带隙基准源电路和版图设计

带隙基准源电路和版图设计
带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计

摘要

基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。

本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。

本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。

关键字:BiCMOS,基准电压源,温度系数,版图

I

Subject: Research and Layout Design Of Bandgap Reference

Specialty: Microelectronics

Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____

ABSTRACT

The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified.

This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory.

This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements.

Keywords: BiCMOS,band gap , temperature coefficient, layout

II

目录

1 绪论 (1)

1.1 背景介绍及发展趋势 (1)

1.2 研究意义 (3)

1.3 本文主要工作 (4)

2 基准电压源电路设计 (5)

2.1 基准电压源的分类及特点 (5)

2.2 基准电压源的温度特性 (7)

2.2.1 负温度系数项

V (7)

BE

2.2.2 正温度系数电压 (7)

2.3 基本原理 (8)

2.3.1 与温度无关的电路 (8)

2.3.2.与电源无关的偏置电路 (8)

2.4 基准电压源电路设计 (9)

2.4.1 基本原理 (9)

2.4.2 运放的设计 (10)

2.4.3 带隙核心电路设计 (14)

2.5 仿真分析 (15)

3 版图设计 (19)

3.1 版图设计的基础 (19)

3.1.1 集成电路版图设计与掩膜版、制造工艺的关系 (19)

3.1.2 版图设计的设计规则 (20)

3.1.3 版图通用设计步骤 (23)

3.2工艺介绍 (24)

3.2.1 常见工艺简介 (24)

III

3.2.2 BiCMOS工艺 (26)

3.3 带隙基准电路的版图设计 (28)

3.3.1 版图的分层及连接 (28)

3.3.2 版图设计环境介绍 (29)

3.3.3 器件及总体版图 (30)

4 版图验证 (39)

4.1 版图验证概述 (39)

4.2 验证工具介绍 (39)

4.2.1 Cadence概述 (39)

4.2.2 Diva使用介绍 (40)

4.3 版图的DRC验证 (44)

4.4 版图的LVS验证 (44)

5总结 (46)

致谢 (48)

参考文献 (49)

IV

1 绪论

1.1 背景介绍及发展趋势

基准源是模拟与数字系统中的核心模块之一,它被广泛应用于动态存储(DRAM)、闪存(flash memory)以及其他模拟器件中。其实现方式有电压基准和电流基准。基准电压源是模数转换器(ADC)、数模转换器(DAC)、线性稳压器和开关稳压器、温度传感器、充电电池保护芯片和通信电路等电路中不可缺少的部分,基准电流源主要作为高性能运算放大器等器件或电路的偏置,也可用于LVDS驱动器和Viterbi解码器。基准源需要有稳定的工艺、电压和温度系数,并且不需要随着制造工艺的改变而改变。带隙基准参考源通常是模拟和混合信号处理系统中重要的组成模块,它用来提供高稳定的参考电平和参考电压,对系统的性能起着至关重要的作用。

传统的带隙基准电路利用双极型晶体管的基极—发射极电压V m的负温度系数和不同电流密度下两个双极型晶体管基极—发射极电压的差值的正温度系数相互补偿,使输出电压达到很低的温度漂移。但实际设计电路中由于运放的失调电压对V m的影响,V m与温度的非线性关系,使传统的带隙基准电路在温度系数、功耗、PSRR等方面无法达到现今集成电路设计的要求。随着现代如今,带隙基准源在AD/DA、电源芯片、锁相环、高精度的电压表、电流表、欧姆表等领域有着很广泛的应用。

微电子技术和通信技术的发展,集成电路已进入超深亚微米时代,它的发展继续以高速、高集成度、低功耗为目标。在发展的同时,集成电路逐渐与其它学科和技术相结合,形成新的方向,新的学科或专业,不断改变着传统专业分工的格局,使得SOC系统(System on Chip)越来越复杂。这对模拟电路基本模块的电压、功耗、精度和速度等, 提出了更高的要求。传统的带隙基准源电路结构渐渐难以适应设计需求。近几年,国内外学者都对传统带隙基准源进行了改进,主要集中降低温度系数,提高了PSRR以及使其能工作在低电源电压下,展现出低功耗、低噪声、低温漂、高精度等特性。

国内外对CMOS工艺带隙基准电压源做了大量的研究,最新的技术进展主要体现在以下几个方面。

(1)低温度系数

低温度系数的电压基准源对于高分辨率的DAC和ADC尤其重要。对于一阶补偿的带隙基准源,温度系数通常可以做到10.60ppm/。C。为了进一步降低带隙基准的温度系数必须做高阶补偿。目前出现的高阶补偿技术包括利用MOS管亚阈区v~I特性的补偿的带隙基准电路、利用电阻的温度特性的曲率校正方法、指数曲率补偿方法、温度分段补偿方法等。

