冰的熔解热的测定.

冰的熔解热的测定.
冰的熔解热的测定.

冰的熔解热的测定

摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。

关键词:冰的比熔解热、吸热、放热、散热修正

引言:

将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。实验用混合法来测定冰的熔解热,即把待测的系统和一个已知其热容的系统混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统

()。这样(或)所放出的热量,全部为(或)所吸收。因为已知热容的系统在实验过程中所传递的热量是可以由其温度的改变和热容计算出来的,即

。因此,待测系统在实验过程中所传递的热量也就知道了。由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。温度是热学中的一个基本物理量,量热实验中必须测量温度。一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。

1.1实验原理:

一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。于是,在此孤立系统中已知其热容的系统吸收(或放出的热量也就是待测系统放出(或吸收的热量。已知其热容的系统吸收(或放出的热量可通过其温度的变化及其热容来求得,于是待测系统放出(或吸收的热量也便可求得。为了使实验系统成为一个孤立系统,我们采用了量热器。量热器的种类很多,随测量的目的、要求、测量精度的不同而异。最简单的一种如图2-27所示,它是由热的良导体做成的内筒,放在一较大的外筒中组成。通常在内筒中放水、温度计及搅拌器,这些东西(内筒、温度计、搅拌器及水连同放进的待测物体就构成了我们所考虑的(进行实验的系统,内筒、水、温度计和搅拌器的热容可以测知。量热器的内筒置于一绝热架上,外筒用绝热盖盖住,因此其内的空气与外界对流很小。又因空气是不良导体,所以内、外筒间通过热传导传递的热量便可减至很少。同时由于内筒的外壁及外筒的内外壁都十分光亮,使得它们向外辐射热或吸收辐射热的本领

变得很小,因而我们进行实验的系统和环境之间因辐射而产生热量的传递也可减至很小。这

样,量热器就可粗略地被看作一个孤立系统了。

若有M克的冰与量热器中m克的水混合,冰全部熔解为水后平衡温度为,设冰的熔点为,量热器的内筒和搅拌器的质量分别为和,其比热容为和,温度计的热容为,已知冰的比热容(-40~0℃为0.43cal/g℃,水的比热容C0为1cal/g℃,若以L表示冰的熔解热,根据热平衡方程则有:

(1

在实验室条件下使冰的温度为0℃,而冰的熔点也可以认为是0℃,即,则据式(1可得:

(2

实验中内筒和搅拌器的比热容相同,温度计比热容不计故

水银温度计的热容δm=0.46V(cal/℃,其中V为温度计浸入水中的体积(单位为cm3。为了尽量减少系统与外界之间的热量交换,实验中还要注意:不应直接用手去握量热器,不应在阳光直接照射下或空气流动太快的地方或接近火炉暖气的地方进行实验,尽量使实验过程进行得迅速

等。

一般系统不可能与外界完全绝热,因此在做某些测量时必须对系统与外界交换的热量进行修正。在系统与环境温差不大时,这种修正可以根据牛顿冷却定律来进行。

牛顿冷却定律指出:当系统温度T与环境温度θ相差不大时(不超过10~15℃,系统的散热速度dq/dt与温度差(T-θ成正比。即:dq/dt=K(T-θ 式中K是一个常数(称为散热常数,它与系统表面积成正比,并决定于表面发射或吸收辐射热的本领。在本实验对冰的熔解热测定中,若

T2>θ,T3<θ,实验过程中量热器温度T随时间的变化关系如图2-28所示,根据牛顿冷却定律可得,系统温度从T2到θ量热器向外界环境散失的热量

,

同样可得从θ到T3量热器从外界吸收的热量

显然,在图2-28中,若面积SA=SB则量热器在整个过程中散失和吸收的热量相互抵消。若S A≠S B,则可设法测出K值,并据S A和S B对系统在实验过程中与外界交换的热量进行修正。

的热量交换不能忽略时,就必须作一定的散热修正。

2.1实验步骤:

1.把物理天平调平,称出量热器的内筒和搅拌器的质量分别为和克

2. 水的初温可取比室温高10~15℃,水的体积可取量热器内筒容积的2/3左右。

3.称出水、内筒和搅拌器的总质量水的质量,把内筒、搅拌器和水放入外筒的中盖好盖子。

4.为保证室温不变可将量热器放入水装有水的盆中。

5.投入冰前轻轻搅拌水并每隔一定时间(如1min)读,取4~5个点,

6.放入冰后立即盖好盖子注意不要把水渐出,测定实验过程中系统温度随时间变化的情况,应每隔一定时间(例如15s测一次温度。

7.称出此时的水、内筒和搅拌器的总质量,减去即为冰的质量。

8.作T~t图,以分析由于系统与外界有热交换对测量结果的影响,并作为重做实验时为减小系统与外界有热交换的影响对实验参量进行调整的依据。

注意事项:

1. 测量过程要不断搅拌,使水温均匀,搅拌器不要碰撞温度计和内筒。

2. 温度计放入水中的深度要适中,温度计的水银泡不要接触冰块,要使其在水中。

3. 冰投入之前要把水擦干,冰不要直接放在太平上称。

4. 投入冰后立即盖好盖子并且不需要搅拌。

5. 注意不要将盆内的水流入内筒。

实验数据:

0.00 1.00 2.00 3.00 4.00 4.30 4.45 5.00 5.15 5.30 5.45 6.007.008.009.00

时间

36.9036.7536.5536.4036.3026.7020.3019.1018.2018.0018.0018.3018.3518.4018.50

温度

时间10.0011.0012.0013.00

18.6018.7518.8518.90

3.1数据处理:根据图可得温度计的比热不计可得:

实验误差:温度计引入

冰的熔解热为:

参考文献:[1] 刘德平、大学物理实验 [M]

[2] 李长江、物理实验 [M]

[3]杨述武,赵立竹,沈国土主编普通物理实验1 力学、热学部分[M].—4版.—北京高等教育出版社2007.12ISBN 978-7-04-020-1 [M]

