最大子序列和的总结

最大子序列和的总结
最大子序列和的总结

最大子序列和

第一种情况:可以一个不取

【问题描述】:最大子序列和也叫数列的连续最大和,顾名思义,就是在一个长度为n的数列{An}中,求i,j(1<=i<=j<=n),使得数列{An}中,第i个元素到第j个元素之间,所有元素的和最大。例如:-2, 11, -4, 13, -5, -2时答案为20(11 -4 13)

解法一穷举法:以前我想出了一种算法,具体做法是:取出所给序列的所有子序列求和,共分n组,第一组长度为1,有n个;第二组长度为2, 有n-1个;……,最后一组,长度为n,只有一个。比较这n(n+1)/2个序列的和,再将每组的最大值比较,从而得到最大值以及其上下标。

a1 a2 a n-1 a n

a1+a2 a2+a3 a n-1+a n

a1+a2+a3 a2+a3+a4 ......

...... ......

a1+a2......+a n-1 a2+a3......+a n

a1+a2......+a n-1 +a n

此算法比较直接,也容易写出代码,但其时间开销为O(n2),空间开销为O(n),效率不高。

解法二:动态规划求解,

1

2

F[i]:表示以元素i结尾的连续最大子序列的和

那么对于第i个元素来说,要形成连续的最大子序列,只和相邻的前一个元素有关。因为可以不取,所以如果元素a[i]连接到以元素i-1结尾的最大连续子序列f[i-1]后是负数(f[i-1]+a[i]<0);则宁可不取,这样最大连续子序列和为0。

动态方程:

f[i]:=max{0,f[I-1]+a[i]} (边界条件:f[0]=0;)

3、代码1:

for I:=1 to n do

if (f[I-1]+a[i])>0 then f[i]:=f[I-1]+a[i] else f[i]:=0;

max:=-maxlongint;

for i:=1 to n do if f[i]>max then max:=f[i];

程序代码二:迭代进行

best:=-maxlongint;

temp:=0;

for i:=1 to n do

begin

temp:=temp+a[i]);

if temp>best then best:=temp;

if temp<0 then temp:=0;

end;

注意:加粗的循环体部分的顺序万万不可颠倒!

第二种情况:一定要取一个。

1、解法一:动态规划求解,

2

3

F[i]:表示以元素i结尾的至少要取一个的连续最大子序列的和

那么对于第i个元素来说,有两种选择:

选择一:因至少要选一个,所以可单独选a[i],此时和为a[i];

选择二:把a[i]连接到第i-1个元素结尾的最大连续子序列后。此时和为f[i-1]+a[i];

两种情况选较大者。

所以动态方程:

f[i]:=max{a[i],f[I-1]+a[i]} (边界条件:f[1]=a[1];)

4、代码:

F[1]:=a[1];

for I:=2 to n do

if (f[I-1]+a[i])>a[i] then f[i]:=f[I-1]+a[i] else f[i]:=a[i]; max:=-maxlongint;

for i:=1 to n do if f[i]>max then max:=f[i];

第三种情况:至少要取两个。

1、解法一:动态规划求解,

选择一:取长度为2:9-2=7;

选择二:把元素a[4]连接到元素a[3]结尾的后面。F[3]+a[4]=13-2

两者最较大者。

3、动态规划方程为:

F[i]:表示以元素i结尾的至少要取两个的连续最大子序列的和

那么对于第i个元素来说,有两种选择:

选择一:因至少要选两个,所以和为a[i-1]+a[i];

选择二:把a[i]连接到a[i-1]元素结尾的长度至少为2的最大连续子序列后。此时和为f[i-1]+a[i];

两种情况选较大者。

所以动态方程:

f[i]:=max{a[i-1]+a[i],f[I-1]+a[i]}(i>=3)

(边界条件:f[1]=a[1];f[2]=a[1]+a[2])

5、代码:

F[1]:=a[1]; f[2]:=a[1]+a[2];

for I:=3 to n do

if (f[I-1]+a[i])>a[i-1]+a[i] then f[i]:=f[I-1]+a[i]

else f[i]:=a[i-1]+a[i];

max:=-maxlongint;

for i:=2 to n do if f[i]>max then max:=f[i];

其它情况:

如2014年衢州市竞赛的转型,把相应的内容扩展到矩阵中而已。

5、求M子段和的最值。

问题描述:在一个长度为n的数列{An}中,求m个连续子序列,使得这m个连续子序列的和最大,且m个子序列无公共元素。特别地,若一子段的数全为负,则这个子段的和为0。(若两子段x[i..j]与y[i’..j’]不相交,则他们的关系是I<=j

输入:

第一行:n, m(1<=n<=100 1<=m<=10,m<=n) n表示数列中有多少数。

第二行:n个数每个数的绝对值<=1000

Sample Input

5 2

-5 9 -5 11 20

Sample Output

40

1、分析:在连续最大子序列和的基础上“加一维”的思想,同样利用动态规划来解决。

用ans[i,j]表示数列前j个元素中,i个无公共元素的子序列的最大和,且必须包含第j个元素,a存放数列元素.

