大断面燕尾段隧道盾构长距离空推始发技术

大断面燕尾段隧道盾构长距离空推始发技术
大断面燕尾段隧道盾构长距离空推始发技术

大断面燕尾段隧道盾构长距离空推始发技术
杜万强
(中铁十五局集团有限公司 河南洛阳 471013) 摘 要 大断面燕尾段隧道盾构机空推始发、 洞内始发反力系统的设计、 安装及盾构机的精确定位难度高。 结合广深港客运专线深港隧道皇 岗公园工作井第一台直径 9.6m 盾构机空推始发施工情况,介绍了大断面燕尾段隧道盾构机吊装、空推以及始发技术,并进行了总结,为同 类工程提供参考。 关键词 大断面 燕尾段隧道 盾构始发 盾构空推 中图分类号 U25 文献标识码 B 文章编号
1 工程概况
广深港客运专线深港隧道北接福田站,经深圳市会展中心沿益田路过福田保税区后下穿深圳河进入香港。隧道通 过场地为深圳市中心区,地表高楼林立,道路密布,路上及路下布有众多供气、供水、供电、排水、通讯等管线。 深港隧道皇岗公园工作井设计为三台盾构机提供始发掘进条件,一台直径 13.23m 盾构机往小里程方向掘进、2 台 直径 9.96m 盾构往大里程掘进。其中由单孔双线隧道向双孔单线隧道过渡矿山法隧道 374m(大断面燕尾段隧道) ,然 后采用两台直径 9.6m 盾构机继续施工双孔单线的 3346m 盾构法隧道。大断面燕尾段隧道最大跨度 25.3m,高 18.5m、 开挖断面 372m ,线间距由 4.6m 渐变到始发端的 11.46m。
2
深圳福田 香港米埔
深港分界里程 盾构起始里程
深圳段
香港段
盾构左线隧道 皇岗竖井 变线间距矿山法隧道 盾构右线隧道
盾构终点里程
米埔竖井
图 1.1 深港隧道 9.6m 盾构法隧道工程范围示意图
2 盾构空推始发工艺流程
盾构机从皇岗公园工作井吊入隧道进行洞内组装, 分主机和后配套空推 374m 到始发端就位, 并整体联接。 盾构空 推始发工艺流程见图 2.1。

后洞后配套行走基座混凝土浇筑 及轨道安装 后配套系统空推与主机连接 1~5#后配套下井组装 推至后洞内
竖井内始发托架安装
洞 门 密 封 系 统 安 装
盾构机空载调试
盾构主机下井组装
负环管片安装
盾构机空推至始发端墙 建立泥水平衡负载调试
盾构机下台阶 盾构主机完全通过洞门密封后进 行同步注浆 盾构机平移定位
安装反力架系统
盾构始发试掘进
2.1 盾构空推始发流程框图
3 主要操作要点
3.1 后配套行走基座混凝土浇筑及轨道安装 盾构机总长 113m。为便于盾构机洞内组装,后配套台车行走基座采用矿山法隧道仰拱填充 C25 混凝土,在后配套 行走位置预埋螺栓,通过压板固定行走钢轨与基座连结成整体。螺栓长 650mm,丝长 100mm,间距 500mm。
500
500
500
500
图 3.1 后配套台车行走轨道布置示意图
3600
行走轨道
2

3.2 竖井内始发托架 3.2.1 始发托架形式 始发托架均采用钢结构形式, 主要承受后配套、 盾构机的重力和始发时的摩擦力。 由于盾构机主机重达 877 吨 (含 刀盘) ,所以始发托架必须具有足够的刚度、强度。 3.2.2 托架的安装 考虑盾构机顺利空推,需将始发托架临时轨道底标高调整至与矿山法隧道的坡度一致,即与竖井结构井壁呈 41′ 15″夹角, 该坡度和夹角通过底部托架的立杆长度来调整。 考虑到盾体自重和吊装的冲击作用下始发托架变形等因素, 盾构中心比设计隧道轴线高 30 ㎜。
图 3.2 竖井内盾构机及始发托架示意图 3.3 盾构机吊装 盾构机下井吊装采用 360T 龙门吊和 260T 履带吊配合作业,先吊装后配套,再进行盾体及刀盘下井吊装作业。后 配套台车及盾构机、 刀盘下井顺序: 5 号台车——4 号台车——3 号台车——2 号台车——1 号台车——连接桥——盾 体——拼装机——刀盘。后配套吊装下井后用卷扬机依次将台车拉至后洞再进行连接。连接桥与盾体暂不连接。 3.4 盾构机空推 盾构机组装完成后,即进行空推作业。整机空推分为两部分,主机空推和后配套空推,在主机空推至距离始发端 墙 23m 位置时要下台阶,再将盾构机推进始发位置。最后将后配套推进至盾尾与主机进行连接。 3.4.1 盾构机空推至台阶处 主机空推采用两支行程 1m 的液压油缸顶推移动托架,沿临时铺设的轨道滑移的方式对主机进行推进作业,详见 图 3.3,推进速度约为 8m/h,顶推油缸靠螺栓连接固定在临时轨道上。临时轨道左右侧均为 4 节 8m 长的箱型梁,采 用螺栓连接,左右轨道中心间距 4700mm,每节轨道重约 2t,采用小叉车进行循环拼接利用,在顶推过程中轨道梁靠 膨胀螺栓及压板进行固定,轨道梁之间采用型钢进行加固。
3

夹具
横向千斤顶
滑靴
平移梁
截面类型为A的隧道区间
平移方向
隧道中线
吊装口
图 3.3 盾体主机前移示意图 3.4.2 盾构机下台阶 由于矿山法隧道底板存在一高差为 54cm 的台阶,盾构机采用以下步骤下台阶。 1) 在台阶下等间距布置型钢,高度与矿山法隧道地板高度一致,并保证相同的坡度。 2) 将盾构机推至型钢上。 3) 采用 4 个行程 1m 的液压油缸,将盾构机顶升,将型钢依次抽出,完成盾构机下台阶。 3.4.3 盾构机横移 在盾构机下台阶同时,把轨道调整为横向,将盾体和托架放下,然后用油缸顶推至始发位置,并对始发托架进行 固定。
4

II
盾体在隧道始发段 就位的纵向中心线 盾体 始发架 滑靴 横向千斤顶 夹具 平移梁
平移方向
隧道中线
盾体在隧道始发段 就位的横向中心线
II
图 3.4 盾体主机横移示意图 隧
道 中 后配套设备在反力架安装完成后, 用两台卷扬机将后配套 5 线 节台车和连接桥整体沿设计轨线牵引至盾尾与主机进
盾体 始发架 行连接。 结合后配套结构形式, 在其空推段需将各台车轮架加长, 其中 5#、 4#、 3#及 2#台车后部轮架均需加长 1355mm, 横向千斤顶 2#前部及 1#台车均需加长 1865mm,加长支腿采用与轮架原设计相同规格材料及连接方式进行处理,并在各加长连接 夹具 平移梁 部位进行加固, 最后在后配套台车进入负环时进行加长支腿拆除。 若盾体在空推中发生偏移, 则采用千斤顶进行微调。
平移方向
滑靴
3.4.4 相关计算 1) 横向千斤顶推移力核算
II II视图
在推移的整个过程中,隧道地面存在的坡度很小,可忽略不计。根据滑靴与平移梁之间的接触面类型,查相关表 格得两者之间的动摩擦系数为 0.03,静摩擦系数为 0.05。 整个平移过程中,横向千斤顶的数量为 4 台,其推移能力 为 35t/台,则总推移力为
F推 =35×4=140(t)
横向千斤顶刚启动的瞬间,滑靴与平移梁之间的静摩擦力为
f 静 =900×0.05=45(t)
平移的过程中,滑靴与平移梁之间的动摩擦力为
f 动 =900×0.03=27(t)
则, F推 ? f 静 , F推 ? f 动 所以,横向千斤顶的推移力满足盾体的平移施工要求。 2) 千斤顶负荷率 顶升采用 8 台 200t 千斤顶,千斤顶承载总重为 900t。 η =900/(8×200) =56%(安全) 3.5 始发反力系统 盾构机始发反力系统由钢结构反力架、钢筋混凝土反力墙以及Φ 400mm 钢管撑组成。 3.5.1 反力架结构及安装
5

