量子通信技术

量子通信技术
量子通信技术

量子通信技术

通信是发送者通过某种媒体以某种格式来传递信息到收信者以达致某个目的。在古代,人们通过驿站、飞鸽传书、烽火报警、符号、身体语言、眼神、触碰等方式进行信息传递。到了今天,随着科学水平的飞速发展,相继出现了无线电、固定电话、移动电话、互联网甚至视频电话等各种通信方式。通信技术拉近了人与人之间的距离,提高了经济的效率,深刻的改变了人类的生活方式和社会面。

自1 9世纪进入通信时代以来,人们就梦想着像光速一样(甚至比光速更快)的通信方式.在这种通信方式下,信息的传递不再通过信息载体(如电磁波)的直接传输,也不再受通信双方之间空间距离的限制,而且不存在任何传输延时,它是一种真正的实时通信.科学家们试图利用量子非效应或量子效应来实现这种通信方式,这种通信方式被称为量子通信.与成熟的通信技术相比,量子通信具有巨大的优越性,已成为国内外研究的热点.近年来在理论和实践上均已取得了重要的突破,引起各国政府、科技界和信息产业界的高度重视.从人类信息交流和通信的演化进程,我们可以清楚地体会到信息技术的不断发展。现代信息技术具有强大的社会功能,已经成为21世纪推动社会生产力发展和经济增长的重要因素。

信息技术在改变社会的产业结构和生产的同时,也对人类的思想观念、思维方式和生活方式产生着重大而深远的影响。展望未来5-10年信息产业的发展,不是创新,而是各类通信技术大融合、技术大应用,以应用来带动创新,以应用来提高服务——当前出现的热点话题“云计算”、“物联网”等都是应用的体现。哪个国家信息技术应用水平高,技术整合程度成熟,哪个国家就占领了未来信息世界的高点。这也势必将导致力量对比和世界格局的新变化。

最近,英国著名物理学家史蒂芬·霍金在一部有关宇宙的纪录片中指出,“时光机器”在科学上并非无可能。

霍金指出,要进入未来大概有两种方法,第一就是通过所谓的“虫洞”。霍金强调,虫洞就在我们四周,只是小到肉眼很难看见,它们存在于空间与时间的裂缝中。如同在三度空间中,时间也有细微的裂缝,而比分子、原子还细小的空间则被命名为“量子泡沫”,虫洞就存在于其中。不过,霍金表示,这些隧道小到人

类无法穿越,但有朝一日也许能够抓住一个虫洞,再将它无限放大。霍金指出,理论上时光隧道或虫洞不但能带着人类前往其他行星,如果虫洞两端位于同一位置,且以时间而非距离间隔,那么太空船即可飞入,飞出后仍然接近地球,只是进入所谓“遥远的过去”。

霍金还说,如果科学家能够建造速度接近光速的太空船,那么太空船必然会因为不能违反光速是最大速限的法则,而导致舱内的时间变慢,那么飞行一个星期就等于是地面上的100年,也就相当于飞进未来。

爱因斯坦也曾预言:两个形态(类似振动频率)相同的量子,无论它们在宇宙中相隔多远,只要其中一个发生变化,另外一个也会有完全相同的变化,这种现象现代科学无法解释……

按照常理,信息的传播需要载体,人与人的对话需要通过声音来传播,手机与基站之间要通过电磁波来传输信号,互联网的信息传递也需要在光缆中传输的光信号。那么,不需要载体的信息传递是否存在?在量子世界里,在纠缠光子的帮助下,量子态隐形传输就可以实现这一点。

量子态是指原子、中子、质子等粒子的状态,它可表征粒子的能量、旋转、运动、磁场以及其他的物理特性。曾被爱因斯坦称作幽灵般的超距离作用的“量子纠缠”,指的是在量子力学中,有共同来源的两个微观粒子之间存在着某种纠缠关系,不管它们被分开多远,只要一个粒子发生变化,另一个粒子的状态也会立刻发生相应的变化,这就是量子纠缠。

在量子纠缠的帮助下,待传输的量子态如同科幻小说中“超时空传送”,在一个地方神秘地消失,不需要任何载体的携带,又在另一个地方神秘地出现。“眼见为实”的观念实际上往往是不正确的,人的认识在不同的境界里需要不同的标准才能判别真伪。人认识世界的感官有着极大的局限,比如在量子世界里,通常的科学认识也变得不实用了,那究竟是一个什么样的世界呢?