混合法测冰的熔化热

实验三 混合法测冰的熔化热 【实验简介】 温度测量和量热技术是热学实验的中最基本问题。本实验主要学习利用量热学的实验方法混合法测量冰的熔化热。量热学是以热力学第一定律为理论基础的,它所研究的范围就是如何计量物质系统随温度变化、相变、化学反应等吸收和放出的热量。量热学的常用实验方法有混合法、稳流法、冷却法、潜热法、电热法等。本实验应用混合发测冰的熔化热,使用的基本仪器为量热器。由于实验过程中量热器不可避免地要参与外界环境的热交换而散失对热量,因此,本实验采用牛顿冷却定理克服和消除热量散失对实验的影响,以减小实验系统误差。 詹姆斯·普雷斯科特·焦耳——生平简介(1818-1889) 焦耳是英国著名物理学家,1818年12月24日生于英国曼彻斯特。他研究 的实验成果有焦耳-楞次定律,焦耳气体自由膨胀实验、焦耳-汤姆孙效应、焦耳热 功当量实验、焦耳热等。焦耳于1840~1850年进行的热功当量实验为热力学第 一定律的科学表述奠定了基础。 1889年10月11日焦耳在塞尔逝世,终年71岁。 为了纪念他对科学发展的贡献,国际计量大会将能量、功、热量的单位命名为焦耳。 【实验目的】 1、掌握基本的量热方法——混合法; 2、测定冰的熔化热; 3、学习消除系统与外界热交换影响量热的方法。 【实验仪器和用具】 量热器(BDI-302A 型),数字温度计(SN2202或DM-T )或水银温度计(0~50℃,0.1℃)、烧杯、电子天平(YJ6601)、冰柜、或恒温数显水浴锅、保温桶、小量筒(10ml,0.5ml )、电子秒表或机械秒表等。 图

【实验原理】 1、热平衡方程式 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全 熔化为同温度的液态物质所需要吸收的热量称为熔 化热,用L 表示, 单位为J Kg 或J g 。 将质量m ,温度为0℃的冰块置入量热器内, 与质量为0m ,温度为0t 的水相混合,设量热器内系 统达到热平衡时温度为1t 。若忽略量热器与外界的 热交换,根据热平衡原理可知,冰块熔化成水并升 温吸热与水和内筒等的降温放热相等。即: 010*******()(-)mL mC t m C m C m C t t +=++ (3-1) 解得冰的熔化热为: 00112201011()(-)-L m C m C m C t t C t m = ++ (3-2) 上式中:m 为冰的质量,0m 为量热器内筒中所取温水的质量,00 4.18()C J g C =?为水的比热,1m ,1C 为量热器内筒及搅拌器的质量和比热(二者同材料), 22m C 是温度计插入水中部分的热容(对水银温度计22 1.9m C V =,V 数值上等于温度计插入水中体积的毫升数,单位为o J C ; 对数字温度计的22m C 可不计。),0t ,1t 为投冰前、后系统的平衡温度。实验中可测出m , 0m ,1m ,22m C ,0t ,1t 的值,0C ,1C 为已知量,故可以求出L 的值。 2、初温与末温的修正 上述结论是在假定冰熔化过程中,系统与外界没有热交换的条件。实际上,只要有温度差异就必然有热交换的存在。因此必须考虑如何防止或进行修正热散失的影响。 第一,冰块在投入量热器水中之前要吸收热量,这部分热量不容易修正,应尽量缩短投放时间。第二,引起测量误差最大的原因是0t ,1t 这两个温度值,这是由于混合过程中量热器与环境有热交换。若0t 大于环境温度θ,1t 小于θ,则混合过程中,系统对外先是放热,后是吸热,至使温度计读出的初温0t 和混合温度1t 都与无热交换时的初温度和混合温度有差异,因此,必须对0t 和1t 进行修正。修正方法用图解法进行。考察投冰前、冰融化过程和冰全部融化后持续的三个阶段内的水温随时间的变化情况,作出时间~温度曲线(ABCDE )。 实验时,从投冰前5分钟开始,每30秒测一次水温,直至冰完全熔化后5分钟为止,中间测时、测温不间断。将记录的时间~温度,在二维坐标上先描出点,再将点连成连续的曲线ABCDE ,如图3-6示:图中AB 为投冰前的放热线(近似为直线),BCD 为熔化时的曲线,DE 为熔化后的吸热线(近似为直线),B 、D 两点为为温度计实测的投冰前后的系统初、末温度。 下面讨论对曲线ABCDE 的处理方法,可以采取两种方法。 方法一、在BCD 段找出与室温θ对应的点C ,过C 作一条垂直于时间轴的垂线FG ,分别与AB 、ED 的延长线交于F 、G 。在冰熔化的过程中,当水温高于室温前(BC 段),量热器 一直在放热,故混合前的理论初温值应该低于投冰前的测量温度值(B 点值);同理,水温低于室温后(CD 段),量热器从环境吸热,故熔化完的理论温度要低于温度计显示的最低温度值(D 点值)。如果图中BCF ,CDG 两部分的面积近似相等(一般需要多次实验改变参数,才可以达到较好的近似),根据牛 电子天平图3-5 图3-6

物理化学实验报告_溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(ee ee2)e 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热(ee ee1) e2 或(eee ee0 ) e2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无 限量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=(ee ee1) e2 ee1+( ee ee2 ) e1 ee2 上式在比值e1 e2 恒定下积分,得: e=(ee ee1 ) e2 e1+( ee ee2 ) e1 e2 ee2=ee,令:e1 n2 =e0,则有: ( ?Q ?n1 )=[ ?(n2Q s ?(n2n0) ]=( ?Q s ?n0 ) Q d=(ee)e01?(ee)e02 其中积分溶解热ee可以直接由实验测定,其他三种可以由ee?e0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。