(2)低电压工作的电压基准源

随着深亚微米集成电路技术的不断发展,集成电路的电源电压越来越低。带隙基准电压在1.2V左右,所以一般的带隙基准源的工作电压至少在1.2V以上。采用特殊电路结构的带隙基准源可以工作在1V左右。采用这些电路结构后主要的工作电压限制通常来自于运放的工作电压,并最终受限于MOS管的阈值电压。

(3)高电源纹波抑制比

随着射频集成电路和数字电路的发展以及带基准源在高频电路应用中的推广,电源抑制比成为了基准源在高频及数模混合电路中的一个重要衡量标准。在数模混合集成电路中,数字电路的噪声可能对模拟电路产生不利的影响。因此,在混合电路中电压基准源应该在较宽的范围内具有良好的电源电压抑制比性能。

(4)低功耗

低功耗是衡量电路性能好坏的指标之一。作为集成电路的一个基本单元电路,低功耗也一直是基准电压研究发展的一个方向。

集成电路制造工艺主要有双极工艺、CMOS工艺和BiCMOS工艺。用双极型工艺可以制造出速度高、驱动能力强、模拟精度高的器件,但双极型器件在功耗和集成度方面却无法满足系统集成的要求:而CMOS工艺可以制造出功耗高、集成度高和抗干扰能力强的CMOS器件,但其速度低、驱动能力差,在既要求高集成度又要求高速的领域中也无能为力。BiCMOS工艺是把双极型器件和CMOS器件同时制作在同一芯片上,它综合了双极器件高跨导、强负载驱动能力和CMOS器件高集成度、

低功耗的优点,使其互相取长补短,发挥各自的优点,它给高速、高集成度、高性能的LSI及VLSI的发展开辟了一条新的道路。20世纪80年代初,基准电压源设计使用BiCMOS工艺,融合了CMOS工艺和双极型工艺的优点,使基准源技术获得了飞速发展并在DC—DC集成稳压器、RF电路、A/D转换器等方面得到广泛应用。1.2 研究意义

基准电压源是指模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一。

带隙基准源由于能工作于低电源电压下,温度漂移、噪声和PSRR 等性能能够满足大部分系统的要求,所以带隙基准源在集成电路设计中得到了广泛的研究与应用。随着现今IC产业的发展,要求带隙基准源电路工作电压更低,尽可能处于低功耗,保持高精度,低温度系数以及高PSRR抑制比,因此改进带隙基准源电、路成为现今一个很重要的课题。

集成电路版图是根据逻辑电路与电路功能和性能要求以及工艺水平要求来设计光刻用的掩膜版图,实现集成电路设计的最终输出。集成电路制造工艺主要有双极工艺、CMOS工艺和BiCMOS工艺。用双极型工艺可以制造出速度高、驱动能力强、模拟精度高的器件,但双极型器件在功耗和集成度方面却无法满足系统集成的要求:而CMOS工艺可以制造出功耗高、集成度高和抗干扰能力强的CMOS器件,但其速度低、驱动能力差,在既要求高集成度又要求高速的领域中也无能为力。BiCMOS(Bipolar CMOS)工艺是将CMOS和双极器件同时集成在同一块芯片上的技术,其基本思想是以CMOS器件为主要单元电路,而在要求驱动大电容负载之处加入双极器件或电路。因此BiCMOS电路既具有CMOS电路高集成度、低功耗的优点,又获得了双极电路高速、强电流驱动能力的优势。

因此,选择BiCMOS基准电压源作为研究对象具有重要的理论研究意义和实际应用意义。本设计主要是用BiCMOS工艺完成基准电压源的版图设计,得到在温度在-40℃~85℃之间不随温度变化的1.25V和2.5V的稳定电压。

1.3 本文主要工作

本文主要分为五章。在第一章主要介绍基准电压源的背景发展趋势及版图的研究意义。后边内容主要介绍基准电压源电路及版图设计,在第二章介绍基准电压电路的分类,构架及基本工作原理,介绍本次设计并对设计的电路进行仿真分析。第三章主要介绍版图的一些基本概念和本次设计的版图。第四章主要介绍了本次验证使用的工具Diva,并对设计好的版图进行验证。第五章对本次设计工作进行总结。

2 基准电压源电路设计

基准电压源是模拟集成电路的重要组成部分,主要作用是为串联型稳压电路、A/D和D/A转化器提供基准电压,也可用作传感器的稳压供电电源或激励源。另外还可以作为标准电池、仪器表头的刻度标准和精密电流源。理想电压源具有好的初始精度,并在负载电流、温度和时间变化时电压保持稳定不变。