(1) 反力架的设计依据盾构机始发掘进反力支承需要,按照盾构机掘进反向力通过千斤顶支承在隧道管片,隧道 管片又支承在反力架的工作原理进行设计,设计外形尺寸不得与盾构机各部件及隧道洞口空间相干扰,同时要求结构 合理,强度、刚度满足使用要求,加工运输安装方便。反力架需要为盾构机始发提供 5000t 的反力,因此反力架要具 有足够的刚度和强度,结合以往施工经验及盾构始发端隧道结构等,该反力架为异型反力架,由钢结构在洞内拼装组 成。
扩大段衬砌 左线中心线 异型反力架 右线中心线
反力架立面图
图 3.5 反力架结构示意图 (2) 预埋件的安装。由于 9.6m 盾构在矿山法隧道内始发,为了便于反力架安装和拆除,在矿山法隧道施工二衬 前,先预埋用于反力架安装、拆卸的吊耳。反力架分解成若干组件,采用运输车运送到始发端,再用葫芦挂在预先埋 在二衬内的吊耳上,吊装反力架进行组装,其中所用的吊耳采用Φ 32 的钢筋。
拆装反力架吊点
拆装反力架吊点
图 3.6 反力架及支撑预埋件布置图
图 3.7 首环负环与反力架钢环的关系图
(3) 反力架安装。安装反力架时,先用全站仪双向校正两根立柱的垂直度,使其形成竖直面与水平面垂直。该段 处于 1.2%的纵坡,即反力架竖直受力面与盾构机推进轴线的垂直面呈 41′15″的夹角。管片中心与反力架钢环中心 重合,负环中心所形成的轴线与线路纵坡一致,保持 1.2%。即反力架钢环竖直面与首环负环(-6 环)管片背千斤顶 面在底部与反力架钢环接触面呈 41′15″的夹角。 为了保证盾构机始发姿态,安装首环负环与反力架和始发台时,
6

反力架左右偏差控制在±10mm 之内, 高程偏差控制在±5mm 之内, 上下偏差控制在±10mm 之内。 始发台水平轴线的 垂 直方向与反力架的夹角<±2‰,盾构姿态与设计轴线竖直趋势偏差<2‰,水平偏差<±3‰。 3.5.2 钢管砼反力墙 1) 反力墙支撑 由于隧道高 18.5m,若采用钢管斜撑,无法保证反力架在盾构始发时的稳定,保证不了盾构始发的推力,为了确 保安全,在反力架后面施工一堵厚 2m 的钢筋混凝土反力墙(如图 3.8) ,用于作为反力架支撑的承力墙,反力架和承 力墙之间采用 30cm 的 H 型钢做为连接。
后浇承力墙
反力架支撑
反力架
盾构机
盾构隧道
图 3.8 反力架支撑示意图
2) 反力墙受力验算 (1)基本参数 盾构始发推力:50000kN 作用在反力架上的单位长度分布力为:50000÷(π ×9.6)=1658kN/m (2)钢筋混凝土环梁 ①计算模型 采用 shell 单元; 约束条件:环梁与隧道二衬交界位置采用固结。 环梁厚度:2m。
7

图 3.9 计算模型 ②计算结果 1)环梁变形图
图 3.10 混凝土环梁变形图(沿推力方向,mm) 最大变形量为 6mm。 2)弯矩图
8

图 3.11 混凝土环梁弯矩图 M11(kN.m)
图 3.12 混凝土环梁弯矩图 M22(kN.m) 3.6 盾构机及后配套空载调试 盾构机组装完毕后即可进行空载调试。空载调试的目的主要是检查设备是否能正常运转。主要调试内容为:配电 系统、液压系统、润滑系统、冷却系统、控制系统、注浆系统、管片拼装机、整圆器以及各种仪表的校正。 另外,还要进行测量系统及环流系统调试,环流系统调试包括地面沙堡泥水处理系统、和环流系统联机调试。 3.7 洞门密封装置的安装 为了防止盾构始发掘进时泥浆、地下水从盾壳和洞门的间隙处流失,以及盾尾通过洞门后,管片外径与刀盘开挖 轮廓之间同步注浆浆液的流失,在盾构始发时需安装洞门临时密封装置。 3.8 负环管片的安装 结合工程实际,该隧道设置 7 环(0~-6)负环,负环管片利用盾构机自带的管片拼装机进行拼装,成环后依次 推出盾尾,直至-6 环与反力架接触。负环管片采用标准通用环管片,450mm 厚,环宽 2000mm,内径为 8700mm,外径
9

为 9600mm。 3.9 负载调试 空载调试完成并证明盾构机满足初步要求后,即可进行盾构机的负载调试。负载调试的主要目的是检查各种管线 及密封设备的负载能力,对空载调试不能完成的调试项目进一步完善,以使盾构机的各个工作系统和辅助系统达到满 足正常生产要求的工作状态。通常试掘进时间即为对设备负载调试时间。 3.10 盾构始发 3.10.1 盾构始发参数 根据盾构机参数、洞门密封保压及始发段地质情况,考虑采用欠压始发,各始发参数如下: (1)泥水压力 0~2.0bar; (2)总推力 2500t; (3)刀盘转速 0.8~1.0 转/min。 (4)推进速度控制在 2~5mm/min。 3.10.2 始发掘进的注意事项 (1)为控制推进轴线、保护刀盘,推进速度不宜过快,使盾构缓慢稳步前进,推进速度控制在 10~15mm/min。 (2)一环掘进过程中,掘进速度值应尽量保持衡定,减少波动,以保证切口水压稳定和送、排泥管的畅通。 (3)盾构启动时,必需检查千斤顶是否靠足,防止启动速度过大、压力过大,盾体随刀盘转动。 (4)盾尾刷油脂的涂抹要均匀饱满;洞门密封两道帘布橡胶板之间通过注脂孔注满油脂,做好洞门密封防水工作。 (5)调整掘进速度的过程中,应保持开挖面水土压力平衡,确保开挖面土体稳定。 (6)盾构进洞时应对刀盘予以保护,防止刀盘切割帘布橡胶板,破坏洞门密封。 (7)由于始发时盾构机与地层间摩擦力很小,盾构易旋转,这时可以在盾构机两侧盾壳焊接两排钢块作为防扭装置, 卡在始发基座上,防止盾构机旋转。同时应加强盾构机姿态的测量,如发现盾构有较大转角,可以采用大刀盘正反转的 措施进行调整,同时推进速度要慢。 (8)如果由于负环管片转动或松动而且盾构推进油缸推力过大,致使负环管片变形、破损或破裂,应立即停止推进, 及时更换或加固破损管片,同时对管片环的临时支撑进行加固。 (9)拼装第一环负环管片时,为防止两块邻接块失稳,可在管片抓取头归位之前,在盾壳内与负环钢管片之间焊接槽 钢以支撑邻接块。 (10)盾构机向前推进时,在始发台两侧必须设专人进行观测、查看,当发现异常情况时,立即通知主司机停止推进, 待故障排除后,再向前推进。
4 结束语
广深港客运专线深港隧道皇岗公园工作井,设计为三台盾构机的始发工作场地,特别是往大里程方向是两台直径 9.6m 盾构机空推 374m 燕尾段矿山隧道始发。因此两台盾构机始发掘进过程中的相互影响、空推段空间的合理分配利 用、 反力架及反力支持墙的设置等均要统筹考虑, 尽可能优化施工工艺, 科学合理组织施工, 保证工程安全顺利进展。
10