2、则状态转移方程为:

对于第j 个元素,可以单独成一个段,也可以和前面的相连。

选择一:如果元素a[j]单独成一段,那么前面长度为k的序列,划分成不相交的i-1段,能得的和为ans[i-1,k]+a[j];

选择二:如果元素a[j]连接在第i段,那么前面j-1个元素分成不相交的i段,a[j]作为第i段的最后一个元素连上即可。能得到的和为ans[I,j-1]+a[j 两者取较大值。

ans[i,j]=max{ans[i,j-1]+a[j],ans[i-1,k]+a[]} (i-1<=k<=j-1)

时间复杂度为O(n^3)

3、程序代码:

for i:=1 to m do

for j:=i to n do

begin

ans[i,j]:=ans[i,j-1]+no[j];

for k:=i-1 to j-1 do if ans[i-1,k]+no[j]>ans[i,j] then ans[i,j]:=ans[i-1,k ]+no[j];

end;

for i:=1 to n do if ans[m,i]>best then best:=ans[m,i];

注意:红色部分为确定最大值的过程!因为ans[i,j]表示数列前j个元素中,i 个无公共元素的子序列的最大和,且最大和不一定非要取完所有的元素,所以用一个循环来检测所有m的连续子序列的元素最大和,以确定全局最优值!

6、环形的最大连续子序列和。

方法同上,先断环并复制一份连接上就可以了。

7、矩阵中的最大连续子序列和

把矩阵压缩成线性序列就可以。

最长公共子序列问题(最)

算法作业: LCS 问 题 作业要求:设计一个算法求出两个序列的所有LCS ,分析最坏情况,用“会计方法”证明利用b[i][j]求出 所有LCS 的算法在最坏情况下时间复杂度为)(m m n C O + 1、 算法思路: 根据最长公共子序列问题的性质,即经过分解后的子问题具有高度重复性,并且具有最优子结构性质,采用动态规划法求解问题。设X={x 1, x 2, … , x n }, Y={y 1, y 2, … , y m }, 首先引入二维数组C[i][j]记录X i 和Y j 的LCS 的长度,定义C[i][j]如下: { j i j y i 且x ,i,j ]][j C[i j y i x j i j i C j i C j i C 00001110,]},1][[],][1[max{]][[===>+--≠>--=或,且 为了构造出LCS ,还需要使用一个二维数组b[m][n],b[i][j]记录C[i][j]是通过哪个子问题的值求得 的,以决定搜索的方向,欲求出所有的LCS ,定义数组b 如下: 设1-对角线方向;2-向上;3-向左;4-向上或向左 若X[i]=Y[j],b[i][j] = 1, 若C[i-1][j][i][j-1], 则b[i][j] = 3, 若C[i-1][j]=[i][j-1], 则b[i][j] = 4, 根据以上辅助数组C 和b 的定义,算法首先需要求出这两个数组, C[m][n]中记录的最长公共子序列的长度,b 中记录了查找子序列元素的搜索方向。 利用C 和b 的信息,Find_All_LCS 可以采用回溯法求出所有的LCS 。基本思路如下:使用一个辅助数组记录每次调用Find_All_LCS 得到的LCS 中的元素,每次递归调用一次Find_All_LCS ,进入一个新的执行层,首先要判断当前处理的两个子序列长度是否大于等于0 ,若不满足,则该层的递归结束,返回上一层;然后再判断当前得到的子序列是否等于数组C 中求出的最长公共子序列长度,若等于,则说明算法执行到此已经得到一个LCS ,按序输出;若不等于,此时根据数组b 中记录的搜索方向继续搜索,特别要说明的是,当b[i][j]=4时,即要向上或向左,需要对这两个方向分别调用Find_All_LCS ,保证沿着这两个方向上LCS 元素不被漏掉,都可以搜索到;若b[i][j]=1,即沿对角线方向搜索前进时,此时元素X[i]为LCS 中的元素,存放至辅助数组中去,同时将当前已经求得的LCS 长度增1,当递归调用Find_All_LCS 从b[i][j]=1处时,需要回溯一步,搜索其它路径上可能为LCS 中的元素。当所有的可能路径都已经搜索完,算法结束。 对于某些情况会输出重复的LCS ,这是因为算法在沿不同路径搜索时可能会出现相同的LCS 序列。 2、 时间复杂度分析 由上述对Find_All_LCS 算法的分析可知,求出所有的LCS 实际上是根据搜索的方向信息遍历所有的路径找出满足条件的元素集合。因此,除求解辅助数组C 和b 所用的O(mn+m+n)的执行时间外,Find_All_LCS 的时间复杂度取决于所遍历路径数。而路径数是由搜索方向决定的。显然算法在最好的情况下,即m=n 并且b 中所有的值都指示沿着对角线方向搜索,时间复杂度为O(n). 相反,当X 和Y 序列不存在公共子序列时为算法的最坏情况,此时C 中所有值都等于0,数组b 中所有的值都指示要分别沿两个不同的方向(向左或向上)搜索,这种情况下每处理一次X[i],Y[j]时总是要沿两个方向分别调用Find_All_LCS ,遇到i=0或j=0时返回,直到搜索完所有的可能路径才结束,最坏情况下的搜索矩阵如下图所示:

时间序列分析方法及应用7

青海民族大学 毕业论文 论文题目:时间序列分析方法及应用—以青海省GDP 增长为例研究 学生姓名:学号: 指导教师:职称: 院系:数学与统计学院 专业班级:统计学 二○一五年月日

时间序列分析方法及应用——以青海省GDP增长为例研究 摘要: 人们的一切活动,其根本目的无不在于认识和改造世界,让自己的生活过得更理想。时间序列是指同一空间、不同时间点上某一现象的相同统计指标的不同数值,按时间先后顺序形成的一组动态序列。时间序列分析则是指通过时间序列的历史数据,揭示现象随时间变化的规律,并基于这种规律,对未来此现象做较为有效的延伸及预测。时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻画某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界的目的。而且运用时间序列模型还可以预测和控制现象的未来行为,由于时间序列数据之间的相关关系(即历史数据对未来的发展有一定的影响),修正或重新设计系统以达到利用和改造客观的目的。从统计学的内容来看,统计所研究和处理的是一批有“实际背景”的数据,尽管数据的背景和类型各不相同,但从数据的形成来看,无非是横截面数据和纵截面数据两类。本论文主要研究纵截面数据,它反映的是现象以及现象之间的关系发展变化规律性。在取得一组观测数据之后,首先要判断它的平稳性,通过平稳性检验,可以把时间序列分为平稳序列和非平稳序列两大类。主要采用的统计方法是时间序列分析,主要运用的数学软件为Eviews软件。大学四年在青海省上学,基于此,对青海省的GDP十分关注。本论文关于对1978年到2014年以来的中国的青海省GDP(总共37个数据)进行时间序列分析,并且对未来的三年中国的青海省GDP进行较为有效的预测。希望对青海省的发展有所贡献。 关键词: 青海省GDP 时间序列白噪声预测

最长公共子序列实验报告

河北地质大学课程设计报告 (学院)系: 信息工程学院 专业: 计算机科学与技术 姓名: 李义 班级: 二班 学号: 515109030227 指导教师: 王培崇 2016年11月26 日

算法课程设计报告 姓名李义学号515109030227 日期2016/11/10-2016/12/1 实验室152 指导教师王培崇设备编号08 设计题目求最长公共子序列 一、设计内容 求最长公共子序列,如输入字符串str1=adadsda,str2=sadasfda。 则求出的最长公共子序列是adasda。 二、设计目的 掌握动态规划思想,对使用求最长公共子序列加深理解。 三、设计过程 1.算法设计 1. for i ←0 to n 2. L[i,0] ←0 3. end for 4. for j ←0 to m 5. L[0,j] ←0 6. end for 7. for i ←1 to n 8. for j ←1 to m 9. if ai=bj then L[i,j]←L[i-1,j-1]+1 10. else L[i,j]←max {L[i,j-1], L[i-1,j] } 11. end if 12. end for 13. end for 14. return L[n,m] 2.流程图

开始结束 输入I=0,j=0 i<=n L[I,0]=0 i++ Y L[0,j]=0 N j<=n j++ Y i=1 to n J=1 to m ai=bj L[i,j]=L[i-1,j-1]+1 L[i,j]=max{L[i-1,j ],L[i,j-1]} Y J++i++ N 图1.Lcs 算法 3.数据结构 str1=adadsda str2=sadasfda 四、程序实现及运行结果