2.1 基准电压源的分类及特点

根据拓扑结构,基准电压源主要有齐纳基准、隐埋齐纳基准,XFET基准和带s 联式电路或者三端串联式电路。

1、齐纳基准

根据电压求和模式,基准参考电压源最初利用齐纳二极管(Zener Diode)设计,它是通过调节自身电流,并配合限流电阻来抵消电源电压的变化。齐纳二极管基准源的电源电压高于7V,工作电流一般为几毫安,齐纳基准在这里指的是表层齐纳基准。

它成本低,封装小,工作电压范围宽。但是功耗大,初始精度低,温度系数差,输入电压调整率不好,因为齐纳(雪崩)二极管的击穿电压发生在硅表面层(图2.2(a)),由于硅芯片表层与其内部相比有更多的杂质、品格缺陷和机械应力,容易受到表面氧化层中迁移电荷及外界环境的影响,噪声较大、长期稳定性差。使用时需根据供电电压和负载电流串接一个电阻为其提供恒定电流,以便保持输出电压稳定。齐纳基准通常用于要求不高的场合,或用作电压钳位器。

2、隐埋齐纳基准

为了克服表层齐纳二极管的缺点,改进制造工艺的隐埋齐纳二极管结构得到了广泛应用,掩埋型齐纳二极管是一种比常规齐纳二极管更稳定的特殊齐纳二极管,这是因为它采用了将击穿区植入硅表面以下的结构,使其击穿发生在表面表层的下面,从而可以避免表层的影响,使其在温度漂移、时间漂移和噪声特性等方而得到

明显的改善。

它具有很高的初始精度,好的温度系数和长期漂移稳定性,噪声电压低,总体性能优于其它类型的基准,故常用于12位或更高分辨率的系统中。掩埋齐纳基准通常要求至少5V以上的供电电压,并要消耗几百微安的电流,功耗比较大,并且价格比较昂贵。除了有输入电压范围宽的特点,精度比常规齐纳二极管的基准源提高很多,但是由于表层下面的扩散工艺比表层上而难控制,所以在制造过程中使基准电压源的绝对值和温度系数等参数的分散性比较大,常常超过允许误差。一般选用高精度运算放大器和隐埋齐纳二极管构成基准电路。

3. XFET基准

XFET (eXtra implantation junction Field Effect Transistor)基准是一种新型的电压基准,其核心是利用JFET (Junction Field Effect Transistor)设计的,利用一对具有不同夹断电压JFET,将其差分输出电压放大以产生一个稳定的负温度系数的电压(约为-120 ppm/℃),然后用一个具有正温度系数的电压进行补偿,得到稳定的基准电压。

XFET基准静态电流很低,可用于3V电压系统,并且仍能保持良好的性能。它有三项显著的特点:其一是在相同的工作电流条件下,它的峰一峰值噪声电压通常比带隙基准低数倍;其二是XFET基准静态电流很低,但可以为负载提供的输出电流不是很低,并且输出端不需要加去藕电容;其三是XFET基准具有极好的长期漂移稳定性。XFET基准的性能水平界于带隙和齐纳基准之间,其缺点是需要特殊工艺来实现,成本较高。

4、带隙基准

带隙基准电压源分为双极型带隙基准源和CMOS带隙基准源,工艺条件宽。带隙基准输出电压受温度和电源电压影响小,并且其精度高。基准的初始精度、温度系数、长期漂移、噪声电压等性能指标从低到高覆盖面较宽,适用于多种不同精度要求的系统中,该类基准应用范围很宽。

()()()T q E V m V m V kT E T V m I I T V t cons I if T

I I V I I T V T V g T be T g T S C T C S S T S C T be /42/34ln tan ln 2-+-≈-≈-+-???

? ??==??-???? ????=??2.2 基准电压源的温度特性

2.2.1 负温度系数项BE V

由于Pn 结二极管的正向电压具有负温度系数,因此双极晶体管的基极--发射

极电压具有负温度系数。对一个双极型器件有)/V exp I I BE S T C V (=,其中q kT V T /=,

饱和电流S I 正比于2i kTn μ,其中μ为少数载流子的迁移率,i n 为硅的本征载流子浓

度。这些参数与温度的关系可以表示为μ∝m T 0μ,其中m ≈-3/2,并且2i n ∝

]/exp[3kT E T g -,其中g E ≈1.12 eV ,为硅的带隙能量。所以

(2-1) (2-2)

(2-3) (2-4) (2-5)

2.2.2 正温度系数电压

在1964年人们认识到,如果两个双极晶体管工作在不相等的电流密度下,那

么它们的基极-发射极电压的差值就与绝对温度成正比。例如,如图2.1所示,如果

两个同样的晶体管(21S S I I =)偏置的集电极电流分别为0nI 和0I 并忽略它们的基极

电流,那么

K mV T V be /5.1-=???K T mV V be 300750==???? ??=S C T be I I V V ln ???