参考文献
[1] 张公社.超大直径泥水平衡式盾构机始发技术[J].铁道建筑技术.2009年8月 [2] 武艳霞.盾构机反力架结构的设计与应用[J].筑路机械与施工机械化.2009年2月 [3] 韩吉平.穿黄工程泥水加压平衡盾构机始发技术[J]. 水利水电施工. 2008 年 2 期
11

盾构隧道断面测量技术浅述

盾构隧道断面测量技术浅述 朱洪明 (广西第六地质队 广西 537100) 摘要:结合广州地铁三号线[天~华]两个区间段隧道施工测量工作的实践,介绍如何用水准仪和全站仪,进行地铁盾构隧道断面测量。 关键词:盾构隧道;断面测量;高程放样;三维坐标;偏差 1 概述 盾构法隧道断面测量不同于一般的矿山法隧道断面测量,它是在隧道全面贯通后才进行的,是盾构隧道施工测量的最后工作,用以检测已成型的隧道是否有侵入限界。它已无法改变既有的形状,对隧道的开挖没有实际的控制作用。但业主设和计单位要根据断面测量的成 离) 线段9 适。为节省投资,在广州地铁三号线[天河客运站~华师站]盾构区间中,我们采用了水准仪配合全站仪,测量断面点三维坐标的方法进行断面测量,取得了很高的效率。 3 测量步骤 3.1 待测断面高程放样

的方法,在隧道两侧管片上,放样出待测断面里程对应的轨面高+450 mm(即左下和右下)的高程点位,并用红油漆标记。其他各点,因位置比较高不好放置塔尺,不能直接用水准仪进行高程放样。因此我们依据相关尺寸,制作了一个铝合金卡尺,如图2。 将卡尺上距轨面450mm的横尺放置于已经标记好的右下或左下处,保持整个卡尺处于垂直状态(可在卡尺上安置水平尺),因卡尺上各横向尺是固定在竖尺上的,则其他各点位(中2、中1、上)即

用下式表示: 点O的里程LO LO=LA 式中:D 是A点的里程。 根据以上(1)式和(2)式,用可编程计算器或计算机VB程序编程计算,则计算工作变得非常简便快速。在广州市地铁三号线[天~华盾构]区间断面测量工作中,采用本人编写的“断面测量计算程序”,只要将外业测量数据按一定的格式编辑好(记事本即可编辑),全部计算工作几秒钟即可完成,结果如下图4。 图4 4 结束语 用水准仪和全站仪结合,用坐标测量法进行断面测量,一次置站可以进行大量的断面点测量,外业操作非常简单,照明及视线良好的情况下,三个人的工作组,一天可以测量100多个断面(约500米),内业计算仅需几秒钟。对不同的隧道,测量位置要求可能不一样,但操作方法是一样的,只需将卡尺作相应的修改就能适用。该方法操作简单,在本工程中全部采用了此方法,作业效率非常高,测量精度也能满足相关的技术要求,为盾构隧道断面测量提供很好的借鉴。

浅谈盾构始发施工技术控制要点

浅谈盾构始发施工技术控制要点 发表时间:2015-01-20T15:52:59.117Z 来源:《工程管理前沿》2015年第2期供稿作者:韩延波 [导读] 盾构始发环节是盾构施工工法的一个关键环节,本文结合郑州地铁地铁盾构施工现场实例,简单阐述了盾构始发过程流程以及主要控制要点,安全质量控制措施。 韩延波 中铁七局集团第五工程有限公司河南郑州 450000 摘要:目前盾构法施工具有机械化、自动化程度高、施工速度快、对地面及周围环境影响小等优点,在隧道和地下工程尤其是城市地铁工程中得到越来越广泛的应用。盾构始发是盾构施工掘进的重点,本文结合郑州地铁地铁盾构施工现场实例,简单阐述了盾构始发过程流程以及主要控制要点,安全质量控制措施,以供今后在盾构施工方面参考。 关键词:盾构始发施工技 一、盾构始发准备工作 1、车站内轨道铺设 为满足盾构吊装下井及始发,在始发井及车站主体结构底板上铺设43kg/m钢轨作为施工运输轨道。长度距离始发端100m。电瓶车轨距为0.9m,台车轨距为2.18m,电瓶车轨道单根长6m,台车轨道单根长3m。站内分岔双线亦采用槽钢自制轨枕,用压板螺栓固定钢轨。 2、始发架、反力架安装及加固 根据始发井的实际情况及托架和反力架的安装要求,提前对始发井的底板进行测量、对底板进行找平,以便安装托架时的定位固定,保证安装进度。为防止盾构出站后发生栽头,将标高抬高4cm。 3、导向钢轨施工 为控制盾构机进入洞门钢环时标高及避免盾构机由始发托架进入端头土体时盾构机可能会发生的“栽头”现象,在洞门钢环底部600mm 范围内焊接2根200mm长43Kg/m钢轨作为盾构机导台。 二、盾构始发掘进 1、始发掘进参数控制 始发掘进为盾构施工中技术难度最大的环节之一,在始发掘进时,对盾构的推进速度、土仓压力、注浆压力作相应的调整。根据计算暂取始发掘进参数为:推进速度10~30mm/min,土仓压力:0.84bar,注浆压力:0.2~0.25Mpa,盾构轴线偏离设计轴线不大于±50mm,地面隆陷控制在+10mm~-30mm,严格控制盾构机的各组油缸压力不大于70bar,盾构机总推力小于800T,刀盘工作压力小于90bar。通过初始推进,选定六个施工管理的指标作为后续施工指导依据:a土仓压力;b推进速度;c总推力;d排土量;e刀盘转速和扭矩;f 注浆压力和注浆量。其中土仓压力是主要的管理指标。在始发的前三环,考虑到刀盘刚开始切削土体,且前方为加固土体,掘进时缓慢建立土压力,慢慢增加到设计土压,开始始发掘进,同时控制扭矩、转速和贯入度。 2、同步注浆 盾构机盾尾进入土体后进行同步注浆,迅速填充盾体与管片之间的空隙。考虑到初始掘进速度较慢,各操作环节连续性不强,及一些不可预见的因素,前三环采取非同步注浆,采取掘进完成后再进行注浆操作。浆液选取为水泥浆,注浆压力不宜过大,注浆完成后待盾尾进入土体后立即进行二次注浆,防止因注浆不当引起管片上浮或偏移。 3、负环管片拼装 在始发井内,盾构机依靠负环管片提供支撑进行掘进,根据以往施工经验,本区间左右线各安装6环负环管片,以满足始发井的尺寸要求。 1)-6环第一块管片的定位。在拼装-6环管片的第一块管片时,首先在-6环管片的A2块管片内弧面上划出管片向右偏移18°后位于弧底的位置,拼装时以水平尺进行确定;邻接块B1和B2的安装。邻接块安装时,在盾尾盾壳上焊接吊耳,并用链条葫芦进行固定,以支撑管片并保证施工的安全,待封顶块纵向推插到位后,拆去链条葫芦,割除吊耳,紧固封顶块与邻接块的螺栓。 2)紧固钢丝绳 每环用1根16mφ18mm的钢丝绳绕过负环管片顶部,将绳头分别留在支撑架左右两侧,每个绳头上穿上紧线器,将紧线器的另一端挂在支撑架的吊耳上,旋转紧线器,将钢丝绳拉紧。盾构机继续向前掘进,重复上述1、2步,直至盾尾进入洞门后,将负环管片全部用钢丝绳固定。 3)安装负环紧固架 先将负环紧固架吊入盾构始发井内,用M20的螺栓将负环紧固架分别与左右支撑架连接在一起,然后吊入纵梁与紧固架用M16的螺栓连接。 4)加三角木楔 在纵梁与负环管片的空隙内楔入300mm×200mm的角度为30°的三角木楔,每环负环管片左右两侧各楔入三个木楔。 三、盾构始发注意事项 1、始发托架及反力架制作安装安全质量控制措施 1)盾构基座的底面与始发井的底板之间要垫实,保证接触面积满足要求。 2)千斤顶总推力控制在800T以内,优先选用下部千斤顶,推力增加要遵守循序渐进的原则。 3)始发托架及反力架的安装必须按照技术交底执行,误差不差过1cm。 4)履带吊机工作区应铺设钢板,防止地层不均匀沉陷。 5)托架及反力架与始发井结构部位连接要牢固,以保证托架及反力架的受力均匀传递到始发井结构上。 6)托架及反力架的中心线位置与线路中心线一致。 7)始发期间严密监测反力架状态,注意反力架的变形及位移,出现问题及时处理。

