一元二次方程全章复习与巩固—知识讲解

一元二次方程全章复习与巩固—知识讲解
一元二次方程全章复习与巩固—知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】

1.了解一元二次方程及有关概念;

2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;

3.掌握依据实际问题建立一元二次方程的数学模型的方法.

【知识网络】

【要点梳理】

要点一、一元二次方程的有关概念1.一元二次方程的概念:

通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.

2.一元二次方程的一般式:

3.一元二次方程的解:

使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.

要点诠释:

判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.

对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.

要点二、一元二次方程的解法

1.基本思想

一元二次方程???→

降次一元一次方程

2.基本解法

直接开平方法、配方法、公式法、因式分解法. 要点诠释:

解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解

法,再考虑用公式法.

要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式

一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程

)0(02

≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42

-=?.

(1)当△>0时,一元二次方程有2个不相等的实数根;

(2)当△=0时,一元二次方程有2个相等的实数根;

(3)当△<0时,一元二次方程没有实数根.

2.一元二次方程的根与系数的关系

如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,

那么a b x x -=+21,a

c x x =21.

注意它的使用条件为a ≠0, Δ≥0. 要点诠释:

1.一元二次方程 的根的判别式正反都成立.利用其可以解

决以下问题:

(1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.

2. 一元二次方程根与系数的应用很多:

(1)已知方程的一根,不解方程求另一根及参数系数;

(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;

(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

要点四、列一元二次方程解应用题

1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系;

三是正确求解方程并检验解的合理性.

2.利用方程解决实际问题的关键是寻找等量关系.

3.解决应用题的一般步骤:

审 (审题目,分清已知量、未知量、等量关系等);

设 (设未知数,有时会用未知数表示相关的量);

列 (根据题目中的等量关系,列出方程);

解 (解方程,注意分式方程需检验,将所求量表示清晰);

验 (检验方程的解能否保证实际问题有意义);

答 (写出答案,切忌答非所问).

4.常见应用题型

数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.

要点诠释:

列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】

类型一、一元二次方程的有关概念

1.已知(m-1)x|m|+1+3x-2=0是关于x的一元二次方程,求m的值.

【答案与解析】

依题意得|m|+1=2,即|m|=1,

解得m=±1,

又∵m-1≠0,∴m≠1,

故m=-1.

【总结升华】依题意可知m-1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m的值即可.

特别是二次项系数应为非零数这一隐含条件要注意.

举一反三:

【变式】若方程2

(2)310

m

m x mx

---=是关于x的一元二次方程,求m的值.

【答案】根据题意得

22,

20,

m

m

?=

?

?

-≠

??

解得

所以当方程2

(2)310

m

m x mx

--=是关于x的一元二次方程时,2

m=-.

类型二、一元二次方程的解法

2.解下列一元二次方程.

(1)22

4(3)25(2)0

x x

---=; (2)22

5(3)9

x x

-=-; (3)2

(21)4(21)40

x x

++++=.【答案与解析】

(1)原方程可化为:22

[2(3)][5(2)]0

x x

---=,

即(2x-6)2-(5x-10)2=0,

∴ (2x-6+5x-10)(2x-6-5x+10)=0,

即(7x-16)(-3x+4)=0,

∴ 7x-16=0或-3x+4=0,∴

116 7

x=,24 3

x=. (2)2

5(3)(3)(3)

x x x

-=+-,

2

5(3)(3)(3)0

x x x

--+-=,

∴ (x-3)[5(x-3)-(x+3)]=0,

即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,

13

x=,29

2

x=.(3)2

(21)4(21)40

x x

++++=,

∴2

(212)0

x++=.即2

(23)0

x+=,

12

3

2

x x

==-.

【总结升华】 (1)方程左边可变形为22

[2(3)][5(2)]

x x

---,因此可用平方差公式分解因式;

(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,

可移项后提取公因式(x-3)后解题;

(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:

【变式】解方程: (1)3x+15=-2x2-10x; (2)x2-3x=(2-x)(x-3).

【答案】

(1)移项,得3x+15+(2x2+10x)=0,∴ 3(x+5)+2x(x+5)=0,

即(x+5)(3+2x)=0,∴ x+5=0或3+2x=0,

1

5

x=-,23

2

x=-.

(2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,

∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,

1

3

x=,21

x=.