? ??-=+kT E bT I g m S exp 4

图2.1 PTAT 电压产生电路[1]

(2-6)

(2-7) (2-8) 具有正温度系数 2.3 基本原理

2.3.1 与温度无关的电路

利用上而得到的正、负温度系数的电压,我们现在可以设计出一个令人满意的

零温度系数的基准。我们有

,这里n V T ln 是两个工作在不同电流密度下的双极晶体管的基极—发射极电压的差值。因为在室温下,

(2-9)

所以我们可以令1α=1,选择n ln 2α使得(n ln 2α)(0.087mV/K )=1.5mV/K ,也就

是n ln 2α≈17.2,表明零温度系数的基准为

(2-10)

n

V q kT V I I V I nI V V V V T T s o T s o T be be be ln ln ln 2121==???? ??-???? ??=-=?n q

k T V be ln =??n V V V T be ref ln 21αα+=K mV T

V K mV T V T BE /087.0,/5.1+=??-≈??V

V V n V V V T be T be ref 25.12.17ln 21≈+=+=αα

2.3.2.与电源无关的偏置电路

如图2.2(a)所示,若电流REF I 不随电源电压DD V 变化,而且将2M 和3M 的沟道长度效应忽略不计,电流D 2I 和D3I 的大小就保持与电源电压无关。

图2.2 电流镜偏置使用[1]

(a) 理想电流源 (b )电阻

将电阻作为近似电流源接在电源电压DD V 和1M 栅极之间,如图2.3(b)所示,该电路输出电流与电源电压关系如为:

(2-11) 想要得到对DD V 不敏感的电路,该电路必须由自己偏置。图2.4所示电路中,3M 和4M 复制了OUT I ,由此确定了REF I .选择一定尺寸的MOS 管尺寸,忽略沟道调制效应时,有REF I =OUT I . 由于每个二极管方式连接的器件都是被一个电流源驱动的,因此REF I 和OUT I 都与DD V 无关。

2.4 基准电压源电路设计

2.4.1 基本原理

产生基准的目的是建立一个与电源和工艺无关、具有确定温度特性的直流电

压或电流。与温度关系很小的基准电压或基准电流在许多模拟电路中被证实是必不可少的。值得注意的是,因为大多数工艺参数是随着温度变化的,所以如果一个基准是与温度无关的,那么通常它也是与工艺无关的。如何产生一个对温度变化保持恒定的量呢?如果将两个具有相反温度系数的量以适当的权重相加,那么结果就会显示出零温度系数。带隙基准源的原理就是使负温度系数和正温度系数相互抵消来达到温度补偿的目的。其基本原理如图1所示:其中BE V 具有负温度系

1211DD OUT )/()/(/1R V I L W L W g m +?=?

数,而T V 具有正温度系数,将BE V 和T V 按一定比例系数求和,即可得到零温度系

数的基准输出REF V 。

图2.3 带隙基准的基本原理图

2.4.2 运放的设计

本文引入一种采用带隙(Bandgap )结构的电压基准,即利用带隙基准源电路产生一个可调负温度系数的电压,它和一负温度系数的电阻比值可获得零温度系数的电流。其原理框图如图2.4所示,为V-I 变换电路框图,其原理简单,可求出通过电阻R 的电流为:I = V/R = V ref/R 。即获得基准电流。从而在此基础上添加电阻,稍微修改可获得可调输出基准电压。由于Vref 为带隙基准电路产生的基准电压,故具有良好的电源抑制能力。相对于典型电流基准中热电压VT 固定的温度系数,Vref 具有可调的负温度系数。只要Vref 的负温度系数设置得当,充分抵消工艺中给定的电阻负温度系数,即可得到性能良好的电流基准,从而得到需要的基准电压。

图2.4 电压基准设计框图 运算放大器根据其中级联放大单元的数目,可以分成单级、两级和多级运放三

类。单级运放结构相对简单,但增益较低;两级运放能实现较高的性能,稳定性较好,得到了广泛应用,但是速度、频率特性方面一般比一级运放要差一些;三级以上的运放称为多级运放,它们能实现更高的增益,但需要复杂的补偿电路来保证运放的稳定性。全差分运放是指输入和输出都是差分信号的运放,它同普通的单端输出运放相比有以下几个优点:更低的噪声;较大的输出电压摆幅;共模噪声得到较好抑制;较好地抑制谐波失真的偶数阶项等。所以高性能的运放多采用全差分形式。