盾构始发技术交底模板

盾构始发技术交底

盾构始发技术交底B3.12

20°,标准块管片3块(分别为B1、B2、B3)圆心角为67.5°,邻接块管片左右各一块(分别为L1、L2),圆心角为68.75°,纵向接头为16处,按22.5°等角度布置;联络通道处区间隧道采用钢管片和钢筋混凝土管片组成的复合型管片环。 管片环缝和纵缝均采用5.8级或6.8级M30“U型”螺栓连接,环向管片间设2个单排螺栓,纵向设16个螺栓,管片中心处设一个吊装孔,兼作二次注浆孔。管片环纵缝采用三元乙丙橡胶密封条止水,管片与周围土体间隙采用同步注浆填充。 1.2工程地质 奥体中心站~河海大学站区间隧道主要穿越的地层为:⑤1粉砂夹粉土层、⑤2粉砂层、⑤3粉砂夹粉土层、⑥2粉质粘土层、⑥3粉质粘土层。盾构始发涉及地层主要为⑤1粉砂夹粉土层、⑤2粉砂层。 奥体中心站北端头井地质剖面图 1.3周边建构筑物 始发车站周边建筑物概况 本工程两段区间分别从奥体中心站南、北端头井始发,车站位于常州中心城区晋陵北路与龙锦路交叉口处,跨龙锦路沿南北向敷设于晋陵北路下方。其车站北侧有常发豪庭花园、华美达国际酒店,距离车站北端头井分别为45.52m、28.42m;南侧有及欧迪办公楼、常州市新北区实验中学,距离车站南端头井分别为26.75m、21.33m。区间盾构始发对四座建(构)筑物基本无影响。

奥体中心站临近建构物情况表 序号建筑物名称层数建筑物情况 1 豪庭花园19层位于车站西北侧,距离车站北端头井约45.52m。 2 欧迪办公楼4层欧迪办公楼:独立承台基础,基础底埋深2.5m。位于车站东南侧,距离车站西端头井约26.75m 3 华美达国际酒店18层华美达酒店:基础为Φ500PHC管桩,桩长8.5m,桩底标高-9.3~12.0m。位于车站东北侧,距离车站端头井约28.42m 4 新北区实验中学 图书馆 4层 新北区实验中学:独立承台基础,基础底埋深1.5~2.5m,部分区域采 用Φ500粉喷桩进行加固。位于车站西南侧,距离车站主体基坑约 21.33m 奥体中心站与建构(筑)物位置概况图 1.4始发段地下管线情况 奥体中心站北端头井始发段管线统计表 序号管线直径(mm) 管线走向管线埋设位置备注 1 给水管DN500 沿晋陵北路方向车站北面沿晋陵北路布置,埋深约0.5米,距离区间隧道约10.0米 2 雨水管d600 北端头井北侧横 跨晋陵北路 车站北端头井盾构始发段,埋深约2.4米,距离 车站北端头井26米~30米 3 污水管 d500/d1600 沿常发国际豪庭 围墙敷设 车站北风井旁,埋深约2.0米/5.0米,距离始发 段隧道最小净距13.0米,距离车站北端头井22.7 米 4 通讯管 8Φ110 L40 北端头井北侧横 跨晋陵北路 车站北端头井盾构始发段,埋深约1.0米,距离 车站北端头井23米~24米 5 电力管 2Φ200MPP L43 北端头井北侧横 跨晋陵北路 车站北端头井盾构始发段,埋深约1.0米,距离 车站北端头井约17.0米 6 电力管 2Φ200MPP L43 西侧沿晋陵北路 方向 车站西面沿晋陵北路布置,埋深约1.0米,距离 区间隧道约7.4米 7 燃气管中压B 钢管 DN400 东侧沿晋陵北路 方向 车站东面沿晋陵北路布置,埋深约2.3米,距离 区间隧道约10.8米 2、盾构始发地基加固 为保证盾构始发、破除端头围护结构时隧道端头土体的自稳和防水要求,需在盾构始

区间盾构隧道结构设计

区间盾构隧道结构设计 1)主要设计原则 ①盾构隧道衬砌结构应满足运营功能要求以及建筑限界、施工工艺、结构防水和城市规划等方面的要求。结构安全等级为一级,按地震烈度为7度进行结构抗震设计,采取相应的构造处理措施,以提高结构的整体抗震能力。结构抗力应满足人防部门的要求,抗力级别为6级。 ②结构类型和施工方法,应根据工程地质、水文地质和周围的环境条件,通过技术经济比选确定,并应按相关规范的规定进行结构设计计算。 ③结构设计应符合强度、刚度、稳定性、抗浮和裂缝宽度验算的要求,并满足施工工艺的要求。 ④对于钢筋混凝土结构应就其施工和正常使用阶段进行结构强度计算,必要时也应进行刚度和稳定性验算。钢筋混凝土结构应进行裂缝宽度验算,其最大裂缝允许值为:明挖法和矿山法施工的结构为0.2~0.3mm;盾构法施工的结构为0.15~0.20mm。结构进行抗浮验算时,其抗浮安全系数不得小于1.05,否则应采取抗浮处理措施。 ⑤采用暗挖法施工时,区间隧道为平行的双洞单线隧道,两隧道的净距一般不宜小于1.0倍隧道洞径。 ⑥所选择的盾构机型,必须对地层有较好的适应性,并同时依据盾构推进速度、周围环境状况、工期、造价等各方面进行技术经济比较后确定。 ⑦严格控制工程施工引起的地面沉降量,其允许数值应根据地铁沿线的地面建筑及地下构筑物等实际情况确定,并因地制宜地采取措施。 ⑧结构防水设计应根据工程地质、水文地质、地震烈度、环境条件、结构形式、施工工艺及材料来源等因素进行,并应遵循“以防为主、多道设防、刚柔结合、因地制宜、综合防治”的原则。车站及出入口通道防水等级为一级;车站风道及区间隧道防水等级为二级。 2)盾构机类型的选择