测定冰的溶解热

测定冰的熔解热 【实验简介】 温度测量和量热技术是热学实验的中最基本问题。本实验主要学习利用量热学的实验方法混合法测量冰的熔化热。量热学是以热力学第一定律为理论基础的,它所研究的范围就是如何计量物质系统随温度变化、相变、化学反应等吸收和放出的热量。量热学的常用实验方法有混合法、稳流法、冷却法、潜热法、电热法等。本实验应用混合发测冰的熔化热,使用的基本仪器为量热器。由于实验过程中量热器不可避免地要参与外界环境的热交换而散失对热量,因此,本实验采用牛顿冷却定理克服和消除热量散失对实验的影响,以减小实验系统误差。 一、实验目的: 1、理解混合法测量冰的熔解热的原理; 2、掌握用混合法测定冰的熔解热的方法; 3、学会修正散热的粗略方法。 二、实验仪器和用具: 量热器、数字温度计、电子天平、冰柜、恒温水浴锅、保温桶、秒表、干擦布。 三、实验原理: 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全熔化为同温度的液态物质所需要吸收的热量称为熔解热,用L 表示, 单位为 J Kg 或J g 。 1、熔解热的计算 若将质量为m ,温度为0 0C 的冰块置入量热器内,与质量为0m ,温度为0t 的水相混合,当量热器内系统达到热平衡时温度为1t 。设量热器内筒和搅拌器的材料相同,两者总质量为 1m ,比热容为1C 。若忽略量热器与外界的热交换,根据热平衡原理可知,冰块熔化成水并 升温吸热与水、内筒以及搅拌器的降温放热相等。即: 01001101()()mL mC t m C mC t t +=+- (1) 解得冰的熔解热为: 001101011 ()(-)L m C m C t t C t m = +- (2) 上式中:)/(18.40C g J C o ?=为水的比热容,1m ,1C 为量热器内筒及搅拌器的质量和比热容(二者同材料),0t 、1t 为冰熔化前后系统处在热平衡时的温度。01,C C 为已知量,实验中可测出0101,,,,m m m t t 的值,故可以求出冰的熔解热L 的值。

测定冰的熔解热

实验4-4 测定冰的熔解热 混合法是热学实验中的一种常用方法,其基本原理可用热平衡方程式来描述,即在一个孤立系统中,一部分物体所吸收的热量等于该系统中其它物体所放出的热量。本实验用混合 法测冰的熔解热,关键是必须保证系统为孤立系统?(即系统与外界环境没有热交换)。 【实验目的】 1 ?掌握用混合法测定冰的熔解热的方法。 2.学习散热修正的一种方法。 【实验器材】 量热器、物理天平、温度计、水、冰块、秒表、取冰夹子等。 【实验原理】 一、用混和法测定冰的熔解热 将质量为m。、温度为0°C (以厲表示)的冰放入质量为m、温度为二的温水中(温水盛在量热器的内筒里),通过搅拌待冰全部熔解后,其平衡温度为-1。在此交换过程中, 冰先吸收热量m o (■为冰的熔解热)而熔解为00C的水,再从00C升温到円,又吸收热量为5口0(可-入),C0为水的比热容。量热器系统(内筒、搅拌器、温度计)与原来的温水放出的热量可表示为(c0m + c1m1+ c2m2+ c0m3)- )。其中G、m1分别为铝的比热容和内筒的质量,C2、m2分别为铜的比热容和搅拌器的质量,mm3为温度计温度降10C 所放出的热量,它相当于质量为m3的水温度降10C所放出的热量,m3的值由实验室给出 (习惯上m3称为温度计的水当量)。根据平衡原理有 ■ m0 + c°m0 (刊-%)= (C0m + Gg + C2m2+C0m3)(v - n)(4-4-1)即 (c°m 补。2口2 亦3)「「打)「°)… '= (4-4-2 ) m0 1 1 C0、C1、C2 的值分另U 为C0 =4.1 7JB g K C2 =0.385J g A K A(它们随温度的变化可忽略不计)。 可以看出,本实验的关键是必须保持系统为孤立系 统?,即系统与外界环境没有热交换,热传递有三种方 式:①热传导;②热对流;③热辐射。实验中考虑了整 个“热学系统”的吸热与放热,“热 学系统”主要由量热器的内筒、搅拌器、温度计以及水 和冰块组成。量热器结构上有效地防止热传递。 量热器的结构如图4-4-1所示,为防止热传递,内 筒放在外筒内的绝热支架上可防止热传导,外筒 用绝热盖盖住,因此可防止空气与外界对流,而且空气 是热的不良导体,所以内、外筒间因对流传递 的热量可减至很小。内筒的外壁及外筒的内壁都电镀得十c^0.904J g」K」、 絶缘圈搅拌器 盖手 图4-4-1量热器结构示意图

冰的熔解热的测定实验报告

实验名称测定冰的熔解热 一、前言 物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。 二、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 三、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统A和一个已知热容的系统B混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统C (C=A+B).这样A(或B)所放出的热量,全部为B(或A)所吸收。因为已知热容的系统在实验过程中所传递的热量Q,是可以由其温度的改变△T 和热容C计算出来,即Q = C△T,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块, 冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为Q 放 ,冰吸热溶成水, 继续吸热使系统达到热平衡温度,设吸收的总热量为Q 吸 。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T1,其中热水质量为m1(比热容为c1),内筒的质量为m2(比热容为c2),搅拌器的质量为m3(比热容为c3)。冰的质量为M(冰的温度和冰的熔点均认为是0℃,设为T0),数字温度计浸入水中的部分放出的热量忽略不计。设混

冰的熔化热-实验报告

XX大学物理学院实验报告 实验名称:测定冰的熔化热 学生姓名:XXX 学号:XX 实验日期:20XX年XX月XX日 一、数据及处理 3. 投入冰的时刻:t=250s 冰的温度:-13.0℃ 室温:26.1℃ 5. 计算得到冰的熔化热L=3.22x10J/kg 6. T-t图像:

7. 从图中得到的信息: 水的初始温度(承装水时):39.5℃; 投入冰前水温下降速度:0.1℃/30s; 投入冰时水温:38.7℃; 冰完全融化后的温度:22.1℃; 系统达到稳定状态耗时:约100s; 投入冰时温度比室温高12.6℃,稳定后温度比室温低4℃,其比值为3.15; 二、分析与讨论 1. 误差的主要来源: 误差主要来源于搅拌过程和转移过程之中水的溅出,包括溅出到桌上与溅出到外筒里,这将直接影响冰的测量质量,由于在计算式中,冰的质量位于分母,故放大了绝对误差。因此,在失败(误差过大)一次后,采取连同外筒一起测量质量的方法,防止在取出内筒过程中造成的溅出,同时测量包括溅入外筒的水。 2. 补偿法的意义: 理论公式的适用范围是有限的,在相当多的实验情况下,不可避免的会出现超出适用范围的因素,例如本实验中的对环境吸放热,无法实现完全绝热的实验条件,带来系统的偏差。补偿法可以在一定程度上减小这些不可抗因素的影响,使作用效果相反的两种因素相互抵消以维持实验结果,从而减小实验误差。在其他的实验中,例如迈克尔逊干涉仪中,也存在着大量的补偿法应用。 3. 测量值偏小的原因: (1)取出冰块和将冰块擦干时不可避免的会与外界,特别是加持、擦拭工具间相互传热,甚至与手掌间接传热,造成温度上升,使熔化热计算值偏低; (2)读取系统热平衡温度时,由于外界导热的影响以及温度计示数的延迟使温度读取值偏大,导致熔化热计算值偏低; (3)拟合过程采取直线拟合,与原本的二次拟合存在差异,导致起始温度较推断值更高,使熔化热计算值偏低。 三、收获与感想 (1)投入冰前与最终稳定后,温度的变化较为缓慢,测量数据点可以选择更疏一些。(2)投入冰后到稳定前,温度变化非常剧烈,测量数据点可以选择更密一些。 (3)投入冰与记录时间、温度难以同时进行,故可以根据投入冰前的温度变化线性推出投入冰时刻的系统温度,以获得准确值,在其他热学实验中也可以应用。 (4)在量程允许的情况下,将整个量热器称量质量,而不取出内筒,减少必要的操作步骤,减少水的溅出带来的误差。 (5)初步了解并使用了补偿法,为以后在测电阻、迈克尔逊干涉仪等实验增加经验。

冰的熔解热的测定实验报告

学院:信息工程学院 班级:通信152 学号:6102215051 姓名:潘鑫华 实验时间:第六周星期二下午八九十节

T T' θ J K T 1 T 1' 实验名称 测定冰的熔解热 一、实验目的 1、学习用混合量热法测定冰的熔解热。 2、应用有物态变化时的热交换定律来计算冰的溶解热。 3、了解一种粗略修正散热的方法——抵偿法。 二、实验原理 本实验用混合量热法测定冰的熔解热。其基本做法如下:把待测系统 A 和一个已知热容的系统 B 混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 C (C =A +B ).这样 A (或 B )所放出的热量,全部为 B (或 A )所吸收。因为已知热容的系统在实验过程中所传递的热量 Q ,是可以由其温度的改变 △T 和热容 C 计算出来,即 Q = C △T ,因此待测系统在实验过程中所传递的热量也就知道了。 实验时,量热器装有热水(约高于室温10℃,占内筒容积1/2),然后放入适量冰块,冰溶解后混合系统将达到热平衡。此过程中,原实验系统放热,设为 Q 放 ,冰吸热溶成水,继续吸热使系统达到热平衡温度,设吸收的总热量为 Q 吸。 因为是孤立系统,则有Q 放= Q 吸 (1) 设混合前实验系统的温度为T 1,其中热水质量为m2(比热容为c0)。冰的质量为m1(冰的温度和冰的熔点均认为是0℃,设为T 0),数字温度计浸入水中的部分放出的热量忽略不计。设混合后系统达到热平衡的温度为T ℃(此时应低于室温10℃左右),冰的溶解热由L 表示,根据(1)式有 ML +m1c0(T - T 0)=m2c0(T 1- T ) 因T r=0℃,所以冰的溶解热为: L=[m2c0(T1-T2)-T2c0m1]/m1 (2) 综上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此整个实验在量热器内进行,但由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。所以当实验过程中系统与外界的热量交换不能忽略

测定冰的熔化热-实验报告

测定冰的熔化热实验报告(一)实验数据及处理 1.第一次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.69 g m0=164.16 g T2-T3=15.2℃

2.第二次实验数据处理 C水=4.18×103J/(Kg·K)C1=C2=0.389×103J/(Kg·K)C冰=1.80×103 J/(Kg·K) m=22.97g m0=171.13g T2-T3=13.8℃

(T2-θ):(θ-T3)= 10.1 :3.7 (二)分析与讨论 1.从实测数据看,如果实验全过程中散热、吸热没有达到补偿,冰的熔化热结果不一定偏离“合理”的数据范围,这说明散热或吸热并不是该系统的主要实验误差来源。那么,本实验的主要误差来源是什么? 由熔化热的公式看,对计算结果影响最大的量是m,即冰的质量。由于采用间接测量法,因此冰的质量是比较容易产生误差的,比如投冰时溅出水,就会对

算出的冰的质量产生影响,从而产生误差。 2.通过实验去体会粗略修正散热的方法——补偿法在本实验中的应用对学习做实验的意义。 在实验系统不能很好地保证绝热时,用补偿法修正系统误差是一个办法,也是一个好的思路。在这次实验中,我们应该反复摸索,对各物理参量进行合理的选择和调整,使散热和吸热基本达到补偿。 然而,实验结果证实量热器是一个很好的绝热系统,因此,在分析系统误差来源时,应实事求是地、定量地进行分析,不能将误差的来源归结为系统的散热、吸热未能达到补偿。 3.在本实验室提供的条件下,实测熔化热的结果通常小于文献值 L=3.34×105J/Kg,你能分析是什么原因吗? 本实验未计算温度计插入水中的部分带来的影响。

大学物理实验讲义(冰的熔化热) (1)