图2.5中列出了三种常用的全差分运放:直接套筒式共源共栅运放、折叠共源共栅运放和简单两级全差分运放。

直接套筒式共源共栅结构单极运放的增益高,输出电阻高,功耗低,而且由于是单极结构,其频率特性较好。它的缺点是输出电压摆幅小。为了减小直接套筒式共源共栅结构对运放输出摆幅的限制,可以采用折叠共源共栅结构。折叠结构与直接套筒式结构相比,功耗要略大一些,增益也有所降低,但是它的输出电压摆幅远大于前者,缓解了增益、电源电压与输出摆幅之间的矛盾。因此折叠共源共栅是一种广泛应用的运放结构。两级运放在增益和输出电压摆幅方面都可以达到较高值,但由于有两级电路,所以频率特性不如单极运放(带宽小、速度受限),且功耗相对大些。本设计中采用简单两级全差分运放。

A直接套筒式共源共栅运放

B折叠共源共栅运放

C简单两级全差分运放

图2.5 几种常见的全差分运放

本设计采用以电流镜为偏置的简单差分放大器,如图2.6所示:

图2.6 差分放大器

2.4.3 带隙核心电路设计

带隙的核心电路主要为电路提供符合要求的稳定电压。本设计中带隙的核心电路如图2.7所示:

图2.7 带隙核心电路

由如图所示电路可知,输出基准电压为

(2-12)

(2-13)

如果运放电路的增益足够高时,输出电压独立于电源电压。但当X V 和Y V 等于零时,运放输入差动对会关断,因此电路会需要启动机制,要在电路中增加启动电路。运放、带隙核心电路和运放电路合成的总体电路如下图所示:

6

56543212Q Q Q Q REF )()(V V 2143R R R R R R R R R V V V be be be be +++??????++-++=6563212Q Q Q Q 125)()(V V 2143R R R R R R R V V V be be be be +??????++-++=

图2.8 带隙基准总图

2.5 仿真分析

由于本设计偏重于版图,对于电路只进行了简单参数的仿真,仿真时使用Cadence中的Spectre工具。下图为电源电压为5V时不同温度下,输出电压随时间

的变化:

图2.9 ―40℃时输出电压

图2.10 25℃时输出电压

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

带隙基准电路设计要点

帯隙基准电路设计 (东南大学集成电路学院) 一.基准电压源概述 基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC ,ADC ,DAC 以及DRAM 等集成电路设计中有广泛的应用。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。在CMOS 技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。 基于CMOS 的帯隙基准电路的设计可以有多种电路结构实现。常用的包括Banba 和Leung 结构带薪基准电压源电路。在综合考虑各方面性能需求后,本文采用的是Banba 结构进行设计,该结构具有功耗低、温度系数小、PSRR 高的特点,最后使用Candence 软件进行仿真调试。 二.帯隙基准电路原理与结构 1.工作原理 带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。用数学方法表示可以为:2211V V V REF αα+=,且02211 =??+??T V T V αα。 1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。推导如下: 对于一个双极性器件,其集电极电流)/(exp T BE S C V V I I =,其中q kT V T /=,

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、 温度系数:ref F V TC V T ?=? 2、 电压系数:ref F dd V VC V V ?=? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

CMOS带隙基准源

2.3 带隙基准源的温度补偿方法 由上一章可知,带隙基准电压源的一阶补偿技术主要是通过一个与热电压成 比例的正温度系数电压VT 来抵消二极管基极-发射极电压VBE 的负温度系数。但是 VT 是温度T 的线性函数,VBE 是包含温度T 的高次项的复杂函数。文献[6]中对VBE 的温度特性进行了深入的分析,总结出VBE 的温度表达式为 其中G V 是硅的带隙电压,η是硅迁移率的温度常数,r T 是参考温度。由于 集电极电流I C 是与温度成正比的,因此一阶补偿的带隙基准电压V REF 可表示为: 调整参数K 可使V REF 的温度系数达到最小。而式中G V 的温度特性由文献[7]中的最精确模型给出: 其中a,b,c为根据经验在不同温度条件下给出的不同参数。由式(2-12)式(2-13)可知,V BE 是包含温度T 的高次项的复杂函数。因此,即使在一阶补偿下,基准电压仍会存在温度漂移现象,这是一阶补偿的固有现象,故在一定温度范围内采用一阶补偿不能达到所要求的温度系数范围,要获得高性能的带隙基准电压源,就必须使用各种曲率校正的方法来抑制V REF 的变化。近年来,为了在一阶补偿的基础上增加基准源的温度稳定性,产生了一些曲率校正的方法,例如文献[8]中提出了二阶温度补偿的方法、文献[9]中提出了V BE 线性化方法、文献[10]利用不同材料电阻的相异温度特性进行曲率校正、文献[11]中提出的指数温度补偿的方法等。下面将分别介绍这几种曲率校正的方法。 2.3.1 二阶曲率补偿 基准没有经过二阶曲率补偿是由于忽略了V BE的高阶项,实际上V BE跟温度的 关系式如式(2-14)所示: 其中,V G0是半导体材料在绝对零度时的带隙基准电压;q 是一个电子电荷;n 是工艺常数;k 是波尔兹曼常数;T 是绝对温度; I C 是集电极电流;V BE0是温度在T0 时基极-发射极电压。由此看见V BE 的高阶项并不为零,因此一阶补偿的基准并不能真正使得基准的输出电压与温度T 无关,而是一条近似的抛物线,温度对输出的影响一般在20 ~ 30×10?6 /℃右,幅度大约为3~5mV。这在对基准温度特性要求不高的应用中能够满足要求,但对于高精度要求的场合,就需要对该曲线进