动态规划解最长公共子序列问题

动态规划解最长公共子序列问题 动态规划主要针对最优化问题,它的决策是全面考虑不同的情况分别进行决策,,最后通过多阶段决策逐步找出问题的最终解.当各个阶段采取决策后,会不断决策出新的数据,直到找到最优解.每次决策依赖于当前状态,又随机引起状态的转移.一个决策序列就是在变化的状态中产生出来的,故有”动态”的含义.所以,这种多阶段最优化决策解决问题的过程称为动态规划. 一问题的描述与分析 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干字符(可能一个也不去掉)后形成的字符序列..令给定的字符序列X=”x0,x1,x2,…xm-1”,序列Y=”y0,y1,…yk-1”是X的子序列,存在X的一个严格递增下标序列i=i0,i1,i2,…ik-1,使得对所有的j=0,1,2,…k-1,有xi=yi。例如X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。 给定两个序列A和B,称序列Z是A和B公共子序列,是指Z同是A和B的子序列。求最长公共子序列。 若A的长度为m,B的长度为n,则A的子序列有2*m-1个,B的子序列有2*n-1个。采用枚举法分别对A和B的所以子序列一一检查,最终求出最长公共子序列。如此比较次数(2*2n)接近指数阶,当n较大时,算法太耗时,不可取。所以要全面考虑不同的情况分别进行决策,,最后通过多阶段决策逐步找出问题的最终解.当各个阶段采取决策后,会不断决策出新的数据,直到找到最优解。 二、算法设计(或算法步骤) A=”a0,a1,a2,……am-1”,B=”b0,b1,b2,……bn-1”,且Z=”z0,z1,z2……zk-1”,为她们的最长公共子序列。不难证明有一下结论: (1)如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,z2,……zk-2”是“a0,a1,a2,…… am-2”和“b0,b1,b2,……bn-2”的一个最长公共子序列; (2)如果am-1!=bn-1,则若zk-1!=am-1,则“z0,z1,z2,……zk-1”是“a0,a1,a2,…… am-2”和”b0,b1,b2,……bn-1”的一个最长公共子序列。 (3)如果am-1!=bn-1,则若zk-1!=bn-1,则“z0,z1,z2,……zk-1”是“a0,a1,a2,…… am-1”和“b0,b1,b2,……bn-2”的一个最长公共子序列。 如此找到了原问题与其子问题的递归关系。 基本存储结构是存储两个字符串及其最长公共子序列的3个一位数组。当然要找出最长公共子序列,要存储当前最长公共子序列的长度和当前公共子序列的长度,而若只存储当前信息,最后只能求解最长公共子序列的长度,却不能找到最长公共子序列本身。因此需建立一个(n+1)*(m+1)的二维数组c,c[i][j]存储序列“a0,a1,a2……ai-2”和“b0,b1,……bj-1”的最长公共子序列长度,由上递推关系分析,计算c[i][j]可递归的表述如下: (1)c[i][j]=0 如果i=0或j=0;

时间序列分析_最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 ?描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

最长公共子序列问题

2.3最长公共子序列问题 和前面讲的有所区别,这个问题的不涉及走向。很经典的动态规划问题。 例题16 最长公共子序列 (lcs.pas/c/cpp) 【问题描述】 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X 和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 给定两个序列X= < x1, x2, …, xm>和Y= < y1, y2, … , yn>,要求找出X和Y的一个最长公共子序列。 【输入文件】 输入文件共有两行,每行为一个由大写字母构成的长度不超过200的字符串,表示序列X和Y。 【输出文件】 输出文件第一行为一个非负整数,表示所求得的最长公共子序列的长度,若不存在公共子序列,则输出文件仅有一行输出一个整数0,否则在输出文件的第二行输出所求得的最长公共子序列(也用一个大写字母组成的字符串表示。 【输入样例】 ABCBDAB BDCBA 【输出样例】 4 BCBA 【问题分析】 这个问题也是相当经典的。。 这个题目的阶段很不明显,所以初看这个题目没什么头绪,不像前面讲的有很明显的上一步,上一层之类的东西,只是两个字符串而且互相没什么关联。 但仔细分析发现还是有入手点的: 既然说是动态规划,那我们首先要考虑的就是怎么划分子问题,一般对于前面讲到的街道问题和数塔问题涉及走向的,考虑子问题时当然是想上一步是什么?但这个问题没有涉及走向,也没有所谓的上一步,该怎么办呢? 既然是求公共子序列,也就有第一个序列的第i个字符和第二个序列的第j个字符相等的情况。 那么我们枚第一个序列(X)的字符,和第二个序列(Y)的字符。 显然如果X[i]=Y[j]那么起点是1(下面说的子序列都是起点为1的),长度为i的子序列和长度为j的子序列的最长公共子序列就是长度为i-1和长度为j-1 的子序列中最长的公共子

最长公共子序列问题

实验三最长公共子序列问题 1.实验环境 本实验采用 java 语言编写实现,环境:,编译器: eclipse 2.实验目的 通过最长公共子序列问题,巩固并详细分析动态规划思想和解题 步骤。 3.设计思路 最长公共子序列的定义为:设有两个序列S[1..m]和9[仁n],需要寻找它们之间的一个最长公共子序列。 例如,假定有两个序列: S1: I N T H E B E G I N N I N G S2: A L L T H I N G S A R E L O S T 则S i和S的一个最长公共子序列为 THING又比如: S1: A B C B D A B S2: B D C A B A 则它们的一个最长公共子序列为 BCBA。 这里需要注意的是,一个子序列不一定必须是连续的,即中间可被其他字符分开,单它们的顺序必须是正确的。另外,最长公共子序列不一定只有一个,而我们需要寻找的是其中一个。