类型三、一元二次方程根的判别式的应用

3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )

A .a ≥1

B .a >1且a ≠5

C .a ≥1且a ≠5

D .a ≠5

【答案】A ;

【解析】①当50a -=,即5a =时,有410x --=,1

4

x =-,有实数根;

②当50a -≠时,由△≥0得2(4)4(5)(1)0a --?-?-≥,解得1a ≥且5a ≠. 综上所述,使关于x 的方程2

(5)410a x x ---=有实数根的a 的取值范围是

1a ≥.

答案:A

【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既

可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.

4. k 为何值时,关于x 的二次方程2

690kx x -+=

(1)k 满足 时,方程有两个不等的实数根; (2)k 满足 时,方程有两个相等的实数根;

(3)k 满足 时,方程无实数根. 【答案】(1)10k k ≠<,且;

(2)1k =;(3)1k >. 【解析】求判别式,注意二次项系数的取值范围. 【总结升华】根据判别式ac b 42-=?及k ≠0求解.

类型四、一元二次方程的根与系数的关系

5.已知关于x 的方程222(2)0x m x m --+=,试探求:是否存在实数m 使方程的两个实数根的平方和等于56,若存在,求出m 的值;若不存在,请说明理由.

【答案与解析】

存在.

设方程两根为x 1、x 2,根据题意,得122(2)x x m +=-,212x x m =,221256x x +=, 而222121212()2x x x x x x +=+-,于是有[]2

22(2)256m m --=,整理得28200m m --=, 解这个方程得110m =, 22m =-,

当10m =时,△= 2224[2(2)]41440b ac m m -=---=-<, 当2m =-时,△=2224[2(2)]4480b ac m m -=---=>, 所以符合条件的m 的值为-2.

【总结升华】由两个实数根的平方和等于56,列出关系式,再由根与系数关系求出m的值,通过判别式去验证m值是否符合题意,从而得出结论.

举一反三:

【变式】已知关于x的方程2

(1)(23)10

k x k x k

-+-++=有两个不相等的实数根1x、2x.

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数如果存在,求出k的值;如果不存在,

请说明理由.

【答案】(1)根据题意,得△=(2k-3)2-4(k-1)(k+1)=22

4129412130

k k k k

-+-=-+>,

所以13

12

k<.由k-1≠0,得k≠1.

当13

12

k<且k≠1时,方程有两个不相等的实数根;

(2) 不存在.如果方程的两个实数根互为相反数,则

1223

1

k

x x

k -

+=-=

-,解得3

2

k=.

当3

2

k=时,判别式△=-5<0,方程没有实数根.

所以不存在实数k,使方程的两个实数根互为相反数.类型五、一元二次方程的应用

6.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C 地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B 地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度.

【答案与解析】

设甲的速度为x千米/时,则乙的速度为(x+4)千米/时.

根据题意,得54(4)2040

460

x x

x x

++

=-

+

解之,得x1=16,x2=-2.

经检验:x1=16,x2=-2都是原方程的根,但x2=-2不合题意,舍去.

∴当x=16时,x+4=20.

答:甲每小时行驶16千米,乙每小时行驶20千米.

【总结升华】注意解题的格式,解分式方程应用题要双检验,即验根、符合题意.举一反三:

【变式】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程。原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%。从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2.

求:(1)该工程队第一天拆迁的面积;

(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相

同,求这个百分数.

【答案】(1)1000m 2

;(2)20%. 【巩固练习】 一、选择题

1. 关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )

A.-1 D.-1或1 2.已知a 是方程x 2+x ﹣1=0的一个根,则

2221

1a a a

-

--的值为( ) A.15

2

-+ B.

15

2

-± C.﹣1

3.若方程式(3x ﹣c )2﹣60=0的两根均为正数,其中c 为整数,则c 的最小值为何( )

4.已知关于x 的方程2(2)230m x mx m -+++=有实根,则m 的取值范围是( )

A .2m ≠

B .6m ≤且2m ≠

C .6m <

D .6m ≤ 5.如果是α、β是方程2234x x +=的两个根,则22αβ+的值为( )

A .1

B .17

C .

D .

