MATLAB阵列天线之切比雪夫低副瓣阵列设计

MATLAB阵列天线之切比雪夫低副瓣阵列设计
MATLAB阵列天线之切比雪夫低副瓣阵列设计

阵列天线分析于综合试题库

阵列天线分析与综合题 一、填空题 (1分/每空) 1. 阵列天线的分析是指在已知阵列的四个参数 单元数 、 单元的空间分布 、_ 激励幅度分布 和 激励相位分布 的情况下,确定阵列天线辐射特性。阵列天线的综合则是指在已知阵列辐射特性如 方向图 、 半功率波瓣宽度 和 副瓣电平 等的情况下确定阵列的如上四个参数。 2. 单元数为N ,间距为d 的均匀直线阵的归一化阵因子为S(u)=_____________,其中αβ+=cos kd u ,k=_______,α表示____________________,其最大指向为____________。若阵列沿x 方向排列则=x βcos ___________,若阵列沿y 方向排列则=y βcos ___________,若阵列沿z 方向排列则=z βcos _________。当N 很大时,侧射阵的方向性系数为D=__________,半功率波瓣宽带为 ()h BW =_o 51 ()Nd λ _,副瓣电平为SLL=_-13.5_dB ,波束扫描时主瓣将(13)___ 变宽___,设其最大指向m β为阵轴与射线之间的夹角,扫描时的半功率波瓣宽度为(14) 51 sin m Nd λ β_o (),抑制栅瓣的条件为(14)_ 1|cos | m d λ β< +_;端射阵的方 向性系数为D=__________,半功率波瓣宽带为()h BW =_ o ()__。 3. 一个单元数为N ,间距为d 的均匀直线阵,其归一化阵因子的最大值为______,其副瓣电平约为_________dB ,设其最大指向m θ为阵轴与射线之间的夹角,则抑制栅瓣的条件为______________,最大指向对应的均匀递变相位m a x α=_________。 4. 根据波束指向,均匀直线阵可分为三类,即(1)__侧射阵___、(2)__端射阵__和__扫描阵__。它们满足的关系分别是α=(3)___0_____、α=(4)__-kd ___和—

HFSS仿真2×2矩形贴片天线阵

HFSS 仿真2×2线极化矩形微带贴片天线阵 微带天线以其体积小、重量轻、低剖面等独特的优点,在通信、卫星电视接收、雷达、遥感等领域得到广泛应用,它一般工作在100MHz-100GHz 宽广频域的无线电设备中,而矩形微带天线是微带天线最常用的辐射单元,它是一种谐振型天线,通常在谐振频率附近工作。C 波段,是频率在4—8GHz 的无线电波,通常的上行频率范围为—,下行频率范围为—。雷达天线具有将电磁波聚成波束的功能,定向地发射和接收电磁波。本实验采用设计了一款工作于C 波段中心频率在的矩形贴片线极化微带雷达天线阵列,根据理论经验公式初步计算出矩形微带贴片天线的尺寸,然后在里建模仿真,根据仿真结果反复调整天线的尺寸,对天线的结构进行优化,直到天线的中心频率为为止。 1 单个侧馈贴片天线的仿真 矩形贴片天线的设计 导波波长g λ,矩形贴片天线的的有效长度e L 2/g e L λ= , e g ελλ/ 0= 有效介电常数为e ε,r ε为介质的介电常数 2 1 121212 1- ?? ? ?? +-+ += w h r r e εεε 矩形贴片的实际长度为L , L=e L -2L ?=e ελ2 /0-2L ?= e f c ε02-2L ? 0f 天线的实际频率,L ?微带天线等效辐射缝隙的长度 ()()()()8.0/258.0264.0/3.0412.0+-++=?h W h W h L e e εε 矩形贴片的宽度为W 2 1 0212- ?? ? ??+=r f c W ε