最新mx带隙基准源电路与版图设计

m x带隙基准源电路与 版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 仅供学习与交流,如有侵权请联系网站删除谢谢47

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____ Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout 目录 1 绪论 0 1.1 背景介绍及发展趋势 0 1.2 研究意义 (2) 仅供学习与交流,如有侵权请联系网站删除谢谢47

带隙基准源的设计

《模拟CMOS集成电路设计》---与电源无关的电流源课程设计 院系:电子与信息工程学院 专业:电子09-2 姓名:王艳强 学号:0906040221 指导教师:李书艳

摘要 模拟电路广泛的包含电压基准和电流基准。这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。而与温度关系很小的电压基准被证实在许多模拟电路中是必不可少的。值得注意的是,因为大多数工艺参数是随温度变化的,所以如果一个基准是与温度无关的,那么通常它也是与工艺无关的。采用Hspice软件进行仿真,仿真结果证明了基准源具有低温度系数和高电源抑制比。 关键词:CMOS集成电路;带隙基准;偏置;温度系数;仿真;工艺 综述 我们所使用的偏置电流和电流镜都隐含地假设可以得到一个“理想的”基准电流,如果忽略一些管子的沟道长度调制效应时电流就可以保持与电源电压无关。电压基准源是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定的参考电压源。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。 随着电路系统结构的进一步复杂化,对模拟电路基本模块,如A/D、D/A转换器、滤波器以及锁相环等电路提出了更高的精度和速度要求,这样也意味着系统对其中的电压基准源模块提出了更高的要求。另外,电压基准源是电压稳压器中的一个关键电路单元,它也是DC-DC转换器中不可缺少的组成部分;在各种要求较高精度的电压表、欧姆表、电流表等仪器中都需要电压基准源。 微电子技术不断发展,目前常用的集成电路工艺大体上可分为双极型/HBT、MESFET/HEMT、CMOS和BiCMOS四大类型。其中,双极型工艺是集成电路中最早成熟的工艺,CMOS工艺技术是在PMOS与NMOS工艺基础上发展起来的,已经逐渐发展成为当代VLSI(超大规模集成电路)工艺的主流工艺技术。双极型集成电路具有较快的器件速度,适合高速电路设计,但相对来说,器件功耗较大;而CMOS电路具有功耗低、器件面积小、集成密度大的优点,但是器件速度较低。BiCMOS技术增强了在CMOS技术提供的双极型晶体管的性能,这使其在模拟电路设计中具有潜力。由于CMOS工艺中“按比例缩小理论”的不断发展,器件尺寸按比例缩小使得CMOS电路的工作速度得到不断地提高,在模拟集成电路的设计中CMOS技术逐渐可以与双极型技术抗衡。近年来,模拟集成电路设计技术随着CMOS工艺技术以其得到飞速的发展,片上系统已经受到学术界及工业界广泛关注。由于SOC要求很高的集成度,而CMOS工艺的特点正好符合了这种需求,因此,用CMOS技术来设计电路越来越成为集成电路的发展趋势。 设计过程 1 电路结构设计 1.1 启动电路设计 为了避免基准源工作在不必要的零点上,我们设计了启动电路

低电压带隙基准电压源设计

低电压带隙基准电压源设计 基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。随着CMOS 工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。本文采用一种低电压带隙基准结构。在TSMC0.13μmCMOS工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。 1 传统带隙基准电压源的工作原理 传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。图1所示是传统的带隙基准电压源的核心部分的结构。其中双极型晶体管Q2的面积是Q1的n倍。 假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有: VBE1=VBE2+IR1 (1)