盾构隧道施工组织设计

盾构隧道施工组织设计 Revised by Liu Jing on January 12, 2021

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。 四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最短的时间内完成建筑物、管线等的调查及地质补充勘探。并组织精测人员对设计控制桩进行复

盾构分体始发施工技术

盾构分体始发施工技术 摘要:结合盾构隧道施工分体始发技术在广佛线二期四标澜魁区间施工中的应用,介绍海瑞克盾构分体始发技术的组成、关键工序、关键技术,以及常见的问题和预防措施。 关键词:盾构分体始发始发井二次始发台车管路 一、前言 结合城市地铁施工的特点,盾构始发场地越来越受到各个环境因素的限制,无法进行正常始发。为了解决该始发条件中的盾构施工,盾构机将采用分体始发。 本文结合始发的实际经历,谈谈盾构分体始发技术的一些体会和心得。 二、盾构分体始发的工作内容及工艺流程 盾构机始发时,常规的方法是将盾构机和后续台车全部下井连接后,开始掘进,掘进所产生的渣土则利用台车尾部的空间进行垂直运输。特殊情况下,受始发井空间限制,盾构机无法在井下整体始发,需根据盾构机机械构造拟采用分体式始发,在始发之前,需要对盾构机及始发井做部分的改造。首先将盾构刀盘盾体、盾构机的桥架及1号台车先下井,地面放置盾构机2-5号台车,等掘进一定长度后,在进行后续台车的二次下井,进入正常盾构施工。 三、盾构始发的主要施工技术 1、盾构机改造 盾构机分体始发必须对盾构机原设备进行必要的改造和增减部分设备,盾构机的改造直接影响到盾构机的始发安全、效率和功能,盾构机改造应根据以下原则进行: (1) 最大限度利用盾构机原有设备,减少对原有设备的改造和取消不必要的设备; (2) 满足始发竖井的空间和材料垂直运输通道的要求; (3)有利于盾构机的下井安装及始发阶段掘进完成后其余台车的下井; (4)能够快速完成始发阶段掘进; (5)尽量利用现有龙门吊作为垂直运输设备,必要时采用50t汽车吊进行出土。 2、分体始发方案

地铁隧道区间盾构始发技术

地铁隧道区间盾构始发技术 摘要:城市地铁区间隧道一般位于城市繁华路段,周围密集的建筑物及大量的 地下管线为施工带来一定的难度,盾构法以其施工速度快、安全、对周围环境影 响小等优势在地铁隧道施工中得到了广泛的应用。盾构始发技术是盾构法施工的 一大关键环节,也是盾构施工的难点之一。本文详细阐述了地铁区间隧道盾构始 发的关键技术。 关键词:地铁;区间隧道;盾构始发掘进;负环管片;姿态控制 Shield Launching Technology of Interzone Tunnel in Metro Xing-ming:YinPeng (The Second Engineering Company of China Railway No.4 Engineering Group Co.,LTD,Suzhou,China;) Abstract:Interzone tunnel in metro is usually seated in the downtown.Closed buildings and a lot of pipeline underground imposed difficulty on construction.Shield applied to interzone tunnel construction widely for its high-speed,safety,barely little influence.Shield launching technology is the key and difficulty of shield construction method.Shield launching technology of interzone tunnel in metro be expound here. Key words:metro,interzone tunnel,shield launching,partial segment,posture control 常州市地铁1号线一期工程土建14标段工程共有两站(新桥站、嫩江路站)两区间(新桥站~嫩江路站区间、嫩江路站~新龙站区间)。为1号线的先行标段,标段全长2851.523m,呈南北方向沿规划乐山路敷设。区间隧道采用盾构法 施工,外径6.2m,内径5.5m,环宽1.2m,分6块,管片整体式衬砌,采用错缝 拼装。区间多次始发和接收,本文以新桥站~嫩江路站区间盾构始发为例讲解盾 构始发技术。 一、地铁区间隧道盾构始发技术的重要性及难点 1、地铁区间隧道盾构始发技术的重要性 在城市地铁区间隧道施工中,盾构始发是盾构施工的一个必经阶段。盾构机 始发是指盾构机在施工竖井内或车站结构内,自盾构机主机开始定位,刀盘向前 推进贯入围岩,沿设计线路向前掘进,直至盾构机完全进入区间隧道,洞口反力 架与负环管片拆除为止。由于在始发阶段存在以下几种特殊情况: 1)始发推进前需凿除车站的围护结构,凿除围护结构后的土体在一定的时 间段内必须保持自稳; 2)始发阶段盾构机主体在始发导轨上不能调向; 3)始发阶段姿态及地面沉降控制比正常推进阶段更困难; 4)始发期间部分设备包括出渣都不能正常使用,有时也会存在因车站结构 的原因而不能整机始发。 综上所述,盾构在初始阶段的施工难度很大,因此盾构隧道始发技术是盾构 法施工技术的关键,也是盾构施工成败的一个标志,必须全力做好。 2、始发技术的难点分析 盾构机组装调试后,进行试掘进施工,受端头加固质量、设备姿态、反力架 的稳定性、对地层的认识等原因的制约存在较多难点,主要如下: 1)端头加固质量控制,洞门围护结构破除后,盾构顶上掌子面前及盾尾完 前进入加固体且未进行同步及二次注浆时,端头土体的稳定,完全取决土体的加

(整理)异型盾构隧道新技术

异型盾构隧道新技术 1.自由断面盾构法 (1) 原理概要 所谓自由断面盾构法就是在一个普通圆形盾构主刀盘的外侧设置数个规模比主刀盘小的行星刀盘。随主刀盘的旋转行星刀盘在外围作自转的同时绕主刀盘公转,行星刀盘公转的轨道由行星刀盘扇动臂的扇动角度确定。通过对行星刀盘扇动臂的调节可开挖各种非圆形断面的隧道。也就是说,通过对行星刀盘公转轨道的设计可选择如矩形断面,椭圆形断面,马蹄形断面,卵形断面等非圆形断面。此盾构法尤其适用于地下空间受限制的如穿梭于既成管线和水道之间的中小型隧道工程。 图-3.1 自由断面盾构构造图 图-3.2 可开挖的非圆形断面 扇动臂钢外壳 盾尾同步注浆装置 管片拼装机 管片 尾部止水板人孔 伸缩装置

(2) 特点 与一般盾构法相比,自由盾构法的特点如下: 1) 可开挖多种非圆形断面的隧道,选择细长型断面对宽度或深度受限制的地下 空间更有效的得到利用。 2) 可根据不同的使用目的合理选择不同断面,比如共同沟和电力管线等选择矩 形断面,公路和铁路隧道则选择马蹄形断面等。 3) 隧道断面的最大纵横尺寸之比为椭圆形1.5:1.0,矩形1.2:1.0,马蹄形1.35: 1.0。假定各隧道断面的横向宽度等于圆形断面的直径(3.16m ),假定圆形断面的面积为1.0,则椭圆形为1.7,矩形为1.5,马蹄形则为1.6。 4) 行星刀盘上的刀具以梅花状布置,扇动臂采用计算机自动控制。 (a )行星刀盘 (b )扇动臂的控制 图-3.2 行星刀盘及扇动臂的控制 (3) 工程实例 迄今自由断面盾构法已在下水道工程中运用。下列照片为1例试验性施工和1例实际工程的施工例。试验施工中使用的盾构机宽3.16m ,高4.66m 的土压式平衡单点铰接盾构。试验施工直线段长度36m ,曲线段半径R=60m 长度16m 。实际工程段盾构机宽3.16m ,高4.66m 的土压式平衡2点铰接盾构,累积开挖长度565m ,曲线段最小曲率半径R=20。 (a ) 纵向椭圆形盾构机 (b )试验施工隧道(直线段)(c )实际工程隧道(曲线) 照片-3.1 施工实例 扇动千斤顶 扇动千斤顶 行星刀盘 扇动臂 导向臂导向臂 出刃角 进刃角 超硬刃 角