6.在一幅长80 cm,宽50 cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400 cm 2,设金色纸边的宽为x cm,那么x 满足的方程是( )

+130x -1 400=0 +65x -350=0 -130x -1 400=0 -65x -350=0

7. 方程x 2+ax+1=0和x 2

-x-a=0有一个公共根,则a 的值是( ) A .0 B .1 C .2 D .3 8. 若关于x 的一元二次方程

的两个实数根分别是,且满足

则k 的值为( )

A.-1或

B.-1

C.

D.不存在

二、填空题

9.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 .

10.已知关于x 的方程x 2+2(a+1)x+(3a 2+4ab+4b 2+2)=0有实根,则a 、b 的值分别

为 .

11.已知α、β是一元二次方程2430

x x

--=的两实数根,则(α-3)(β-3)=________.12.当m_________时,关于x 的方程是一元二次方程;当m_________时,此方程是一元一次方程.

13.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;若多项式x2-ax+2a-3是一个完全平方式,则a=_________.

14.已知,则的值等于_________.

15.已知,那么代数式的值为________.

16.当x=_________时,既是最简二次根式,被开方数又相同.

三、解答题

17. 设m为整数,且4<m<40,方程有两个不相等的整数根,

求m的值及方程的根.

18.设(a,b)是一次函数y=(k-2)x+m与反比例函数n

y

x

=的图象的交点,且a、b 是关于x的一元二次方程22(3)(3)0

kx k x k

+-+-=的两个不相等的实数根,其中k 为非负整数,m、n为常数.

(1)求k的值;

(2)求一次函数与反比例函数的解析式.

19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产

的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.

(1)求平均每次下调的百分率;

(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:

①打折销售;

②不打折,送两年物业管理费,物业管理费是每平方米每月元,请问哪种方案更优惠

20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.

(1)甲、乙两队单独完成这项工程分别需要多少天

(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资

金的角度考虑,应该选择哪个工程队请说明理由.

【答案与解析】

一、选择题

1.【答案】A ;

【解析】先把x =0代入方程求出a 的值,然后根据二次项系数不能为0,把a =1舍去.

2.【答案】D ; 【解析】先化简22211a a a

-

--,由a 是方程x 2+x ﹣1=0的一个根,得a 2

+a ﹣1=0,则a 2+a=1,

再整体代入即可.

解:原式=

2(1)(1)(1)a a a a a -++-=1

(1)

a a +,

∵a 是方程x 2

+x ﹣1=0的一个根,

∴a 2

+a ﹣1=0, 即a 2+a=1,

∴原式=

1

(1)

a a +=1.

故选D .

3.【答案】B ;

【解析】利用平方根观念求出x ,再根据一元二次方程的两根都为正数,求出c

的最小值即可.

解:(3x ﹣c )2﹣60=0 (3x ﹣c )2=60

3x ﹣c=± 3x=c± x=

又两根均为正数,且

>7.

所以整数c 的最小值为8 故选B .

4.【答案】D ;

【解析】△≥0得6m ≤,方程有实根可能是一元二次方程有实根,也可能是一元一次方程有实根.

5.【答案】C ;

【解析】22+=+-=6.25αβαβαβ2

()

2. 6.【答案】B ;

【解析】上、下两条金色纸边的面积一样,左、右两条金色纸边的面积一样,

∴2(80+x)·x+2(50+x)·x+80×50=5 400. 整理得x 2+65x -350=0.

7.【答案】C ;

【解析】提示:先求公共根m=-1,再把这个公共根m=-1代入原来任意一个方程可求出a=2. 8.【答案】C ;

【解析】由题意,得:

22

121211=1k k k k k x x x x k ????=-=-??

+=??=-??4

≤≥0435 当时,不符合≤,舍去,故3

54或4

. 二、填空题

9.【答案】x 1=﹣4,x 2=﹣1.

【解析】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=﹣2,x 2=1,(a ,m ,b 均为

常数,a ≠0),

∴则方程a (x+m +2)2+b =0的解是x 1=﹣2﹣2=﹣4,x 2=1﹣2=﹣1. 故答案为:x 1=﹣4,x 2=﹣1.

10.【答案】a =1,1

2

b =-.

【解析】 判别式△=[2(a+1)]2-4(3a 2+4ab+4b 2+2) =4(a 2+2a+1)-(12a 2+16ab+16b 2+8)

=-8a 2-16ab-16b 2+8a-4 =-4(2a 2+4ab+4b 2-2a+1)

=-4[(a 2+4ab+4b 2)+(a 2-2a+1)]. =-4[(a+2b)2+(a-1)2].

