHMWPE 纤维在 144℃ 受热断裂,说明 UHMWPE 纤维经 SiO 2 改性后其热机械性能提高。杨红玲、孙枫 等人[7]用DSC和 DMA对PP-R专用料性能的评价等。崔蕊蕊[8]等用热重分析法测 定氟唑活化酯的饱和蒸气压。 2、热分析技术在有机质分析研究中的应用 因为有机质在高温条件下会分解等,由此可利用不同的热分析方法来进行分析 研究。如蒋绍坚、黄靓云[9]等运用热重分析对纤维素、半纤维素、木质素等三

第三章_热分析

1第三章热分析技术 2第一节:热分析的定义与分类 第二节:常用热分析基本原理第三节:热分析技术的应用 3 第一节热分析的定义与分类 1.定义: 在程序控制温度下,测量物质的物理性质与温度之间关系的一类技术,统称热分析技术。 有哪些物理性质? 4 2.种类 (1)热重分析(TGA ) 在程序控制温度下,测量物质的质量随时间或温度变化的一种技术。 (2)差热分析(DTA ) 在程序控制温度下,测量物质与参比物的温度差随时间或温度变化的一种技术。 5 (3)差示扫描量热分析(DSC ) 在程序控制温度下,测量输入到试样和参比物的功率差与温度之间关系的一种技术。(4)热机械分析(TMA 、DMA ) 在程序控制温度下,测量物质的膨胀系数、弹性模量和粘性模量等与温度之间关系的一种技术。 Q:假如测金属熔点和物质的比热容分别用什么方法? 6 1.热重分析(TGA ) TGA 的基本原理就是在程序温度控制下,采用热天平连续称量物质的重量(质量),获得重量随温度(或时间)变化的关系曲线,并由此分析物质可能发生的物理或化学的变化。这条曲线就叫热重曲线。 第二节常用热分析基本原理

7Time min 26.00 24.0022.0020.0018.0016.0014.00 12.0010.008.006.00D T A u V 250.0 200.0 150.0100.0 50.0 0.0 T G % 0.0 -20.0 -40.0 -60.0 -80.0 -100.0 T e m p ℃ 900.0 800.0 700.0 600.0 500.0 400.0 300.0 200.0 100.0 TGA Weight % Curve Sample Thermocouple Signal DTA Signal 61.5% 8热重平台:在热重曲线中,质量保持不变的 台阶,叫热重平台。 失重阶梯:在热重曲线中,失重平台之间质量变化的部分叫失重阶梯,也叫失重台阶。 微分热重曲线(DTG):对热重曲线进行一级微分,得到的曲线就叫微分热重曲线。 9 100100200300400500600700800 60 70 80 90 1000 150 300 450 405 252 194 DTG (ug/min) R e l a t i v e W e i g h t (%) Temperature (o C) CMA precursor DTG TG 11 失重一般都是由于分解、脱水、挥发、还原等引起的,但也有少数TG 过程是增重的,如金属Cu 粉的氧化过程。根据增重的多少可以判断上去多少氧,估算平均价态的升高。 12 (1) 实验条件的影响 a. 样品盘的影响 b. 挥发物冷凝的影响 c. 升温速率的影响 d. 气氛的影响(2) 样品的影响 a. 样品用量的影响 b. 样品粒度的影响 影响热重分析的因素

SolidWorks_热分析

白皮书热分析 inspiration 摘要 在本白皮书中,我们针对产品设计有关的热分析概念进行了定义和概要 阐述。我们以实际产品为例,对传导、对流和辐射的原理进行了讨论。我 们还将阐释开展热分析的方式和方法,特别介绍如何使用设计验证软件 来模拟热力环境。同时,我们还将列出热力设计验证软件所需具备的功 能,并通过实例展示如何使用SolidWorks 产品来解决设计难题。