暗挖大断面盾构始发施工技术

暗挖大断面盾构始发施工技术 摘要:通过北京地铁10号线二期大红门站~角门东站区间隧道工程实例,介绍了暗挖大断面盾构始发的难点,阐述了盾构机如何在狭小的暗挖段内进行始发的相关技术,以期为今后类似工程的施工提供参考与借鉴。 关键词:暗挖段;盾构;洞门加固;盾构始发 Abstract: through the Beijing subway line 10 grand palace gate stand to the corner gate phase two east Tsim Sha Tsui tunnel engineering example, the paper introduces the type of large sections of the shield excavation difficulties, and expounds how to shield construction machine in the narrow underground within the period of the relevant technology of the initial field, in order to the similar projects in future construction to provide the reference and the model. Key words: for underground; Shield; DongMen reinforcement; Shield excavation 1工程概况 北京地铁10号线二期大红门站~角门东站区间全长880.453m,其中K33+568.416~K34+636.916为暗挖段,全长68.5m。盾构采用日本小松公司生产的土压平衡盾构机,在大红门站端头井下井组装,然后将盾构机平移至始发位置,进行组装调试后始发。本区间地质条件按成因年代分为人工堆积层和第四纪沉积层两大层,区间结构内无地下水。 2工程重点、难点 1)如何保证盾构始发时洞门土体的稳定性是盾构始发的关键所在,如果土体不稳,会导致土体的变形和沉降,将影响到地面的建构筑物安全。因此始发洞口土体的加固是本工程的重点。 2)如何高精度的定位盾构机以及将盾构机平移至始发位置,确保盾构安全始发及隧道轴线的偏差在规范验收之内,并在有限的作业空间内安装和加固反力装置是本工程难点。 3)盾构始发时盾构机很容易发生震动、扭动,从而造成盾构掘进轴线跟设计轴线之间的偏差,而在始发阶段盾构姿态又不宜于大量纠偏,故如何控制盾构始发时的姿态也是本工程的重点。 4)盾构始发作业不可避免的会造成周围土体的扰动,且这种扰动跟施工水

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构隧道施工组织设计

第一章地质描述 第一节概述 一、概述 二、线路段工程地质条件 (一)、地形、地貌 。 (二)、岩土体工程地质特征 (三)、水文地质特征 区间地质描述 区间地质描述详见表7-1-1、表7-1-2;土体主要物理力学性质指标表7-1-3、7-1-4。。 一、科技路站 第三节补充地质勘察

第二章工程特点 第一节工程主要技术难点及对策 第二节工程的主要特点 一、交叉多,干扰大 集中体现在结构交叉多、工序交叉多、接口界面交叉多、专业交叉多、前期与后期交叉多,施工相互干扰较大。执行关键工期计划所发生的各规定部分的工期偏差,会影响其它作业。结构的多交叉,存在空间效应与体系转换问题。 二、地处市区,环境特殊 主要体现在地面建筑物密集,施工对周围环境的影响必须严格控制,文明施工要求严格,环境保护标准高。 三、任务重,系统性强 全部工程要求在33个月内完成。其中,盾构机需要引进,鉴定、安装、调试,前期试掘进进度会放缓,中间加快,出洞又会放缓,还要调头、转场,工序复杂,任务重。采用盾构机施工,这是隧道工厂化施工的模式,其系统性特别强,环节与环节之间的衔接、匹配是否合理,直接影响施工效率,直接影响施工的安全、质量、速度。四、地质复杂,施工难度大 地铁隧道主要穿越Ⅱ4、Ⅲ1层。Ⅱ4层以上主要为砂性土,其渗透性强,富水性好,围岩稳定性极差。Ⅱ4、Ⅲ1层水平分层,盾构机易磕头;且局部地区覆盖层过浅。施工中容易造成地面隆起或沉降。 第三章施工准备 施工准备工作是否充分、到位,将直接影响施工总体安排,影响主体工程能否按时开工,影响到工程开工后能否顺利进行,施工前必须做好各项准备。我局中标后,迅速组成项目部开展各项工作。在最

盾构始发

盾构始发施工技能培训质料 1、盾构始发施工 盾构始发是指盾构从组装调试,到盾构完全进入区间隧道并完成试掘进为止的施工过程。 1.1、始发施工工艺流程 盾构始发施工工艺流程图 1.2、始发洞门准备工作 始发洞门的准备工作包括:始发洞口地层加固、洞门凿除和洞门密封系统的安装。 1.2.1 洞口地层加固 盾构始发之前要对洞口地层的稳定性进行评价,如果进洞地层在破除洞门后稳定性不足,必须对进洞地层进行加固。加固范围一般为:纵向一倍洞径左右,横向超出隧道开挖轮廓1~3m甚至更远。常用的加固方法有“地层注浆”、“搅拌桩”、“旋喷桩”、“钻孔素桩”等。地层加固后保证洞门破除后的土体有充分的强度和稳定性,在盾构始发掘进之前不能坍塌。

1.2.2 洞门凿除 盾构始发的站或井的围护结构一般为钢筋混凝土桩或连续墙,盾构刀盘无法直接切割通过,需要人工凿除。洞门的凿除以不耽误盾构进洞、洞门内的土体暴露时间不易过长为原则。凿除时,不能直接暴露土体,应保留围护结构的最后一层钢筋和钢筋保护层,待盾构刀盘到达之后再割除最后一层钢筋网。 1.2.3 洞门密封系统安装 洞门密封是为保证洞门口处的管片背后可靠注浆,防止隧道贯通后的水土流失。洞门密封系统最好采用帘布橡胶板加折页压板型式。该系统由洞门框预埋钢环板、帘布橡胶板、折页钢压板及固定螺栓、垫片组成。其优点是简单可靠,不需人工调整,折页压板可自动压紧在盾壳和管片上,保证注浆时浆液不会外漏。系统机构及工作原理如下图: 洞内密封系统机构及工作原理图 1.3、盾构组装调试及反力架安装 1.3.1反力架、始发台的定位与安装 在盾构主机与后配套连接之前,开始进行反力架的安装。安装时反力架与车站结构连接部位的间隙要垫实,以保证反力架脚板有足够的抗压强度。 由于反力架和始发台为盾构始发时提供初始的推力以及初始的空间姿态,在安装反力架和始发台时,反力架左右偏差控制在±10MM 之内,高程偏差控制在±5MM之内,上下偏差控制在±10MM之内。始发台水平轴线的垂直方向与反力架的夹角<±2‰,盾构姿态与设计

南京纬三路盾构隧道建设关键技术(技术篇)