其中,VBE具有负温度系数,VT具有正温度系数,这样,通过调节n和R2/R1,就可以使Vref得到一个零温度系数的值。一般在室温下,有: 但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。 2 低电源带隙基准电压源的工作原理 低电源电压下的带隙基准电压源的核心思想与传统结构的带隙基准相同,也是借助工艺参数随温度变化的特性来产生正负两种温度系数的电压,从而达到零温度系数的目的。图2所示是低电压下带隙基准电压源的核心部分电路,包括基准电压产生部分和启动电路部分。

带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 I

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout II

带隙基准学习笔记

带隙基准设计 A.指标设定 该带隙基准将用于给LDO提供基准电压,LDO的电源电压 变化范围为1.4V到3.3V,所以带隙基准的电源电压变化范围与 LDO的相同。LDO的PSR要受到带隙基准PSR的影响,故设计 的带隙基准要有高的PSR。由于LDO是用于给数字电路提供电源,所以对噪声要求不是很高。下表该带隙基准的指标。 电源电压1.4V~3.3V 输出电压0.4V 温度系数35ppm/℃ PSR@DC,@1MHz-80dB,-20dB 积分噪声电压(1Hz~100kHz)<1mV 功耗<25uA 线性调整率<0.01%

B.拓扑结构的选择 上图是传统结构的带隙基准,假设M 1~M尺寸相同,那么输 3 出电压为 R 2 V REF VlnNV BE T3 R 1 V是负温度系数,对温度求导数,得到公式(Razavi, BE Page313): V BE3BE3(4)Tg/ VmVE TT q 其中, 3 m。如果输出电压为零温度系数,那么: 2 V REF V BE 3 TT k q lnN R 2 R 1 得到: kV BE(4m)V T E g/ R 3 2 lnN qRT 1 q 带入: R

2 V REF VlnNV BE T3 R 1 得到:

E g V REF(4m)V T q 在27°温度下,输出电压等于1.185V,小于电源电压1.4V,可这个电路并不能工作在1.4V电源电压下,因为对于带隙基准 里的运放来说,共模输入范围会受到电源电压限制,电源电压的最小值为: VDD min V BE VV 2GS_input_differential_pairover _drive_of_current_source 其中,V是三极管Q2的导通电压,V GS_input_differential_pair是运放差 BE2 分输入管对的栅源电压,V____是运放差分输入管对尾 overdriveofcurrentsource 电流源的过驱动电压。 对于微安级别的电流,可以认为: V GS V TH 这里将差分输入对的体和源级短接以减小失配,同时阈值电 压不会受到体效应的影响。假设差分对尾电流源的过驱动电压为 100mV,那么,电源电压的最小值为: VDD min V BE2V TH_input_differential_pair100mV 下表列出了smic.13工艺P33晶体管阈值电压和三极管的导通电压随Corner角和温度变化的情况: V-40°27°80° TH slow-826mV-755mV-699mV typical-730mV-660mV-604mV fast-637mV-567mV-510mV BJT的V-40°27°80° BE slow830mV720mV630mV typical840mV730mV640mV fast860mV750mV660mV 可以计算出在不同温度的Corner角下电源电压的最小值: VDD-40°27°80° min slow1.756V1.575V1.429V typical1.67V1.49V1.344V fast1.597V1.417V1.27V 可以看出,对于大部分情况,1.4V电源电压无法保证带隙基 准中运放的正常工作,所以必须改进电路结构,使其可以工作在 1.4V电源电压下。

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析 摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。 基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。 在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。它利用了齐纳二极管被反向击穿时两端的电压。由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。 1971年,Widlar首次提出带隙基准结构。它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。 以上经典结构奠定了带隙基准理论的基础。文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。 1 带隙基准源工作原理 由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。 为得到与温度无关的电压源,其基本思路是将具有负温度系数的双极晶体管的基极-发射极电压VBE与具有正温度系数的双极晶体管VBE的差值△VBE以不同权重相加,使△VBE 的温度系数刚好抵消VBE的温度系数,得到一个与温度无关的基准电压。图2为一个基本的CMOS带隙基准源结构电路。

带隙基准源电路与版图设计

带隙基准源电路与版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 °C ~ ~ 85 °C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. I