当然,如果要求子序列里面的元素必须连成一片也是可以的。实际上,连成一片的版本比这里实现的更容易。 4.过程 我们可以通过蛮力策略解决这个问题,步骤如下: 1.检查S1[1..m]里面每一个子序列。 2.看看其是否也是S2[1..n]里的子序列。 3.在每一步记录当前找到的子序列里面最长的子序列。 这种方法的效率十分低下。因此本实验采用动态规划的方法实现该算法。 利用动态规划寻找最长公共子序列步骤如下: 1.寻找最长公共子序列的长度。 2.扩展寻找长度的算法来获取最长公共子序列。 策略:考虑序列S1和S2的前缀序列。 设 c[i,j] = |LCS (S1[1..i],S2[1..j]),则有 c[m, n] = |LCS(S1 S2)| 所以有 c[ i -1 , j -1 ] + 1, 如要 S1[i] = S2[j] c[i, j]= max{ c [ i - 1, j ], c[ i , j -1 ] }, 如果 S1[i]工S2[j] 然后回溯输出最长公共子序列过程:

时间序列分析实验报告汇总.doc

《时间序列分析》课程实验报告

一、上机练习(P124) 1.拟合线性趋势 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 程序: data xiti1; input x@@; t=_n_; cards; 12.79 14.02 12.92 18.27 21.22 18.81 25.73 26.27 26.75 28.73 31.71 33.95 ; proc gplot data=xiti1; plot x*t; symbol c=red v=star i=join; run; proc autoreg data=xiti1; model x=t; output predicted=xhat out=out; run; proc gplot data=out; plot x*t=1 xhat*t=2/overlay; symbol2c=green v=star i=join; run; 运行结果:

分析:上图为该序列的时序图,可以看出其具有明显的线性递增趋势,故使用线性模型进行拟合:x t=a+bt+I t,t=1,2,3,…,12 分析:上图为拟合模型的参数估计值,其中a=9.7086,b=1.9829,它们的检验P值均小于 0.0001,即小于显著性水平0.05,拒绝原假设,故其参数均显著。从而所拟合模型为: x t=9.7086+1.9829t.

分析:上图中绿色的线段为线性趋势拟合线,可以看出其与原数据基本吻合。 2.拟合非线性趋势 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 程序: data xiti2; input x@@; t=_n_; cards; 1.85 7.48 14.29 23.02 37.42 74.27 140.72 265.81 528.23 1040.27 2064.25 4113.73 8212.21 16405.95 ; proc gplot data=xiti2; plot x*t; symbol c=red v=star i=none; run; proc nlin method=gauss; model x=a*b**t; parameters a=0.1 b=1.1; der.a=b**t; der.b=a*t*b**(t-1); output predicted=xh out=out; run; proc gplot data=out; plot x*t=1 xh*t=2/overlay;

季节性时间序列分析方法

季节性时间序列分析方 法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7) 2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847)

对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除( 或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W 2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有

最长公共子序列实验报告

最长公共子序列问题 一.实验目的: 1.加深对最长公共子序列问题算法的理解,实现最长公共子序列问题的求解算法; 2.通过本次试验掌握将算法转换为上机操作; 3.加深对动态规划思想的理解,并利用其解决生活中的问题。 二.实验内容: 1.编写算法:实现两个字符串的最长公共子序列的求解; 2.将输入与输出数据保存在文件之中,包括运行时间和运行结果; 3.对实验结果进行分析。 三.实验操作: 1.最长公共子序列求解: 将两个字符串放到两个字符型数组中,characterString1和characterString2,当characterString1[m]= characterString2[m]时,找出这两个字符串m之前的最长公共子序列,然后在其尾部加上characterString1[m],即可得到最长公共子序列。当characterString1[m] ≠characterString2[m]时,需要解决两个子问题:即找出characterString1(m-1)和characterString2的一个最长公共子序列及characterString1和characterString2(m-1)的一个最长公共子序列,这两个公共子序列中较长者即为characterString1和characterString2的一个最长公共子序列。 2.动态规划算法的思想求解: 动态规划算法是自底向上的计算最优值。 计算最长公共子序列长度的动态规划算法LCS-Length以characterString1和characterString2作为输入,输出两个数组result和judge1,其中result存储最长公共子序列的长度,judge1记录指示result的值是由那个子问题解答得到的,最后将最终的最长公共子序列的长度记录到result中。 以LCS-Length计算得到的数组judge1可用于快速构造序列最长公共子序列。首先从judge1的最后开始,对judge1进行配对。当遇到“↖”时,表示最长公共子序列是由characterString1(i-1)和characterString2(j-1)的最长公共子序列在尾部加上characterString1(i)得到的子序列;当遇到“↑”时,表示最长公共子序列和characterString1(i-1)与characterString2(j)的最长公共子序列相同;当遇到“←”时,表示最长公共子序列和characterString1(i)与characterString2(j-1)的最长公共子序列相同。 如图所示:

动态规划法求解最长公共子序列(含Java代码)

公共子序列问题徐康123183 一.算法设计 假设有两个序列X和Y,假设X和Y分别有m和n个元素,则建立一个二维数组C[(m+1)*(n+1)],记录X i与Y j的LCS的长度。将C[i,j]分为三种情况: 若i =0 或j =0时,C[i,j]=0; 若i,j>0且X[i]=Y[j],C[i,j]=C[i-1,j-1]+1; 若i,j>0且X[i] Y[j],C[i,j]=max{C[i-1,j],C[i,j-1]}。 再使用一个m*n的二维数组b,b[i,j]记录C[i,j]的来向: 若X[i]=Y[j],则B[i,j]中记入“↖”,记此时b[i,j] = 1; 若X[i] Y[j]且C[i-1,j] > C[i,j-1],则b[i,j]中记入“↑”,记此时B[i,j] = 2; 若X[i] Y[j]且C[i-1,j] < C[i,j-1],则b[i,j]中记入“←”,记此时B[i,j] = 3; 若X[i]Y[j]且C[i-1,j] = C[i,j-1],则b[i,j]中记入“↑”或“←”,记此时B[i,j] = 4; 得到了两个数组C[]和B[],设计递归输出LCS(X,Y)的算法: LCS_Output(Direction[][], X[], i, j, len,LCS[]){ If i=0 or j=0 将LCS[]保存至集合LCS_SET中 then return; If b[i,j]=1 then /*X[i]=Y[j]*/ {LCS_Output(b,X,i-1,j-1); 将X[i]保存至LCS[len-i];} else if b[i,j]=2 then /*X[i]Y[j]且C[i-1,j]>C[i,j-1]*/ LCS_Output(b,X,i-1,j) else if b[i,j]=3 then /*X[i]Y[j]且C[i-1,j]

各种各样的树叶

各种各样的叶子 活动目标: 1,引导幼儿探索叶子的多种特征,并初步了解叶子的作用。 2,知道幼儿学习按物体特征进行分类的方法。 3,激发幼儿探索大自然的兴趣。 活动准备: 1,各种叶子 2,组织幼儿收集各种叶子,丰富相关知识。 3,投影仪活动过程; 一、导入活动,引起幼儿的兴趣 1,韵律活动进场 2,导入活动。教师:春风到来了许多同伴,让我们大家寻找她们的秘密。 二、指导幼儿观察、探索、发现叶子的特征。 1,让幼儿带着问题看一看、摸一摸、闻一闻。师;叶子长的怎样?它有哪些颜色?有哪些形状?它象什么?叶子的正面、背面、边缘摸上去分别有什么感觉?闻一闻有什么气味? 2,幼儿自由结伴去观察、探索和发现。幼儿观察时,教师可参与幼儿的活动,并给予指导,同时鼓励幼儿边观察边互相讨论商议,提醒幼儿摸时注意安全。 3,请幼儿回到原位,围绕颜色、形状、大小、厚薄、软硬、光滑、毛糙、气味等方面畅诉自己探索的结果。 4,迁移扩展经验。围绕投影仪上叶子的形状,请幼儿讲讲象什么?你还在哪儿见过哪些植物,叶子是这样形状的。还可以为颜色或气味或其它来迁移扩展幼儿的经验。 三、指导幼儿分类 1,分类前指导。要先想好按什么特征进行分类,再找出分类标记进行分类。 2,幼儿进行分类。幼儿分类时,教师巡回指导。 3,检查分类情况。先请幼儿互相介绍自己是怎么分的,再个别幼儿讲讲自己的分法。 四、讨论叶子的作用教师引导幼儿围绕食用、药用、美化环境及对植物本身等方面来思考叶子的作用。 树叶找朋友 活动目标: 1、引导幼儿根据树叶的外形特点来想象它对于一些动物的不同用处。 2、培养幼儿的观察力、语言表达能力和想象力。 活动准备: 1、小动物图片(毛毛虫、小猫、兔子、鸭子、蜜蜂、蚂蚁)。 2、各种用途的树叶(树叶床、书签、发夹、太阳帽、雨伞、小船)。 活动流程: 一、美丽的树叶 1、出示树叶,请幼儿观察后说出树叶长得什么样? 2、请幼儿说一说为什么喜欢树叶? 二、树叶找朋友 1、逐一出示小动物(毛毛虫、小猫、兔子、鸭子、蜜蜂、蚂蚁)让幼儿分别说出它们的名字。 2、请幼儿猜一猜为什么小动物都愿意和树叶做朋友? 3、引导幼儿想象一下每个小动物分别会用树叶当成什么来使用?为什么? 毛毛虫——床;小猫——书签;兔子——发夹; 鸭子——太阳帽;蚂蚁——小船。 4、树叶还能当什么用? 三、树叶也是小朋友们的好朋友,(引出树叶的作用) 1、树叶可以为我们遮阳光,给我们带来凉爽 2、树叶还能吸收二氧化碳,释放氧气 3、树叶还可以做成美丽的标本 四、总结活动 音乐教案小树叶 活动目标: 1、情感目标:通过多种方式、途径,唤起幼儿内心的情感,激发对大自然的热爱之情。 2、态度目标:鼓励幼儿大胆想象、创造和表现,培养幼儿的观察力、口语表达能力和表现力。 3、能力目标:能大胆表达自己所得知识,大胆表现自己的情感。 4、知识目标:了解落叶知识,感受优美旋律,了解歌曲内容,学会演唱歌曲,体验大自然的奥秘。 5、技能目标:培养幼儿亲近自然,勇于探索的技能,以及善发现美、创造美、表现美的能力。 活动准备: 带幼儿到附近参观树叶的变化,体验和感受落叶的情境。收集各种各样的树叶。争取家长配合,让幼儿了解有关树叶的知识。 重点难点: 幼儿对整首歌曲的感受能力,两段乐曲的不同表情与表现形式,以及歌曲的创编。 活动过程: 一、环境激发,引发主题。带幼儿随音乐进入活动室,让幼儿感受落叶的情景。教师问:小朋友们,我们看到了什么?树叶有什么样的变化?小树叶是怎样落下来的?为什么会落下来?呢幼儿自由发言。 二、讲述故事,帮助幼儿理解歌曲内容。(幼儿自由坐)