基片尺寸取: g L LG λ2.0+≥ ,g W WG λ2.0+≥ 介质板材为Rogers RT/duroid 5880,其相对介电常数r ε=,厚度h=2mm ,损耗角正切为。 在设计过程中,我们假设贴片、微带线的厚度t 与基片厚度相比可以忽略不计,即 005.0/≤h t ,在设计过程中,我们令t=0。 计算矩形贴片天线的尺寸 (1)矩形贴片的宽度 由C=×108 m/s, 0f =,r ε=,可以计算出矩形微带天线贴片的宽度。 W=0.02062m=20.62mm (2)有效介电常数e ε 把h=2mm ,W=20.62mm ,r ε=代入,计算出有效介电常数。 e ε= (3)辐射缝隙的长度 把h=2mm ,W=20.62mm ,e ε=代入,可以计算出天线的辐射缝隙的长度L ?。 L ?=1.01mm (4)矩形贴片的长度 把C=×108 m/s, 0f =,e ε=,L ?=1.01mm 代入,可计算出天线矩形贴片的长度。 L=15.69mm (5)参考地的长度LG 和宽度WG 把C=×108 m/s, 0f =,e ε=代入,可算出导波波长g λ。 g λ=35.42mm LG=22.77mm WG=27.70mm (6)估算天线的输入阻抗 由于介质板材Rogers RT/duroid 5880有一定的损耗,所以在计算微带天线的输入阻抗

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

阵列天线宽波束综合

分类号:TN811 单位代码:10452 毕业论文(设计) 阵列天线宽波束综合 姓名孙冠峰 学号200507230205 年级 2005 专业电子信息工程 系(院)物理系 指导教师韩荣苍 2009年05月15日

摘要 天线阵列设计,其任务集中在考虑前述众多影响因素下,优化阵列口径激励,使其满足工程给定的副瓣要求及其他要求,也就是常说的方向图综合问题。阵列天线综合是指按规定的方向图要求,用一种或多种方法来进行天线系统的设计,使该系统产生的方向图与所要求的方向图良好逼近。它实际上是天线分析的反设计,即在给定方向图要求的条件下设计辐射源分布,要求的方向图随应用的不同而多种变化。 本文从傅立叶变换法、泰勒综合法、伍德沃德(Woodward)法三个方面对方向图设计进行了研究。以均匀线阵为主要研究对象,在理想的条件下,分别对傅立叶变换法、泰勒综合法、伍德沃德(Woodward)综合法三类算法进行了研究。 关键词:阵列天线; 天线综合; 波束赋形 Abstract In array design phase, with them and mandate focus on the many factors to consider foregoing, the array calibre incentive to meet project to be sidelobes requirements and other requirements, that is often said in the synthesis of pattern. The synthesis of array pattern is by using one or more methods for antenna system design, enabling the system top produce the re-quired pattern, the direction of good and just. It is the analysis of the anti-antenna design that, in a given pattern of array, the conditions for the design of radiations sources distribution for the pattern of the different applications and multiple changes. From this important purpose Fourier transform、Talor synthesis、Woodward synthesis for the four areas, areas, the synthesis of array pattern is researched here. Front-line line array for the main study, in ideal conditions, respectively, conducted a study of four algorithms. Keyword: Array antenna; The analysis of the antenna; Beamforming 2

5G阵列天线设计

5G阵列天线设计 5G——第五代无线通信技术,作为全球性的暴热话题已经是不争的事实。如众多专家所述,该技术将带来更低时延、更快速率的数据通信,并将导致互联设备的爆发式增长。 5G网络的更大带宽需求,要求必须彻底重新设计天线阵列,从单元到阵列,到馈电网络,到全模型验证和应用场景评估,都需要做完善的精细化仿真和优化设计。 通过ANSYS HFSS的帮助,只需八个步骤,就能轻松完成5G天线阵列的设计和综合验证。更方便的是,HFSS还能帮助工程师优化各项天线性能指标,如: 增益— 最强的信号辐射方向。 波束控制— 能够将信号辐射控制在某个方向上。 回波损耗— 从天线反射回来的回波能量。 旁瓣电平— 不需要的信号辐射方向。 设计流程结束后,获得的阵列天线聚焦增益更高、回波损耗及旁瓣电平最低,而且方向可控制。 第1步:通过HFSS天线工具箱(ATK)找到天线单元模板 5G天线阵列设计的第1步是通过HFSS天线工具箱(ATK)找到合适的天线单元模板。该天线单元将定义一个最终用于复制成一系列天线(天线阵列)中的相同部分。