因为原方程有实根,所以-4[(a+2b)2+(a-1)2]≥0,

(a+2b)2+(a-1)2≤0,

又∵ (a+2b)2≥0,(a-1)2≥0,

∴ a-1=0且a+2b =0, ∴ a =1,1

2

b =-. 11.【答案】-6;

【解析】∵ α、β是一元二次方程2430x x --=的两实数根,

∴ α+β=4,αβ=-3.

∴ (3)(3)3()933496αβαβαβ--=-++=--?+=-. 12.【答案】-3;

13.【答案】;2或6.

【解析】即2(-)232

a

a =-.a=2或6. 14.【答案】4;

【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.

15.【答案】-2;

【解析】原方程化为:

.

16.【答案】-5;

【解析】由x 2

+3x=x+15解出x=-5或x=3,

当x=3时,

不是最简二次根式,x=3舍去.故x=-5.

三、解答题

17. 【答案与解析】 解方程,

∵原方程有两个不相等的整数根,∴2m+1为完全平方数,

又∵m 为整数,且4<m <40, ∴m=12或24. ∴当m=12时,,

当m=24时,

.

18. 【答案与解析】

(1)因为关于x 的方程22(3)(3)0kx k x k +-+-=有两个不相等的实数根,

所以2

2

0,

44(3)4(3)0,

k b ac k k k ≠??

=-=--->?△ 解得k <3且k ≠0,

又因为一次函数y =(k-2)x+m 存在,且k 为非负整数,所以k =1. (2)因为k =1,所以原方程可变形为2420x x --=,于是由根与系数的关系知a+b =4,ab =-2,

又当k =1时,一次函数y x m =-+过点(a ,b),所以a+b =m ,于是m =4,

同理可得n =-2,

故所求的一次函数与反比例函数的解析式分别为4y x =-+与2y x

=-.

19. 【答案与解析】

(1)设平均每次下调的百分率是x .

依题意得5000(1-x)2=4050.

解得x 1=10%,x 2=

19

10

(不合题意,舍去). 答:平均每次下调的百分率为10%.

(2)方案①优惠:4050×100×=8100(元);

方案②优惠:×100×12×2=3600(元) ∵ 8100>3600.∴ 选方案①更优惠.

20. 【答案与解析】

(1) 设甲队单独完成需x 天,则乙队单独完成需要(2x -10)天. 根据题意,有111

21012

x

x +

=-,

解得x 1=3,x 2=20. 经检验均是原方程的根,x 1=3不符题意舍去.故x=20. ∴乙队单独完成需要 2x -10=30(天).

答:甲、乙两队单独完成这项工程分别需要20天、30天. (2) 设甲队每天的费用为y 元,则由题意有 12y+12(y -150)=138 000,解得y=650 .

∴ 选甲队时需工程费用650×20=13 000,选乙队时需工程费用500×30=15 000.

∵ 13 000 <15 000,

∴ 从节约资金的角度考虑,应该选择甲工程队.

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

一元二次方程及解法经典习题及解析

┃知识归纳┃ 1.一元二次方程的概念 只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数. 2.一元二次方程的解法 一元二次方程有四种解法:法、法、法和法. [注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0. 3.一元二次方程根的判别式Δ=b2-4ac (1)Δ>0?ax2+bx+c=0(a≠0)有的实数根; (2)Δ=0?ax2+bx+c=0(a≠0)有的实数根; (3)Δ<0?ax2+bx+c=0(a≠0) 实数根. 4.一元二次方程根与系数的关系 一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=. [注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0. 四大解法 一、开平方法 方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)

二、配方法 “配方法”的基本步骤:一化、二移、三配、四化、五解 1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解 三、公式法 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0. 四、因式分解法 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 解题技巧: 先考虑开平方法,

一元二次方程知识点归纳与复习

一元二次方程专题 知识点1:一元二次方程的概念及一般形式 1、方程(1)3x-1=0;(2) 2310x -=;(3) 2130x x + =;(4) 221(1)(2)x x x -=--; (5) 2(52)(37)15x x x +-=;(6) 232x y x +=.其中一元二次方程的个数为 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、将下列方程化为一元二次方程的一般形式,并指出方程的二次项系数、一次项系数和常数项。 (1)2(5)3x x x --=- (2)(21)(5)6x x x -+= 知识点2:用直接开平方法解一元二次方程 3、用直接看平方法解一元二次方程: (1)2169x = (2)2450x -= (3)24(21)360x --= (4)(21)40x +-= 知识点3:用配方法解一元二次方程