混合法测冰的熔化热 一、实验目的: 1、掌握基本的量热方法——混合法; 2、测定冰的熔化热; 3、学习消除系统与外界热交换影响量热的方法。 二、实验仪器和用具: 量热器、数字温度计、烧杯、电子天平、冰柜、恒温水浴锅、保温桶、秒表、毛巾。 三、实验原理: 在一定压强下,固体发生熔化时的温度称为熔化温度或熔点,单位质量的固态物质在熔点时完全熔化为同温度的液态物质所需要吸收的热量称为熔化热,用L 表示, 单位为 J Kg 或J g 。 1、熔化热的计算 若将质量m ,温度为0 0C 的冰块置入量热器内,与质量为0m ,温度为0t 的水相混合,设量热器内系统达到热平衡时温度为1t 。若忽略量热器与外界的热交换,根据热平衡原理可知,冰块熔化成水并升温吸热与水和内筒等的降温放热相等。即: 01001101()()mL mC t m C mC t t +=+- 解得冰的熔化热为: 001101011 ()(-)L m C m C t t C t m = +- 上式中:0 0 4.18()C J g C = 为水的比热,1m ,1C 为量热器内筒及搅拌器的质量和比 热(二者同材料),0t 、1t 为冰熔化前后系统处在热平衡时的温度。实验中可测出 0101,,,,m m m t t 的值,01,C C 为已知量,故可以求出冰的熔化热L 的值。 2、系统始末温度的修正 上述结论是假定在冰熔化过程中,系统与外界没有热交换的条件下。实际上,系统与外界只要有温度差异就必然有热交换存在。因此必须考虑如何防止或进行修正,以减少热交换的影响。 第一,冰块在投入量热器水中之前要吸收热量,这部分热不容易修正,应尽量缩短投放冰块的时间。 第二,引起测量误差最大的原因是01,t t 这两个温度值,这是由于冰熔化过程中量热器与环境有热交换。若0t 大于环境温度θ,1t 小于θ,则混合过程中,系统对外先是放热,后是吸热,至使温度计读出的初温0t 和末温1t 都与理想情况下的初温和末温有差异。因此,必

溶解热的测定(KNO3溶解热的测定)

KNO 3溶解热的测定 一、实验目的 1.用电热补偿法测定KNO 3在不同浓度水溶液中的积分溶解热。 2.用作图法求KNO 3在水中的微分冲淡热、积分冲淡热和微分溶解热。 二、预习要求 1.复习溶解过程热效应的几个基本概念。 2.掌握电热补偿法测定热效应的基本原理。 3.了解如何从实验所得数据求KNO 3的积分溶解热及其它三种热效应。 4.了解影响本实验结果的因素有那些。 三、实验原理 1.在热化学中,关于溶解过程的热效应,引进下列几个基本概念。 溶解热: 在恒温恒压下,n 2摩尔溶质溶于n 1摩尔溶剂(或溶于某浓度的溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。 积分溶解热:在恒温恒压下,一摩尔溶质溶于n 0摩尔溶剂中产生的热效应,用s Q 表示。 微分溶解热:在恒温恒压下,一摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1,,2n p t n Q ???? ????表示,简写为1 2n n Q ???? ????。 冲淡热:在恒温恒压下,一摩尔溶剂加到某浓度的溶液中使之冲淡所产生的热效应。 冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。 积分冲淡热:在恒温恒压下,把原含一摩尔溶质及n 01摩尔溶剂的溶液冲淡到含溶剂为 n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以d Q 表示。 微分冲淡热:在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的溶液中产生的 热效应,以2,,1n p t n Q ???? ????表示,简写为2 1n n Q ???? ????。 2.积分溶解热(s Q )可由实验直接测定,其它三种热效应则通过s Q —n 0曲线求得。 设纯溶剂和纯溶质的摩尔焓分别为)1(m H 和)2(m H ,当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为m H ,1和m H ,2,对于由1n 摩尔溶剂和2n 摩尔溶质组成的体系,在溶解前体系总焓为H 。 )2()1(21m m H n H n H += ( 1 ) 设溶液的焓为H ′, m m H n H n H ,22,11/+= ( 2 )

冰的熔解热的测定.

冰的熔解热的测定 摘要:用混合法测定冰的熔解热是把冰和一个容量已知的系统混合起来达到热平衡,在与外界没有热交换条件下冰吸收的热量等于系统在实验过程中放出的热量,放出的热量可由温度的改变和热容量计算出来,冰的熔解热可根据条件计算出来。 关键词:冰的比熔解热、吸热、放热、散热修正 引言: 将一定质量的冰和一定质量的水混合,当混合后的系统达到一定的温度后,冰全部熔解为同温度的水,根据热力学第一定律,冰熔解所吸收的热量与水降温所放出的热量相等.只要测量出系统与外界的换热量、水的质量、冰的质量等,就可以求出冰的熔解热.文中采用混合法测量冰的熔解热,实验中并未考虑系统环境的散热损失.本实验研究方法中采用测量系统中水的质量变化来测量冰的质量。实验用混合法来测定冰的熔解热,即把待测的系统和一个已知其热容的系统混合起来,并设法使它们形成一个与外界没有热量交换的孤立系统 ()。这样(或)所放出的热量,全部为(或)所吸收。因为已知热容的系统在实验过程中所传递的热量是可以由其温度的改变和热容计算出来的,即 。因此,待测系统在实验过程中所传递的热量也就知道了。由此可见,保持系统为孤立系统,是混合量热法所要求的基本实验条件,这要从仪器装置、测量方法及实验操作等各方面去保证。如果实验过程中与外界的热交换不能忽略,就要做散热或吸热修正。温度是热学中的一个基本物理量,量热实验中必须测量温度。一个系统的温度,只有在平衡态时才有意义,因此计温时必须使系统温度达到稳定而均匀。用温度计的指示值代表系统温度,必须使系统与温度计之间达到热平衡。 1.1实验原理: 一定压强下的晶体开始熔解时的温度称为该晶体在此压强下的熔点,质量为1g的某种物质的晶体熔解为相同温度的液体所吸收的热量叫做该晶体的熔解热。本实验采用混合量热测定冰的熔解热,其基本原理是:把待测系统和一个已知其热容的系统混合起来,并使它们形成一个与外界没有热量交换的孤立系统。于是,在此孤立系统中已知其热容的系统吸收(或放出的热量也就是待测系统放出(或吸收的热量。已知其热容的系统吸收(或放出的热量可通过其温度的变化及其热容来求得,于是待测系统放出(或吸收的热量也便可求得。为了使实验系统成为一个孤立系统,我们采用了量热器。量热器的种类很多,随测量的目的、要求、测量精度的不同而异。最简单的一种如图2-27所示,它是由热的良导体做成的内筒,放在一较大的外筒中组成。通常在内筒中放水、温度计及搅拌器,这些东西(内筒、温度计、搅拌器及水连同放进的待测物体就构成了我们所考虑的(进行实验的系统,内筒、水、温度计和搅拌器的热容可以测知。量热器的内筒置于一绝热架上,外筒用绝热盖盖住,因此其内的空气与外界对流很小。又因空气是不良导体,所以内、外筒间通过热传导传递的热量便可减至很少。同时由于内筒的外壁及外筒的内外壁都十分光亮,使得它们向外辐射热或吸收辐射热的本领