先从天线工具箱(ATK)的库中选择一个天线类型,然后输入工作频率及天线基板属性。 数秒后,天线工具箱(ATK)将生成天线单元的初始几何结构。然后,HFSS 还可计算天线单元的增益及回波损耗等指标特性。 第2步:将天线单元代入天线阵列 有了天线单元后,工程师就可将其代入一个周期阵列中。把单元代入一系列复制设计中,有助于提高增益。 在第一步中,天线单元是自行评估的。现在可使用无限大天线阵列的周期单元重复评估这一过程。 很容易理解,阵列内其它天线的距离会影响增益、回波损耗、旁瓣回波及波束控制等特性。当然,也可通过调整天线方位来优化这些特性。 选定最佳阵列方位后,可通过定义阵因子,将无限大阵列改为理想化的有限大阵列。 本例中仿真了一个16x16的正方形天线阵列。 第3步:使用域分解方法设计有限大天线阵列

(重要)阵列天线

Progress In Electromagnetics Research, PIER 98, 1–13, 2009
A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu ? , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than ?10 dB from 2.7 to 5 GHz. The scattered ?eld detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can signi?cantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and speci?c, to detect small tumors, and to be less expensive than methods such as MRI.
?
Corresponding author: M. Yuan (mengqing.yuan@https://www.360docs.net/doc/3b17828615.html,). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.

阵列天线分析与综合复习2

阵列天线分析与综合复习 第一章 直线阵列的分析 1. 阵列天线的分析是指:在知道阵列的四个参数(单元总数,各单元的空间分布,激烈幅度和激烈相位)的情况下确定阵列的辐射特性(方向图,方向性系数,半功率波瓣宽度,副瓣电平等) 阵列天线的综合是指:在已知阵列辐射特性的情况下,确定阵列的四个参数。 2. 能导出均匀直线阵列的阵因子函数 sin(/2)()cos sin(/2) Nu S u u kd u βα= =+ (1) 平行振子直线阵,振子轴为z 轴方向,沿x 排列时,阵轴与射线之间的 夹角为cos cos sin x β?θ= ;沿y 轴排列时,cos sin sin y β?θ=。 (2) 共轴振子线阵,一般设阵轴为z 轴,此时cos cos z βθ= (3) 什么是均匀直线式侧射阵(各单元等幅同相激烈,等间距最大指向 /2θπ=) ■沿x 轴并排排列,振子轴为z 轴的半波振子直线阵,侧射时的最大指向为y 轴方向 ■沿z 轴排列的共轴振子直线阵,侧射时的最大指向在xy 平面上 ■并能导出激励幅度不均匀、间距不均匀、相位非均匀递变的直线阵阵因子 3. 均匀侧射阵和端射阵 (1) 什么是均匀侧射阵和端射阵,他们的阵因子表示是什么? (2) 最大辐射方向及最大值。 max 0cos m S NI kd αβ=???=?? 0/2 m m αβπαβ=??±=?侧射 =端射 =kd (3) 抑制栅瓣条件:1cos m d λ β< + /2 d d λλ

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

阵列天线分析与综合习题

阵列天线分析与综合习题 第一章 直线阵列的分析 1. 分析由五个各向同性单元组成的均匀线阵,其间距d=2λ/3。求(a) 主瓣最大值;(b) 零点位置;(c) 副瓣位置和相对电平;(d) 方向系数;(e) d 趋于零时的方向系数。 2. 有一单元数目N=100,单元间距d=λ/2的均匀线阵,在(a) 侧射;(b) 端射;(c) 主瓣最大值发生在θ=45o时,求主瓣宽度和第一副瓣电平。 3. 有一由N 个各向同性单元组成的间距为 d 的均匀侧射阵,当kd<<1,Nkd>>1 时,证明其方向系数D =2Nd/λ。提示: 2(sin /)x x dx π∞ ?∞=∫ 。 4. 设有十个各向同性辐射元沿Z 轴均匀排列,d=λ/4,等幅激励。当它们组成(a) 侧射阵;(b) 普通端射阵;(c) 满足汉森—伍德亚德条件的强方向性端射阵时,求相邻单元间相位差、第一零点波瓣宽度、半功率波瓣宽度、第一副瓣相对电平和方向系数。 5. 利用有限Z 变换求出均匀线阵的阵因子,并利用y=Z+Z -1的变量置换分析均匀阵功率方向图的特性。 6. 若有五个各向同性辐射元沿Z 轴以间距d 均匀排列,各单元均同相激励,激励幅度包络函数为[]()1sin /(1)I N d ξπξ=+?。试分别用Z 变换法和直接相加法导出阵因子S(u),并计算S(u) 在0

相关主题