人的眼睛好像一种仪器,它只能分辨出两个间隔时间为0.1秒的景象,如果小于这个间隔就无法分辨了,这叫做人眼的视觉暂留特性。比如电视和电影虽是由一幅幅间隔的画面组成的,可是在放映时,我们看到的却是一个连续的影像,这就是因为两副画面之间出现的时间间隔小于0.1秒的缘故。我们在夜间还可以做一个这样的实验:手拿一柱一头点燃的香,用较快的速度来回运动,看到的是一

条连续的黄光线。这正是上面说的道理。因此就不难设想,当光源以极快的速度发射出一份份的接踵而来的光子时,我们的眼睛是难以分辨出每个独立的光子,而把这群光子看成是一个连续性的光流。

但是,这种量子之间的“诡异”特性却被现代科学家巧妙利用于远程通信技术,他们把两个同源的量子分开,对其中一个施以“信息”,那么,远在许多公里之外的另一个量子也会有同样的“反应”,通过读取它的反应,可以实现远超目前水平的通信技术。

量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。所谓隐形传送指的是脱离实物的一种“完全”的信息传送。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。但是,量子力学的不确定性原理不允许精确地提取原物的全部信息,这个复制品不可能是完美的。因此长期以来,隐形传送不过是一种幻想而已。

量子通信指利用量子纠缠效应进行信息传递的一种新型的通信方式。量子通信是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,量子通信具有高效率和绝对安全等特点,并因此成为国际上量子物理和信息科学的研究热点。

量子理论作为现代物理学的核心理论,百年来被无数次证明和应用,也被每一个物理学家熟知。而利用量子效应来保护通信密码的创意,是上世纪80年代美国人提出的。国际上许多研究小组都在对这一课题进行研究,并提出了一系列量子纠缠态纯化的理论方案,但是没有一个是能用现有技术实现的。

安徽问天量子有限公司研发生产的红外单光子探测器在该区实现量产,使得我国成为全球第三个可批量生产红外单光子探测器的国家,为我国量子密码规模化应用打下了基础。

信息通信要靠光子。就像上网离不开网卡,红外单光子探测器就像是量子通

信技术这台主机的网卡。特别是量子通信对于光子捕捉要求极高,要求每个光子捕捉不能出错。而光子能量极其微弱,要捕捉单个光子,其探测器灵敏度必须达到现有最好照相机的一万亿倍,捕捉单个光子成为困扰世界的难题。

据问天量子有限公司总经理赵义博博士介绍,该公司采用了雪崩法放大了单光子能量,用超高灵敏的电子设备探测其信号,最终实现单个光子探测。目前全球只有美国、瑞士能将该技术进行量产。

假如让量子态的粒子携带密码信息,就不会被半路监测和盗取了。换句话说:如果信息仅“附着”在一个光子或电子上,当间谍“偷听”时,信息就被偷听动作改变了。靠着极端“脆弱”,这条信息通道可以保证内容的绝密。但由于光纤信道中的损耗和环境的干扰,量子态隐形传输的距离难以大幅度提高。