4、用配方法解方程2250x x --=时,原方程变形为 ( ) A 、2(1)6x += B 、2(1)6x -= C 、2(2)9x += D 、2(2)9x -= 5、用配方法解一元二次方程: (1)22410x x -+= (2)2213x x += 知识点4:用公式法解一元二次方程 6、用公式法解一元二次方程: (1)2410x x +-= (2)2441018x x x ++=- 知识点5:根的判别式(24b ac -)的应用 7、若关于x 的一元二次方程2210mx x --=有两个不相等的实数根,则实数m 的取值范围是 ( ) A 、m>-1 B 、m>-1且m ≠0 C 、m<1 D 、m<1且m ≠0 8、已知a 、b 、c 分别是三角形ABC 的三边,其中a=1,c=4,且关于x 的方程240x x b -+=有两个相等的实数根,试判断三角形ABC 的形状。 4、 已知关于x 的一元二次方程2223840x mx m m --+-=. (1)求证:原方程恒有两个实数根; (2)若方程的两个实数根一个小于5,另一个大于2,求m 的取值范围. 知识点6:用分解因式法解一元二次方程 9、用分解因式法解一元二次方程 (1)230x x += (2)2(3)4(3)0x x x -+-=

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程知识点集 (整理)

一元二次方程 知识点题集 (须用心按质完成) 1.方程12 x (x -3)=5(x -3)的根是_______. 2.下列方程中,是关于x 的一元二次方程的有________. (1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12 x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________. 4.如果21x -2x -8=0,则1x 的值是________. 5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0?有两个不相等的实数根,则m?的取值范围是定______________. 7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形为___________________,原方程的根为________. 9.以-1为一根的一元二次方程可为_____________________(写一个即可). 10.代数式12 x 2+8x+5的最小值是_________. 11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ). A .a=b=c B .一根为1 C .一根为-1 D .以上都不对 12.一元二次方程x 2-4=0的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D . x 1=2,x 2=0 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3) 15.已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ). A .1 B .2 C .3 D .4 16.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,?则这个三角形的周长是( ). A .8 B .8或10 C .10 D .8和10 17.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0 232057 x + -= 18下列方程中,常数项为零的是( ) A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2 19.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )

一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 如果 a x =2那么 a x ±= 注意;x 可以是多项式 一、用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 配方法解一元二次方程的步骤: 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) (1)当b 2-4ac>0时,=1x ,=2x 。 (2)当b 2-4ac=0时,==21x x 。 (3)当b 2-4ac<0时,方程根的情况为 。 二、用公式解法解下列方程。 1、0822=--x x 2、22314y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x 7.x 2+4x -3=0 8. .03232=--x x 方法四:因式分解法 因式分解的方法: (1)提公因式法: (2)公式法:平方差: 完全平方: (3)十字相乘法: 一、 用因式分解法解下列一元二次方程。 1、x x 22= 2、0)32()1(22=--+x x 3、0862=+-x x 4、22)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程:

一元二次方程的知识点梳理

一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: 1、方程782=x 的一次项系数是 ,常数项是 。 2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) =n=2 =2,n=1 =2,m=1 =n=1 考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: 1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 2、已知关于x 的方程022=-+kx x 的一个解与方程 31 1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。 3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。 4、已知a 是0132=+-x x 的根,则=-a a 622 。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 6、若=?=-+y x 则y x 324,0352 。 考点三、解法 ⑴方法:①直接开方法;②因式分解法;③配方法;④公式法 ⑵关键点:降次 类型一、直接开方法:()m x m m x ±=?≥=,02

人教版 21章 一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 三种类型:(1)()02≥=a a x 的解是a x ±=;

(2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式:

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

《一元二次方程》知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高) 【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式:   3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想

一元二次方程??? →降次一元一次方程 2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等);