南京纬三路过江通道位于长江大桥上游5km,连接江北新区和主城区,自北起于浦珠路与定向河交叉点,终于江南扬子 江大道和定淮门大街,采用双层双管、X型8车道盾构方案:l北线(N线) 隧道总长度4.960km,盾构段长度3.557m; l南线(S线) 隧道总长度5.330km,盾构段长度4.135km 。 南京纬三路过江通道工程平面图

l建设内容:本项目工程主要由浦口接线道路、收费广场、隧 道段(包括浦口明挖段、盾构段、定淮门大街明挖段、扬子江大 道明挖段)、江南接线道路、管理中心、收费站(已取消)组成。 l建设工期:工期计划四年,2010年12月8日正式开工建设,受 复合地层盾构掘进难度大导致工期滞后影响,计划于2015年12 月31日建成通车。 2

地质条件:隧道过江段设计为盾构隧道,盾构隧道大部分处于粉细砂、砂卵石地层中,局部位于淤泥质粉质粘土中,部分地段穿越软硬不均地层。盾构隧道穿越基岩的最大单轴抗压强度为128MPa,基岩石英含量高达65%。 l北线隧道岩层段长度约510m,岩层最大厚度约7.79m; l南线隧道岩层段长度约600m,岩层最大厚度约8.33m。

大、高、薄、长 l大:盾构管片外径14.5m、内径13.3m,属超大直径盾构隧道; 4

5 大、高、薄、长 l 高:管片防水设计水压达0.72MPa ;岩层硬度最高达128Mpa ,石英含量高达65% ;0.72MPa

大、高、薄、长 l薄:江底隧道覆土厚度小,北线隧道局部覆土厚度只有 0.6D ; MIN:0.6盾构直径 N线隧道工程地质纵断面图 6

超大断面过江盾构隧道总体施工技术方案

复杂地质条件下超大断面过江盾构隧道总体施工技术方案 张焕城 陈健 南京长江隧道工程指挥部 一、工程概况 1、项目简况 南京长江隧道工程是连接南京市浦口区与河西新城区的市内快速通道,是南京市 “井字加一环”快速路系统跨江成环的重要组成部分,也是 “南京市城市总体规划”确定的“五桥一隧”过江通道中的重要项目。该工程位于南京长江大桥和三桥之间,线路总长5.813km ,道路等级为双向6车道城市快速路,车道宽为3.5m ×2+3.75m ,设计时速80 km/h ,总工期48个月,总投资约30个亿。 工程组成主要包括680m 江北接线道路、300m 收费广场、3822m 左汊盾构隧道(盾构掘进2992m )、401m 梅子洲接线道路和610m 右汊夹江独塔悬索桥(主桥67+70+248)。 南京长江隧道工程总平面图 2、右汊盾构隧道概况 南京长江隧道 南京长江二桥 南京长江大桥 南京长江隧道

盾构隧道工程区段属长江河床及高河漫滩,地形开阔平坦。地表主要为农田、水塘、苗圃等。盾构穿越江面宽度约2500m,高水位多年平均值8.37m,最大水深约28.8m 。 隧道通过部位为白垩系及第四系地层,主要分布为第四系冲积、沉积粉细砂、砾砂、圆砾层和强风化砂岩。下穿地层除穿越一级长江防洪大堤外,地面建(构)筑物、管线较少,仅有少量2~3层民房和一条水厂管道。左汊盾构隧道全长3822m,其中盾构段长度为2992m,使用两台ф14.93m的泥水平衡式盾构机施工,满足车道净空限界的盾构隧道内径为13.30m,隧道管片外径14.50m。管片拼装设计为7块标准块、2块相邻块和1块封顶块,设计强度为C60,防水等级为S12。长江隧道纵断面及结构横断面图如下 二、长江盾构隧道的工程特点、难点及面临的风险和挑战 南京长江隧道工程是一项举世瞩目的宏伟工程,第一次在长江下修建江底隧道,且盾构直径之大、地质条件之差、水压之高世界罕见,这些世界级技术难点极具挑战性。因此无论是在隧道设计、盾构机选型,还是盾构施工和管理等方面都面临着严峻的考验。 其工程的特点与技术难点主要表现如下: 1.盾构直径超大 目前世界上已建成的盾构直径最大是荷兰的格林哈特隧道,盾构机直径14.87m。南京长江隧道盾构直径为14.93m,是目前世界上直径最大的盾构隧道之一。 2. 水压力高 目前世界上已实施或计划实施的超大直径盾构项目,水压在6kg/cm2以上的实例尚属空白。而南京长江隧道盾构设计最大水压近6.5kg/cm2,在同等或更大直径的盾构项目中,水压是最高的。 3.地层透水性强 隧道长距离穿越粉细砂层(穿越长度2542m,占隧道总长度的85%),以及部分

盾构隧道始发技术

盾构隧道始发技术 1前言 我国地铁隧道施工已开始使用盾构法。随着技术进步、认识提高、综合国力的增强,特别是随着该施工技术所显现的优势,盾构法越来越多地被国内地铁界所接受,上海、广州、南京、北京、深圳、天津、西安、成都、沈阳、杭州、青岛等城市都使用这种方法。上海地铁是国内最早采用盾构施工的,且大部分工程都是利用盾构完成的;南京地铁目前有3个盾构标段4台盾构机在进行施工,施工总量约占全线的30%。虽然盾构有许多成功的工程实例,但是使用这种方法也有较大的风险。如盾构在隧道内只能前进,不可后退,一旦盾构本身出现致命的故障,可能就会产生灾难性的后果。而且使用盾构在对洞口进行加固处理的始发时阶段出问题的概率很高,即使是非常有经验的承包商也常会发生类似事故。本文重点介绍盾构始发的技术问题。 2始发技术的重要性及关键技术 由于在始发阶段存在以下几种特殊情况: (1)始发推进前需凿除车站的围护结构(主要是处理钢筋砼结构),凿除围护结构后的土体在一定的时间段内必须保持自稳,不能有水土流失; (2)始发阶段盾构机主体在始发导轨上不能进行调向; (3)始发阶段的姿态及地面沉降控制比正常推进阶段更困难; (4)始发期间一些设备如管片小车、管片吊机,包括出渣都不能正常使用。有时也会存在盾构机因为车站结构的原因而不能整机始发。 综上所述,盾构在初始阶段的施工难度很大。因此,盾构隧道始发技术是盾构法施工技术的关键,也是盾构施工成败的一个标志,必须要全力做好。同时还应确保盾构连续正常地从非土压平衡工况过渡到土压平衡工况,以达到控制地面沉降,保证工程质量等目的。 始发技术包括洞口端头处理(在软土无自稳能力的地层中)、洞门砼凿除(主要针对钢筋砼围护结构)、盾构始发基座的设计加工、定位安装;始发用反力架的设计加工、就位;支撑系统、洞门环的安设、盾构组装、盾构始发方案、其他保证盾构推进用设备、人员、技术准备等,直到始发推进。