2003年,韩国、中国、加拿大等国学者提出了诱骗态量子密码理论方案,彻底解决了真实系统和现有技术条件下量子通信的安全速率随距离增加而严重下降的问题。

2004年开始,潘建伟、彭承志等研究人员开始探索在自由空间信道中实现更远距离的量子通信。在自由空间信道中,光子传输几乎不存在退相干效应,而一旦穿透大气层进入到外层空间,光子的损耗更是接近于零,这使得自由空间信道相比光纤信道在大尺度上具有特别的优势。该小组于2005年在合肥创造了13公里的双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子对的可行性。2006年夏,我国中国科技大学教授潘建伟小组、美国洛斯阿拉莫斯国家实验室、欧洲慕尼黑大学—维也纳大学联合研究小组各自独立实现了诱骗态方案,同时实现了超过100公里的诱骗态量子密钥分发实验,由此打开了量子通信走向应用的大门。2007年开始,中国科大-清华大学联合研究小组开始在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子隐形传态,证实了量子隐形传态过程穿越大气层的可行性,为未来基于卫星量子中继的全球化量子通信网奠定了可靠基础。量子纠缠做为量子信息科学的核心资源,是目前国际上的研究热点,基于量子纠缠的量子态隐形传输是量子计算和量子中继中的基本过程。

今年40岁的潘建伟是浙江东阳人,中国科技大学物理学院近代物理系教授。

在奥地利因斯布鲁克大学攻读博士学位期间,潘建伟与他人合作在国际上首次成功地实现了未知量子态的远程输送,该项研究成果发表在权威学术期刊《自然》杂志上,并入选该杂志20世纪经典之作。

据悉,该小组早在2005年就在合肥创造了13公里的自由空间双向量子纠缠“拆分”、发送的世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大-清华大学联合研究小组在北京架设了长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性,为未来基于卫星中继的全球化量子通信网奠定了可靠基础。据悉,该成果已经发表在6月1日出版的英国《自然》杂志子刊《自然光子学》上,并引起了国际学术界的广泛关注。16公里这个距离能够等效大气的有效厚度,这次成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性。对于未来实用化全球量子通信网络的建立具有十分重要的意义,为未来计划发射卫星上天、利用卫星平台中转实现全球化量子通信打下了基础。量子通信是量子论与信息论相结合的产物,也是通信与信息领域研究的热点前沿。按量子通信的载体来分,可分为基于分立变量的量子通信和基于连续变量的量子通信两大类。在分立变量量子通信中,基于光纤的单光子量子密钥分配已率先走向实用化。连续变量量子通信正成为目前的研究热点,且取得了许多重要成果。

山东省将于年内投资5600万元启动建设山东量子技术研发平台,投资1.22亿元建设山东量子通信试验网工程。第一期工程为期两年,届时将在济南建成世界首个量子通信大型城域网,解决完成历史上首次量子通信大规模应用所面临的问题。推动量子通信技术的应用化研究和产业化进程,不仅对于提升山东地区科学技术研发和高新产业水平,带动地区科学与经济发展具有重要意义,也必将对我国现代通信技术的变革产生积极影响,为引领我国量子通信技术实用化和产业化进程做出重大贡献。

量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信

为什么量子通信能不被窃听呢?先回头说说量子理论,20世纪初的实验发

现,能量或物质细小到一定限度,就无法被准确测量了(测不准原理)。因为测量意味着干涉,当被测量物微小到了极限,就不可能不被测量完全改变。理论上完美到极致的显微镜,对于一个量子级别的粒子也束手无策,因为一“碰”就毁坏了粒子的待测状态。量子理论作为现代物理学的核心理论,百年来被无数次证明和应用,也被每一个物理学家熟知。而利用量子效应来保护通信密码的创意,是上世纪80年代美国人提出的。这个想法的实质在于:假如让量子态的粒子携带密码信息,就不会被半路监测和盗取了。换句话说:如果信息仅“附着”在一个光子或电子上,当间谍“偷听”时,信息就被偷听动作改变了。靠着极端“脆弱”,这条信息通道可以保证内容的绝密。

从理论上来说,传统的数学计算加密方法都是可以破译的,再复杂的数学密钥也可以找到规律。第一台现代计算机的诞生,就是为了破解复杂的数学密码。随着计算机的飞速发展,破译数学密码的难度也逐渐降低。