冰的溶解热实验报告

实验目的: 1、 理解冰的熔解热测量实验的设计原理及实验所必须具备的条件。 2、 掌握用混合量热法测定冰的比熔解热的。 3、 学会用图解法估计和消除系统散热损失的修正方法。 4、 熟悉数字温度计及水银温度计的使用。 二、实验原理: 单位质量的固体物质在熔点时从固态全部变成液态所需的热量,称为该物质的比熔解热,一般用 L 来表示。 实验时将质量为 m !克0 C 的冰投入盛有 m 2克T 「C 水的量热器内筒中, 设冰全部熔解为水后平衡温度为 T ?C ,设 量热器内筒、搅拌器的质量分别为 m 3、 m 4,其比热容分别为 C 2和水的比热容为 C 。。根据混合量热法的原理, 冰全部熔解为同温度(0C)的水以及其从 0C 升到T ?C 过程中所吸收的热量等于其余部分(水 m !、量热器内筒 m 3、 搅拌器m 4)从温度TJC 降到T 2C 时所放出的热量,有 (m 2c 0 m 3C | m 4q )(£ -T 2) = m 丄 口兀。。 ---------------------- (1) 冰的熔解热的实验公式为 1 L — 血5 mhG m (4C 2)(T i -T 2)-T z C 。 ---------------------- (2) m 1 式中水的比热容 C 0=4.18 x 103J/kg C 。 本实验“热学系统”依据混合量热法测量冰的熔解热,必须在系统与外界绝热的条件下进行实验。为了满足此 条件,从实验装置、测量方法和实验操作等方面尽量减少系统与外界的热交换。但由于实际上往往很难做到与外界 完全没有热交换,因此,必须研究如何减少热量交换对实验结果的影响,也就是在实验中,要进行散热修正,使系 统的散热与吸热相互抵消。 近似与温度差成正比,其数学式为 式中T 为系统的温度,T 0为环境的温度,k 为散热系数, 由此可知,用混合量热法测冰的熔解热时,应尽量让室温处在水的初、终温之间,使系统向外界吸、放的热量 牛顿冷却定律指出,当系统与环境的温度差不大(不超过 10?15C)时,单位时间内该系统与周围交换的热量 只与系统本身的性质有关。

测量冰的溶解热

实验:测定冰得熔解热 实验者:1400012105 郭伟杰 院系:生命科学学院 实验时间:2016/3/2 实验目得: 1、了解热学实验中得基本问题——量热与计温 2、了解粗略修正散热得方法 3、学习进行合理得实验安排与参量选择 实验原理: 晶体物质得熔点就是该物质固液平衡时得温度,单位质量得晶体物质在熔点时从固态全部变为液态所需得热量叫做该晶体得融化热。 本实验采用混合量热法来测定冰得熔化热,即通过某已知质量与比热得物质,计算该物质在与待测熔化热得物质得混合中所传递得热量等于未知物质所吸收得热量,即冰从初始温度T1上升至熔点0℃-在0℃熔化-液体从0℃上升至最终温度T3所吸收得热量等于已知物质水从初始温度T2下降到最终温度T3时所释放得热量,用公式表示为 公式中m为冰得质量,T0为冰得熔点,T1为冰得初始温度,T2为水得初始温度,T3为体系平衡后得最终温度,m0为水得质量,m铜为实验仪器量热筒内筒与搅拌器得总质量,c0为水得比热容,c1为铜质物得比热容,c2为冰得比热容。 实验最理想得体系为孤立体系,即体系与外界之间无能量与物质交换,但实

际中很难做到体系与外界无热量交换,因此要调整实验用水得初温,以达到体系向外界散失得热量与从外界吸收得热量相等。需要用到牛顿冷却定律粗略修正散热: 公式中为系统散热,为时间间隔,K为散热常量,为实验时室温。 结合实验分析,在刚投入冰时,水温高,冰得熔化速率快,故系统表面温度下降快,随着冰得不断熔化,冰块逐渐变小,水温逐渐降低,冰得融化速度变慢,当系统温度低于室温时,系统从环境中吸收热量。体系与环境交换得热量为: 故,只要SA与SB大致相等,则系统与外界得热量交换总量几乎为0。根据 经验公式在时,吸热与放热近乎相等。 仪器用具: 量热器,电子天平(JA21001 分度值0、01g 稳定时间3s),数字温度计(半导体Pn结温度计,铂电阻传感器温度计),毛巾,秒表 实验内容: 1、用天平称量量热器内筒与搅拌器得总质量m铜 2、记录环境室温θ 3、向内筒中注入高于室温10-12℃得热水约2/3体积,称出此时质量m铜 +水,求得m水 4、不断轻轻用搅拌器搅拌内筒中得水,当系统内温度相对稳定时,开始测 量量筒内水温得变化,每20s记录一次,至水温几乎不变。