盾构隧道设计指导书

篇一:盾构隧道设计指导书 第三篇盾构隧道设计指导书 第一章基本情况介绍 我国在城市地下铁道的建设中,因埋深条件、周边环境条件等因素的限制不允许采用明挖法施工时,矿山法暗挖施工是目前应用较多的施工方法,但从已建地下铁道的工程实践上看,因其难于从根本上解决防渗漏水问题、施工工艺复杂、施工期间的安全性和工程进度难于控制等因素,在地下铁道的建设中已受到越来越多的局限。而盾构施工法以其良好的防渗漏水性、施工安全快速、对周围环境的影响极小等优点,在地下铁道的建设中已成为重要的可选施工方法之一,在许多场合已成为首选方法。尤其是随着近年国内外盾构设备技术水平的提高、盾构设备在工程成本中所占比重的下降,盾构法施工的综合工程造价已接进甚至低于矿山法暗挖施工,特别是在地层条件差、地质情况复杂、地下水位高等情况下盾构法已具明显技术经济优越性。随着我国新一轮城市基础设施大规模建设高潮的到来,地下铁道的建设呈高速增长之势,从长远来看,盾构隧道技术在包括城市地下铁道在内的基础设施建设中应用前景十分广阔。 在世界各国的地下铁道等城市地下基础设施的建设中,与我国一致,即主要采用盾构法、矿山法及明挖法3大系列技术及各种辅助工法。根据日本1991年对东京、大阪等主要城市的统计,在总延长75224米的城市隧道工程中,矿山法的比例占6.1%、盾构法占60.9%、明挖法占33%。在建筑物密集和对周围环境影响限制严格的大城市中,盾构法具有明显的优势。第二章盾构断面及隧道线型设计 2.1 内空及断面形状 自1869年greathead 发明圆形回转式盾构机以来,盾构隧道断面的主要形状为圆形。但随着技术的进步,盾构断面的形状出现了半圆形、矩形以及马蹄形等,但一般圆形断面使用得最广泛,成了盾构断面的标准形状。其主要理由如下:①一般条件下,对外压是坚固; ②施工中,便于盾构机的推进和管片的制作和拼装; ③即使盾构机产生偏转,也对断面利用影响不大。 最近,除单圆断面外,又出现了双圆盾构隧道断面,如日本广岛54号国道系统盾构工程—世界首条双圆盾构工程、名古屋4号线隧道工程、千叶县干线管道建设工程。而我国在上海市轨道交通建设中,也修建了国内第一条杨浦线双圆盾构隧道工程。此外,随着内河及远洋航运事业的发展,在内河、海湾(海峡)通行轮船的吨位和密度越来越大,要求桥下通行的净空越来越高,跨度也越来越大,使修建桥梁的造价及难度大增。同时,受城市规划的限制,不管是修建隧道还是道路桥梁,两岸线路的衔接随着城市的发展更为困难。因此,修建水下大断面盾构隧道跨越江河及海湾(海峡)就成为主要的可选方案,在某些情况下甚至成为唯一选择。如我国目前正在规划建设中的武汉越江大断面盾构公路隧道,杭州万庆春路大断面盾构隧道、南京越江大断面盾构隧道等。这些都是随着盾构技术的进步,要求即能满足使用目的,又能保证结构安全,同时具备功能强、造价低的结果。 2.2 不同用途隧道的内空断面 盾构隧道的内径一般取决于两个因素,即满足使用目的所必要的内空(包括维修管理上的裕度和施工误差)和施工上的安全性,而其外径则是内径加衬砌厚度(一次衬砌或一次加二次衬砌)决定的。 2.2.1 单线地铁尺寸的拟定 地铁列车沿着固定轨道高速运行,需要在特定的空间中运行。根据车辆轮廓尺寸和性能、线路特性、设备安装及施工方法等因素竟技术经济综合比较确定的空间尺寸称为限界。为了确保运营的安全,各种建(构)筑物和设备均不能侵入限界。地铁限界包括车辆界限、设备界限、建筑界限、接触轨和接触网界限。

盾构始发技术交底

盾构始发技术交底 合同段:TJ02-3 施工单位中国铁建股份有限公司TJ02-3项目部 工程名称XXX市轨道交通X号线一期工程土建 施工XXXX站~厦XXXXX区间 分项工程盾构始发掘进 交底部位XXX站~XXXX区间盾构始发交底日期2014年1月12 日 交底内容: 1工程概况 1.1设计概况 XXX市轨道交通X号线一期工程XXX站~XXXX站区间起于天水路站,出XXX站沿珩田路向东行,下穿圣果路、珩山街路后到达XXXX站盾构工作井,并与已建成的XXXX 站明挖区间相接。区间沿线主要为5~7层运营中心商住楼。 区间含4段平面曲线,曲线半径分别为2500m、350m两种,线间距为12~15m; 纵断面为“V”字坡,最大坡度为20.26‰;隧道的埋深范围为10.8~21m。 区间起讫里程:YDK30+357.503 ~YDK31+429.762 (ZDK30+357.503~ZDK31+437.298),右线全长1072.259(左1062.962)m,其中左线短链16.833m。区间在YDK30+913.025(ZDK30+913.055)处设置联络通道兼作废水泵房。如下表1.1.1所示: 表1.1.1 XXX站-XXXX站区间设计要素表 线别段落 区间隧道 起讫里程(m) 长短链(m) 隧道长度(m) 联络通道中心 里程 左线盾构段YDK30+357.503~ ZDK31+437.298 短链16.833 1062.962 ZDK30+913.055 右线盾构段YDK30+357.503~ YDK31+429.762 / 1072.259 YDK30+913.025 1.2地质情况 依据工筹设计,天~厦区间始发端为XXX站大里程端头井,端头地质情况由上而下依次为粘土质素填土,粉质粘土,可塑状砂质黏性土,硬塑状砂质黏性土,全风化花岗岩,散状体强风化花岗岩。

盾构始发施工前条件及验收要求

盾构始发施工前条件及验收要求 根据目前施工进展情况及工期要求,确保盾构施工安全有序进行,特制定本项目盾构始发施工前条件及验收要求如下: 一、设计文件满足现场施工要求。 1.区间地质勘查报告交底及图纸会审已完成; 2.区间盾构隧道-排版图设计交底及图纸会审已完成; 3.区间盾构隧道-防水图设计交底及图纸会审已完成; 4.风险设计交底已完成。 二、专项施工方案审批手续齐全有效。 1.盾构机吊装方案通过专家论证并完成审批; 2.超过30t龙门吊安装方案通过专家论证并完成审批。 3.盾构始发、接收方案通过专家论证并完成审批; 4.监测方案通过专家论证并完成审批; 5.盾构区间施工组织设计、风险源评估报告、周边环境调查报告、临时用电施工组织设计审批完成。 6.洞门凿除、盾构掘进(包括通风设施、有害气体检测设施等)、二次注浆、运输方案(水平、垂直)、端头加固专项施工方案审批完成。 三、盾构位置测量验收完毕。 1.洞门、始发托架、反力架完成复测及监理审核; 2.盾构机姿态完成复测及监理审核。 3.导线点完成联系测量。

4.测量方案已完成审批。 四、盾构机安装调试,始发前盾构机安全评估已完成,满足相关要求。 盾构机适应性安全评估、下井前安全评估、组装调试后始发前安全评估及验收已完成。 五、始发托架、反力架及导轨按方案施工完毕、验收合格,导轨稳固。 六、土体加固范围及参数指标符合设计要求,已按要求完成探水工作,无渗漏水。 1.端头加固完成,加固效果检测报告合格; 2.洞门探水已完成。 七、洞门密封止水装置安装完成,外观质量及完整性符合设计要求。 洞门止水帘布已安装完成,符合洞门止水装置验收要求。 八、盾构管片已进场并验收合格。 1.管片已进场并验收合格且进行相应的试验(三环试拼装、管片抗渗、吊装孔抗拉拔试验)。 2.进场数量及存放场地满足始发需求,并通过监理验收。 九、浆液制作设施已完成。 1.搅拌站已完成安装及进场报验; 2.搅拌站计量系统标定已完成; 3.浆液已进行试配。

相关文档
最新文档