最长公共子序列

动态规划

一、问题描述 用动态规划法求两个字符串A=‘xzyzzyx’和B=‘zxyyzxz’的最长公共子序列 二、算法分析 (1)、若xm=yn,则zk=xm=yn,且Zk-1是Xm-1和Yn-1的最长公共自序列; (2)、若xm≠yn,且zk≠xm,则Zk是Xm-1和Yn的最长公共自序列; (3)、若xm≠yn,且zk≠yn,则Zk是Xm和Yn-1的最长公共自序列;设L(m,n)表示序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列的长度 L表示已经决策的长度 S表示每个决策的状态 L(0,0)=L(0,j)=0 1≤i≤m, 1≤j≤n L(i-1,j-1)+1 xi=yi,i≥1,j≥1 L(i,j)= max{L(i,j-1),(L(i-1,j)} xi≠yi,i≥1,j≥1 1 xi=yi S(i,j)= 2 xi≠yi 且L(i,j-1)≥L(i-1,j) 3 xi≠yi 且L(i,j-1)< L(i-1,j)

长度矩阵L 三、源代码 #include #include using namespace std; int main() { string str1 = "xzyzzyx"; string str2 = "zxyyzxz"; int x_len = str1.length(); int y_len = str2.length();

int arr[50][50] ={{0,0}}; int i = 0; int j = 0; for(i = 1; i <= x_len; i++) { for(j = 1; j <= y_len; j++) { if(str1[i - 1] == str2[j - 1]) { arr[i][j] = arr[i - 1][j - 1] + 1; } else if(arr[i][j - 1] >= arr[i - 1][j]) arr[i][j] = arr[i][j - 1]; else arr[i][j] = arr[i -1][j]; } } for(i = 0 ; i <= x_len; i++) {

统计学之时间序列分析报告

时间序列分析实验指导

4 2 -2 -4 50100150200250 统计与应用数学学院

前言 随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。 这套实验教学指导书具有以下特点: ①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。 ②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。 这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢! 限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月

目录

实验一EVIEWS中时间序列相关函数操作 【实验目的】熟悉Eviews的操作:菜单方式,命令方式; 练习并掌握与时间序列分析相关的函数操作。 【实验内容】 一、EViews软件的常用菜单方式和命令方式; 二、各种常用差分函数表达式; 三、时间序列的自相关和偏自相关图与函数; 【实验步骤】 一、EViews软件的常用菜单方式和命令方式; ㈠创建工作文件 ⒈菜单方式 启动EViews软件之后,进入EViews主窗口 在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews 软件的主显示窗口显示相应的工作文件窗口。 工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

最长公共子序列LCS 问题的matlab实现代码

(以下代码可直接带入matlab运行,首先以.m文件保存第一段代码,然后在command window输入第二段代码即可) function D=substringArray(A,B) na=length(A); nb=length(B); C=zeros(nb,na); for i=1:nb C(i,1)=0; end for j=1:na C(1,j)=0; end for i=2:nb for j=2:na if B(i-1)==A(j-1) C(i,j)=C(i-1,j-1)+1; else if C(i-1,j)>=C(i,j-1) C(i,j)=C(i-1,j); else C(i,j)=C(i,j-1); end end end end valmax=C(nb,na); i=nb; j=na; D=''; while i>1 & j>1 if C(i,j)==C(i-1,j-1)+1 & A(j-1)==B(i-1) D=strcat(B(i-1),D) ; i=i-1; j=j-1; else if C(i,j)==C(i,j-1) j=j-1; else i=i-1; end end end