热分析简介 20 世纪90 年代,为了降低产品开发所需的成本和时间,传统的原型制造和测试在很大程度上已被模拟驱动的设计流程所取代。有了这一流程,工程师对昂贵而又耗时的物理原型的需求大大减少,只需使用易于修改的计算机模型即可成功预测产品的性能(图1)。 设计流程的变化 传统的产品模拟驱动的产品 设计流程设计流程 设计CAD 模拟 多次只需一次! 原型制造原型制造 多次只需一次! 测试测试 生产生产 图1: 传统产品设计流程与模拟驱动的产品设计流程 在研究缺陷、变形、应力或自然频率等结构问题时,设计验证工具的价值是不可估量的。但是,新产品的结构性能仅仅是设计工程师所面临的诸多难题之一。还有许多其他常见问题是与热力相关的,其中包括过热、缺乏尺寸稳定性、过高的热应力,以及与产品的热流和热力特征相关的其他难题。热力问题在电子产品中普遍存在。在设计冷却扇和散热器时,必须权衡小体积与足够的散热能力这两方面的需求。同时,紧凑的组装还必须确保空气的充分流动,以防印刷电路板在过高的热应力下变形或断裂(图2)。 图2: 要进行电子封装,需要对如何排出电子零部件所产生的热量进行仔细分析。

在传统的机器设计中,也大量存在热力问题。有很多产品必须进行温度、散热 和热应力分析,其中一些十分明显的示例包括:引擎、液压缸、电机或电动泵。 简而言之,任何消耗能量来执行某种实用工作的机器都不例外。或许材料加工 机器不太需要进行热分析,但这些机器的机械能转化成热能,不仅影响机器零 件还影响机器本身。这种情况不仅存在于精密的机器设备中,还存在于破碎机 等大功率机器中。在精密机器设备中,热膨胀可能影响切割工具的尺寸稳定性; 在大功率的机器中,零部件可能因高温和热应力而受到损坏(图3)。 图4: 种植牙必须不影响周围组织的热力状况, 而且必须能够承受热应力。 图3: 在设计工业破碎机的传动和载荷时,潜在过热问题是一个十分重要的考虑因素。 这里涉及到的第三个示例,是为了说明大多数医疗设备应该进行热力性能分 析。给药系统必须确保所给药物的温度合适,而手术设备必须确保组织免遭过 度热冲击。同样,体移植物不得干扰体内的热流,而种植牙也必须承受剧烈 的外部机械载荷与热载荷(图4)。 最后,所有的家用电器产品,例如电热炉、电冰箱、搅拌器、电熨斗和咖啡机 (任何需要靠电力才能运行的设备),都应进行热力性能分析以避免过热现象。 这不仅适用于使用交流电源的消费类产品,还适用于由电池供电的设备,例如 遥控玩具和无线电动工具(图5)。 图5: 要对无线工具上的高容量电池进行充分 冷却,就需要对热力状况有所了解。

ANSYS热分析指南

ANSYS热分析指南

目录 第一章简介 (3) 一、热分析的目的 (3) 二、ANSYS的热分析 (3) 三、ANSYS 热分析分类 (4) 四、耦合分析 (4) 第二章基础知识 (5) 一、符号与单位 (5) 二、传热学经典理论回顾 (6) 三、热传递的方式 (7) 1、热传导 (7) 2、热对流 (7) 3、热辐射 (7) 四、稳态传热 (8) 五、瞬态传热 (9) 六、线性与非线性 (9) 七、边界条件、初始条件 (10) 八、热分析误差估计 (10) 第三章稳态传热分析 (11) 一、稳态传热的定义 (11) 二、热分析的单元 (11) 三、ANSYS稳态热分析的基本过程 (12) 1、建模 (12) 2、施加载荷计算 (13) 3、后处理 (20) 实例1: (21) 实例2 (27) 《ANSYS Verification Manual》中关于稳态热分析的实例: (39) 第四章瞬态传热分析 (41) 一、瞬态传热分析的定义 (41) 二、瞬态热分析中的单元及命令 (41) 三、ANSYS 瞬态热分析的主要步骤 (42) 1、建模 (42) 2、加载求解 (43) a、定义分析类型 (43) b、获得瞬态热分析的初始条件 (43) c、设定载荷步选项 (45) 3、后处理 (48) 四、相变问题 (49) 实例1: (51) 实例2: (62) 《ANSYS Verification Manual》中关于瞬态热分析的实例: (70)

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产 品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热 分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问 题。

相关文档
最新文档