带隙基准源

带隙基准源 基本指标:共模抑制比(高);开环增益();失调电压(低);压摆率();随温度变化率/系数(低);温漂(低);功耗(低);相位裕度,理想相位裕度60°; 温度系数TC(temperature coefficient):指温度变化引起的输出电压的变化,一般用ppm/℃来表示。温度系数反映基准源在整个工作温度范围内输出电压最大值与最小值相对正常输出时的变化,对于一阶补偿的带隙基准源电路而言,温度系数一般在几十ppm/℃,经过二阶或高阶的非线性补偿的电路,温度系数可以达到几个ppm/℃以下。目前常用的高阶温度补偿技术包括:二阶曲线补偿技术[10],指数曲线补偿技术,线形化V BE的技术[11],基于电阻比值的温度系数的曲线补偿方法等。 线性调整率:用来描述直流情况下电源电压波动对基准电压的影响程度。调整率越小,基准输出电压越稳定。它是基准电压的直流特性参数,与瞬时状态无关。 电源抑制比:表示电源电压在小信号情况下的变化量与基准的变化量之比。亦即等于差分放大倍数与由于Vdd变化引起的放大倍数之比,表达式为A V (Vdd=0)/A V dd(Vin=0),它是基准电压的交流特性参数。 噪声:基准输出电压中的噪声通常包括宽带热噪声和窄带l / f 噪声。宽带噪声可以应用RC滤波器等电路有效的过滤清除。而l / f 噪声是基准源内在固有的噪声,不能被滤除,一般在0.1到10Hz范围内发挥作用。对高精度系统,低频的l / f 噪声的影响是一个重要的参数。 建立时间:指电源上电后,基准源输出达到正常值所需的时间。

表4-1电压基准源设计指标 设计指标描述最小值典型值最大值单位工作温度-40 27 85 ℃工作电压 4.5 5 5.5 V 输出电压 1.24/2.48 1.25/2.50 1.26/2.52 V 输出电流 2 mA 温度系数30 ppm/℃电源纹波抑制比(2MHz) -20 -30 -50 dB 采用自举输入还有以下优点:1)消除了Q1和Q2管的厄尔利效应不对称对K CMR的影响,同时,Q1,2的基极电压和Q5,6的基极电压将随输入共模电压变化,形成共模反馈,所以,K CMR得以大大提高;2)V CB1,2≈0,能有效地消除集-基反向漏电流I CBO对I B的有害干扰;3)由于基极电流很小,所以,该电路有很高的输入阻抗。

带隙基准电压源设计

基于BiCMOS工艺的带隙基准电压源设计 叶鹏1,2,文光俊1,2,蔡竟业1, 王永平2 (1.电子科技大学 通信与信息工程学院,四川 成都 610054) (2.广州润芯信息技术有限公司,广东 广州 510663 ) 摘要:电压基准是模拟集成电路的重要单元模块,本文在0.35um BiCMOS工艺下设计了一个带隙基准电压源。仿真结果表明,该基准源电路在典型情况下输出电压为1.16302V,在-45℃~105℃范围内,其温度系数为3.6ppm/℃,在在电源电压为3V~3.6V范围内,参考电压从.16295V~1.16308V,变化了130uV,电源电压调整率为0.0186%/V。 关键字:带隙基准电压源;温度系数;电源电压调整率;BiCMOS 中图分类号 TN782 文献标识码 A A Veference Voltage Circuit Design on BiCMOS Technology YE Peng1,2,WEN Guang-jun1,2,CAI Jing-ye1,WANG Yong-ping2 (1 School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 610054) (2 Guangzhou Runxin Information Technology Co. LTD, Guangzhou Guangdong 510663) Abstract:voltage reference is a critical module in analog integrated circuit.this paper design a bandgap voltage reference,the simulation result demonstrate that the output voltage is 1.16302V in typical,the temperature coefficience is 3.6ppm/℃when temperature from -45℃ to 105℃,the reference voltage is from 1.16295V to 1.16308V when power voltage 3V~3.6V,the vary Is 130uV, Keywords: bandgap voltage source;temperature coefficience;Line Sensitivity;BiCMOS 1引言 设计基准电路的目的就是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。基准源在模拟和混合集成电路中应用非常广泛,比如数据转换电路和稳压电路中。[1]在通常情况下,理想的基准电路是与温度、工艺参数以及电源电压无关的,但是实际中各种因素的影响不可避免,那么就要尽量减少各种不确定因素的影响。在设计时除了考虑温度、电源和工艺的不确定性以外,基准电路的其他一些参数也是十分关键的,如输出阻抗、输出噪声、功耗和版图面积。本文在分析了带隙基准电路原理的基础上,设计了一个低温度系数、低电源电压调整率的基准电压源。 2带隙基准电压源的原理

带隙基准设计实例

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、温度系数:ref F V T C V T ?= ? 2、电压系数:ref F d d V V C V V ?= ? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /B E T V V K ??≈-,然而/0.087m /T V T V K ??≈+, 所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n m V K m V K α=,也就是 2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25R E F B E T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈1.2378V ,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为1.238v ,保持基本不变。

相关文档
最新文档