上世纪下半叶以来,科学家们在“海森堡测不准原理”和“单量子不可复制定理”之上,逐渐建立了量子密码术的概念。“海森堡测不准原理”是量子力学的基本原理,指在同一时刻以相同精度测定量子的位置与动量是不可能的,只能精确测定两者之一。“单量子不可复制定理”是“海森堡测不准原理”的推论,它指在不知道量子状态的情况下复制单个量子是不可能的,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态。

量子密码术突破了传统加密方法的束缚,以量子状态作为密钥具有不可复制性,可以说是“绝对安全”的。任何截获或测试量子密钥的操作都会改变量子状态。这样截获者得到的只是无意义的信息,而信息的合法接收者也可以从量子态的改变知道密钥曾被截取过。科学家希望将来可以实现远距离、高速率的量子密码传输。这样就可以利用卫星来传递信息,并在全球范围内建立起保密的信息交换体系。

量子密钥的创意无懈可击,但目前还不能投入大规模应用,原因是很难让一对纠缠粒子在长距离上保持稳定。在几米内有效的密钥,在几公里外就失真,然后消逝在虚空中了。因此超长距离的量子通信,似乎还停留在理论阶段。但在韩教授看来,这并不意味着研究人员的进展缓慢。事实上,近年来,中国科学家一直在刷新量子传输的距离纪录。

根据上个月的最新消息,中科大的研究团队,已经让纠缠态的高能光子对穿过10英里长的自由空间通道。这一距离是目前国际上自由空间纠缠光子分发的最远距离,也是目前国际上没有窃听漏洞的量子密钥分发的最大距离。

研究人员发现,在这个距离上接收端的光子,仍能响应留在后方的光子状态变化。远距传输的平均保真度为89%。这项突破意味着量子通信应用扩大到全球规模,也许不久就会到来。

同时,中科大的研究团队还首次证明了:纠缠光子在穿透等效于整个大气层厚度的地面大气后,其纠缠的特性仍然能够保持,并可应用于高效、安全的量子通信。科学家们正在计划开展更远距离的量子通信实验,下一步的目标是通过自由空间实现几百公里的量子通信,超越光纤传输的极限。可以想象,未来应用了量子通信的战场和商界,许多间谍工具和知识将逐渐消亡。

量子计算机经常会被拿来和量子通信并列,它们是量子力学在两个不同领域的应用。量子计算机的本质,是用量子器件替代传统计算机器件,借助量子器件更多样的物理状态,增加存储容量,简化电脑计算的方式。具体来说,在经典计算机中,可能一个二极管的电压高低,代表这个比特的值是1或者0,而在量子计算机中,一个量子可以既是1又是0,有两个值。N个量子并排,就有2的N次方个值。

当量子电脑计算时,不同量子同时进行变换,然后按照一定的概率叠加在一起,得出计算结果,这种计算称为量子并行计算。量子可以叠加,而且互相干涉,这是量子计算的物理本质。

但相干性也给量子计算机的实现带来了困难——量子会受到干扰,丢失信息。目前无论是用光子还是电子做量子,设计者都要面对怎样长久保存量子信息的问题。一旦研制出来,量子电脑的计算能力将极为强大,因为它让许多数值并行计算。但目前实现这种功能的电脑,还停留在实验室阶段。

量子通信是通信技术上的又一次划时代革命,具有广泛的应用前景。首先,量子通信可以满足空间远距离、大容量、易组网等方面的要求,量子通信可以用来构筑高速、大容量的通信网络,实现高清晰度图像等大容量超高速数据的传输,为建立量子因特网奠定了坚实的基础;其次量子通信可以实现完全保密通信,这使得量子通信在军事、国防、国民经济建设等领域都有重要作用;第三,目前许

多国家致力于空间拦截及空间信息传输等技术的研究,并取得了一定的成果,量通信的应用必将加速空间拦截及空间信息传输等技术的快速发展。第四,由于量子通信时延为零,可以实现超光速通信,量子通信的发展必将加速人们探索宇宙空间的进程。相信不久的将来,量子通信会离我们越来越近,并走进我们的生活。

相关文档
最新文档