冰的比熔化热的测量实验报告

大学物理实验报告 课程名称:大学物理实验 实验名称:冰的熔解热的测量

冰的熔解热的测量 一、 实验项目名称:冰的熔解热的测量 二、 实验目的 1.理解熔解热的物理意义,掌握用混合量热法测定冰的熔解热. 2.学会用图解法估计和消除系统散热损失的修正方法. 三、 实验原理 单位质量的固体物质在熔点时从固态全部变成液态所需的热量,称为该物质的比熔解热,一般用L 来表示。 实验时将质量为m 1克0℃的冰投入盛有m 2克T 1℃水的量热器内筒中,设冰全部熔解为水后平衡温度为T 2℃,保温杯、搅拌器的质量分别为m 3、 m 4,其比热容分别为C 1、C 2和水的比热容为C 0。根据混合量热法的原理,冰全部熔解为同温度(0℃)的水并从0℃升到T 2℃过程中所吸收的热量等于其余部分(水m 1、保温杯m 3、搅拌器m 4)从温度T 1℃降到T 2℃时所放出的热量,有 (1) 冰的熔解热的实验公式为 (2) 式中水的比热容C 0=4.18×103J/kg ℃。 本实验“热学系统”依据混合量热法测量冰的熔解热,必须在系统与外界绝热的条件下进行实验。为了满足此条件,从实验装置、测量方法和实验操作等方面尽量减少系统与外界的热交换。由于实验系统不可能与环境温度始终一致,因此不满足绝热条件,可能会吸收或散失能量。因此,要适当地选择参数进行散热修正。牛顿冷却定律告诉我们,一个环境的温度T 如果略高于环境温度T 0(两者的温度差不超过10℃),系统就会散失热量,散热速率与温度差成正比,用数学 形式表示为 当时(即直线围成的两 块面积近似相等),系统的散热与吸热相互抵消,就可以将系统很好地近似为一个孤立系统。 203142121120()()m c m c m c T T m L mT C ++-=+20314212201 1 ()()L m c m c m c T T T C m = ++--0()dQ K T T dt =-A B S S ≈

南昌大学大物实验报告-冰的熔化热的测量

大学物理实验报告课程名称:大学物理实验 实验名称:冰的比熔化热的测量 学院名称:机电工程学院 专业班级:车辆工程151班 学生姓名:吴倩萍 学号:5902415034 实验地点:基础实验大楼D508 实验时间:第二周周三下午15:45开始

一、实验目的: 1.理解熔化热的物理意义,掌握混合量热法测定冰的熔化热。 2.学会一种用图解法估计和消除系统散热损失的修正方法。 3.熟悉集成温度传感器的特性及定标。 二、实验原理: 1.混合量热法测定冰的比熔化热 比熔化热是指在一定压强下,单位质量物质从固相转变为同温度的液相的过程中所吸收的热量,称为该物质的比熔化热,本书中用L 来表示。在一定的压强下,结晶的固体要升高到一定的温度才熔解,在熔解过程中物质的温度保持不变,这一温度称为熔点。如在大气压下,冰熔解时温度保持为0℃,而且由冰熔化而成的水也保持为0℃,直到冰全部熔化成水为止。 将质量为m 1温度为0℃的冰投入盛有质量为m 2温度为T 1的水的量热器内筒中,设冰全部熔化为水后平衡温度为T 2,设量热器内筒、搅拌器的质量分别为m 3、m 4,其比热容分别为c 1、c 2,水的比热容为c 0。由混合量热法原理可知,冰全部熔化为同温度(0℃)的水以及其从0℃升到T 2过程中所吸收的热量等于其余部分(水m 1、量热器内筒m 3、搅拌器m 4)从温度T 1降到T 2时所放出的热量: (m 2c 0+m 3c 1+m 4c 2)(T 1?T 2)=m 1L +m 1T 2c 0 (16-1) 冰的熔化热的实验公式为: L = 1m 1 (m 2c 0+m 3c 1+m 4c 2)(T 1?T 2)?T 2c 0 (16-2) 式中水的比热容C 0=4.18×103 J/(kg ·℃),铝制的内筒、搅拌器比热

测量冰的溶解热

实验:测定冰的熔解热 实验者:1400012105 郭伟杰 院系:生命科学学院 实验时间:2016/3/2 实验目的: 1、了解热学实验中的基本问题——量热和计温 2、了解粗略修正散热的方法 3、学习进行合理的实验安排和参量选择 实验原理: 晶体物质的熔点是该物质固液平衡时的温度,单位质量的晶体物质在熔点时从固态全部变为液态所需的热量叫做该晶体的融化热。 本实验采用混合量热法来测定冰的熔化热,即通过某已知质量和比热的物质,计算该物质在与待测熔化热的物质的混合中所传递的热量等于未知物质所吸收的热量,即冰从初始温度T1上升至熔点0℃-在0℃熔化-液体从0℃上升至最终温度T3所吸收的热量等于已知物质水从初始温度T2下降到最终温度T3时所释放的热量,用公式表示为 m c3T0?T1+mL+mc0T3?T0= m0c0+m 铜c 铜 T2?T3 公式中m为冰的质量,T0为冰的熔点,T1为冰的初始温度,T2为水的初始温度,T3为体系平衡后的最终温度,m0为水的质量,m铜为实验仪器量热筒内筒和搅拌器的总质量,c0为水的比热容,c1为铜质物的比热容,c2为冰的比热容。