一元二次方程知识点归纳

一元二次方程知识点 知识点一:一元二次方程及其解法关键点拨及对应举例 1.一元二次方程的相关概念 (1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方 程. (2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次 项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常 数项. 例:方程20 a ax+=是关于x 的一元二次方程,则方程的根为- 1. 2 .一元二 次方程的解法 (1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方 求解. ( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解 法求解. ( 3 )公式法:一元二次方程ax2+bx+c=0的求根公式为 x= 24 2 b b ac a -±-(b2-4ac≥0). (4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶 数时,也可以考虑用配方法. 解一元二次方程时,注意 观察,先特殊后一般,即先 考虑能否用直接开平方法和 因式分解法,不能用这两种方 法解时,再用公式法. 例:把方程x2+6x+3=0变 形为(x+h)2=k的形式后, h=-3,k=6. 知识点二:一元二次方程根的判别式及根与系数的关系 3 .根的判别式 (1)当Δ=24 b ac -0时,原方程有两个不相等的实数根. (2)当Δ=24 b ac -0时,原方程有两个相等的实数根. (3)当Δ=24 b ac -0时,原方程没有实数根. 例:方程2210 x x +-=的判 别式等于8,故该方程有两个不相 等的实数根;方程2230 x x ++= 的判别式等于-8,故该方程没有实 数根. * 4.根与系数的关系 (1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两 个根分别为x1、x2,则x1+x2= ;x1x2= 。注意运用根与系数 关系的前提条件是△≥0. (2)解题策略:已知一元二次方程,求关于方程两根的代数式 的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与 系数的关系求解. 与一元二次方程两根相关代数 式的常见变形: x12+x22=(x1+x2)2-2x1x2, (x1+1)(x2+1)=x1x2+(x1+x2)+1, 12 1212 11x x x x x x + += 等. 失分点警示 在运用根与系数关系解题时, 注意前提条件时△=b2-4ac≥0.a≠0 知识点三:一元二次方程的应用 4(1)解题步骤:①审题;②设未知数;③列一元二次方程; ④解一元二次方程;⑤检验根是否有意义;⑥作答. 运用一元二次方程解决实际问题时,方程一般有两个实

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

一元二次方程知识点总结与易错题及答案

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于- a b ,二根之积等于a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

一元二次方程知识点整理

一元二次方程 一、本节学习指导 本节中我们要注意一元二次方程成立的条件,填空题最青睐这简单而又易忽视的知识。其次就是根与系数的关系(韦达定理)、判别式,求根公式,这些需要我们重点记忆。本节有配套学习视频。 二、知识要点 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,

所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。 三、经验之谈: 对于韦达定理的文字描述希望同学们能理解,试着把二次项系数化1来观察一下。求根公式也要牢记于心,使用很广泛。

一元二次方程经典例题集锦有答案

一元二次方程经典例题集锦 一、一元二次方程的解法 1.开平方法解下列方程: (1)012552=-x (2)289)3(1692=-x (3)03612=+y (5,521-==x x ) (13 22,135621== x x ) (5)(4)0)31(2 =-m (6) 85 )13(22 =+x (021==m m ) (3521±-=x ) 2.配方法解方程: (3)(1)0522=-+x x (2)0152=++y y (3)3422-=-y y (61±-=x ) (2215±-= x ) (2101±=y ) 3.公式法解下列方程: (1)2632-=x x (2)p p 3232=+ (3)y y 1172= (333±= x ) (321==p p ) (0,71121==y y ) (4)2592-=n n (5)3)12)(2(2---=+x x x (2 153±= x ) 4.因式分解法解下列方程:

(1)094 12=-x (2)04542=-+y y (3)031082=-+x x (6±=x ) (5,921=-=y y ) (23,4121-== x x ) (4)02172=-x x (5)6223362-=-x x x (3,021==x x ) (32,2321== x x ) (6)1)5(2)5(2--=-x x (7)08)3(2)3(222=-+-+x x x (621==x x ) (1,4,1,24321=-=-=-=x x x x ) 5.解法的灵活运用(用适当方法解下列方程): (1)128)72(22=-x (2)222)2(212m m m m -=+- (3))3)(2()2(6+-=-x x x x (227±=x ) (262±=m ) (5 3,221==x x ) (4)3 )13(2)23(332-+-=+y y y y y (5)22)3(144)52(81-=-x x (2,2321==y y ) (2 3,102721==x x ) 6.解含有字母系数的方程(解关于x 的方程): (1)02222=-+-n m mx x (2)124322+-=+a ax a x

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

相关文档
最新文档