%A='ACGTAACCT'; %B='GGACTTAGG'; %A='abcbs'; %B='bcabf'; A=getgenbank('NC_002017','SEQUENCEONLY',true); B=getgenbank('NC_002018','SEQUENCEONLY',true); substring=substringArray(A,B)

最长公共子序列问题

1. 实验环境 本实验采用java语言编写实现,环境:,编译器:eclipse 2. 实验目的 通过最长公共子序列问题,巩固并详细分析动态规划思想和解题步骤。 3. 设计思路 最长公共子序列的定义为:设有两个序列S1[1..m]和S2[1..n],需要寻找它们之间的一个最长公共子序列。 例如,假定有两个序列: S1:I N T H E B E G I N N I N G S2:A L L T H I N G S A R E L O S T 则S1和S2的一个最长公共子序列为THING。又比如: S1:A B C B D A B S2:B D C A B A 则它们的一个最长公共子序列为BCBA。 这里需要注意的是,一个子序列不一定必须是连续的,即中间可被其他字符分开,单它们的顺序必须是正确的。另外,最长公共子序列不一定只有一个,而我们需要寻找的是其中一个。 当然,如果要求子序列里面的元素必须连成一片也是可以的。实际上,连成一片的版本比这里实现的更容易。

4. 过程 我们可以通过蛮力策略解决这个问题,步骤如下: 1. 检查S1[1..m]里面每一个子序列。 2. 看看其是否也是S2[1..n]里的子序列。 3. 在每一步记录当前找到的子序列里面最长的子序列。 这种方法的效率十分低下。因此本实验采用动态规划的方法实现该算法。 利用动态规划寻找最长公共子序列步骤如下: 1. 寻找最长公共子序列的长度。 2. 扩展寻找长度的算法来获取最长公共子序列。 策略:考虑序列S1和S2的前缀序列。 设c[i,j] = |LCS (S1[1..i],S2[1..j])|,则有c[m,n] = |LCS(S1,S2)| 所以有 c[ i – 1 , j – 1 ] + 1,如要S1[i] = S2[j] c[i,j] = max{ c [ i - 1,j ],c[ i ,j -1 ] },如果S1[i]≠S2[j] 然后回溯输出最长公共子序列过程:

最新时间序列模型归纳总结复习

时间序列模型归纳总结复习随机时间序列分析的几个基本概念 一、随机过程(Stochastic Process) 定义 设(Ω,F,P )是概率空间,T 是给定的参数集,如果对于任意t ∈T ,都有一定义在(Ω,F ,P )上的随机变量X(t,ω)与之对应,则称随机变量族{X(t,ω),t ∈T}为随机过程。简记为{X(t,),t ∈T}或{X t ,t ∈T }或X T 离散参数的随机过程也称为随机序列或(随机)时间序列。 上述定义可简单理解成: 随机过程是一簇随机变量{X t ,t ∈T},其中T 表示时间t 的变动范围,对每个固定的时刻t 而言,X t 是一普通的随机变量,这些随机变量的全体就构成一个随机过程。 当t={0,±1,±2,…}时,即时刻t 只取整数时,随机过程{X t ,t ∈T}可写成如下形式,{X t ,t=0,±1,±2,…}。此类随机过程X t 是离散时间t 的随机函数,称它为随机序列或时间序列。 对于一个连续时间的随机过程的等间隔采样序列,即{X t ,t=0,±1,±2,…}就是一个离散随机序列。 二、时间序列的概率分布和数值特征 1、时间序列的概率分布 一个时间序列便是一个无限维的随机向量。一个无限维随机向量X=(…,X-1,X0,X1,…)/的概率分布应当用一个无限维概率分布描述。根据柯尔莫哥夫定理,一个时间序列的概率分布可以用它有限维分布簇来描述。 时间序列所有的一维分布是:…,F-1(·),F0(·),F1(·),… 所有二维分布是:Fij(·,·), i ,j=0,±1,±2,…,(i ≠j) 一个时间序列的所有有限维分布簇的全体,称为该序列的有限维分布簇。 2、时间序列的均值函数 一个时间序列的均值函数是指: () t t t EX XdF X μ∞ -∞ ==? 其中EXt 表示在t 固定时对随机变量Xt 的求均值,它只一维分布簇中的分布函数Ft(·)有关。 3、时间序列的协方差函数与自相关函数 与随机变量之间的协方差相似,时间序列的协方差函数定义为:

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

相关文档
最新文档