实验最理想的体系为孤立体系,即体系与外界之间无能量与物质交换,但实际中很难做到体系与外界无热量交换,因此要调整实验用水的初温,以达到体系向外界散失的热量与从外界吸收的热量相等。需要用到牛顿冷却定律粗略修正散热: δq δt =K T ?θ 公式中δq 为系统散热,δt 为时间间隔,K 为散热常量,θ为实验时室温。 结合实验分析,在刚投入冰时,水温高,冰的熔化速率快,故系统表面温度下降快,随着冰的不断熔化,冰块逐渐变小,水温逐渐降低,冰的融化速度变慢,当系统温度低于室温时,系统从环境中吸收热量。体系与环境交换的热量为: q = T ?θ Kdt = T ?θ Kdt + T ?θ Kdt =S A +S B t 3 tθ tθ t 2 t 3 t 2 故,只要SA 与SB 大致相等,则系统与外界的热量交换总量几乎为0。根 据经验公式在T 2?θθ?T 3 = 103 时,吸热与放热近乎相等。 仪器用具: 量热器,电子天平(JA21001 分度值0.01g 稳定时间3s ),数字温度计(半导体Pn 结温度计,铂电阻传感器温度计),毛巾,秒表 实验内容: 1、 用天平称量量热器内筒和搅拌器的总质量m 铜 2、 记录环境室温θ 3、 向内筒中注入高于室温10-12℃的热水约2/3体积,称出此时质量m 铜+水,求得m 水

测定冰的熔解热解析

基础物理实验研究性报告 测定冰的熔解热The Measurement in Heat of Fusion of Ice

目录 摘要 (3) Abstract (3) 一、实验目的 (4) 二、实验原理 (4) 2.1一般概念 (4) 2.2装置简介 (4) 2.3实验原理 (5) 三、实验仪器 (8) 四、实验主要步骤 (8) 4.1合理选择实验参量 (8) 4.2记录有关常数 (8) 4.3测定实验过程中温度随时间的变化 (9) 4.3.1每隔一段时间测系统温度随时间的变化,作T-t图。 (9) 4.3.2实测系统的散热常数 (9) 4.3.3数据处理 (9) 五、数据处理 (9) 5.1原始数据 (9) 5.2数据处理 (10) 六、误差分析 (11) 6.1实验原理的理想化引起测量值的误差 (11) 6.2测量仪器误差及估读引起L 测量值的不确定。 (11) 6.3搅拌不够均匀,引起的误差 (11) 6.4作图误差 (11) 七、实验技巧的总结 (12) 7.1水的初温及水与冰的量的选择 (12) 7.2读数及搅拌的技巧 (12) 八、实验改进建议 (12) 8.1对于实验仪器的改进建议 (13) 8.1.1对数字三用表的替换 (13) 8.1.2对搅拌器的改进 (14) 8.2对数据处理方法的改进 (14) 九、实验感想与总结 (16) 9.1动手能力的提高 (16) 9.2自学能力以及预习能力的提高 (17) 9.3对物理理论知识认识的升华 (17) 参考文献: (17)

摘要 测量冰的熔解热实验是热学的基本实验之一,本文以“测定冰的熔解热”为内容,先介绍了实验的基本原理、方法(混合量热法和孤立系统、冷却定律和修正散热、测温原理等)与过程,仪器构造和使用方法,而后进行了数据处理。并以实验数据对误差的来源进行了定量分析并提出改进意见。 关键词:冰;熔解热;混合量热法;孤立系统;冷却定律; Abstract The Measurement in Heat of Fusion of Ice is one of the basic thermotics experiments .This article is based on the Measurement in Heat of Fusion of Ice and introduces the basis theory, methods (such as combination method, isolated system, Law of refrigeration, the modification of heat dissipation and the principle measuring temperature), process, and the configuration and the usage of the apparatus. Then, it gives one method on data handing. Based on the data in the experiment, it also analyzes the origin of some errors and offers some proposals. Key words: Ice; Heat of fusion; Combination method; Isolated system; Law of refrigeration.

冰的熔解热实验报告

大学物理实验报告 课程名称:物理设计类实验 实验名称:冰的熔解热的测定 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:第八周星期三下午十五时四十五分开始

二、实验原理: 单位质量的固体物质在熔点时从固态全部变成液态所需的热量,称为该物质的比熔解热,一般用L 来表示。实验时将质量为m1 克0℃的冰投入盛有m2 克T1℃水的量热器筒中,设冰全部熔解为水后平衡温度为T2℃,设量热器筒、搅拌器的质量分别为m3、m4,其比热容分别为C1、C2 和水的比热容为C0。根据混合量热法的原理,冰全部熔解为同温度(0℃)的水以及其从0℃升到T2℃过程中所吸收的热量等于其余部分(水m1、量热器筒m3、搅拌器m4)从温度T1℃降到T2℃时所放出的热量,有 (m2c0+m3c1+m4c2 )(T1-T2 ) =m1L+m1T2C0----------- (1) 冰的熔解热的实验公式 L=1/m1(m2c0+m3c1+m4c2)(T1-T2)-T2C0--------------(2) 式中水的比热容C0=4.18×103J/kg℃。 本实验“热学系统”依据混合量热法测量冰的熔解热,必须在系统与外界绝热的条件下进行实验。为了满足此条件,从实验装置、测量方法和实验操作等方面尽量减少系统与外界的热交换。但由于实际上往往很难做到与外界完全没有热交换,因此,必须研究如何减少热量交换对实验结果的影响,也就是在实验中,要进行散热修正,使系统的散热与吸热相互抵消。 牛顿冷却定律指出,当系统与环境的温度差不大(不超过10~15℃)时,单位时 间该系统与周围交换的热量△Q/△t近似与温度差成正比,其数学式为 △Q/△t=k(T-T0) 式中T为系统的温度,T0为环境的温度,k为散热系数,只与系统本身的性质有关。 由此可知,用混合量热法测冰的熔解热时,应尽量让室温处在水的初、终温之间,使系统向外界吸、放的热量基本抵消。在实验过程中,从混合前一段时间到混合后一段时间均记下温度和时间的关系,绘制T-t 曲线,如图(1)中的实线部分。图中T1约为B 点对应的水的初温,T2约为C点对应的系统平衡温度,我们用眼睛估寻一个温度,由它对应的G 点绘制一条EGF 直线平行于T 轴,它与BGC 线组成两个小面积 BGE 和CGF。估寻的原则是这两个小面积相等。

相关文档
最新文档