液化双氰胺的制备与评价以及预浸料应用研究

液化双氰胺的制备与评价以及预浸料应用研究
液化双氰胺的制备与评价以及预浸料应用研究

液化双氰胺的制备与评价以及预浸料应用研究环氧树脂预浸料,通常是树脂体系呈B阶段复合材料的中间材料。双氰胺是环氧树脂预浸料最为常用的潜伏性固化剂,但由于其化学结构极性高,在环氧树脂中的分散性和溶解性差,并可导致固化后所得到的环氧树脂组合物中分散状态恶化,从而影响预浸料及其复合材料的质量。

为提高预浸料树脂体系中双氰胺与环氧树脂的相容性,通常需要对双氰胺进行液化改性。本文利用固化剂聚醚胺对双氰胺有较好溶解性的特点,将聚醚胺和双酚A环氧树脂的加成产物制备了液化改性双氰胺固化体系(L-DICY),并与纯双氰胺(DICY)和聚醚胺与双氰胺共混的固化体系(PEA/DICY)进行了比较。

相对于DICY和PEA/DICY固化体系,L-DICY固化体系的总胺值和伯胺值均降低,相对于DICY固化体系,PEA/DICY和L-DICY固化体系的结晶性下降,熔点降低,L-DICY静置30天没有明显沉降,且5天内的质量没有明显变化,储存稳定性较好,L-DICY固化体系在环氧树脂分散性得到改善。应用三种固化体系制备了预浸料用树脂体系,研究了三种树脂体系的固化动力学和化学流变学。

Kissinger-Akahira-Sunose(KAS)理论分析表明PEA/DICY固化体系活化能最低,L-DICY与DICY固化体系活化能相近,具有较低固化反应活性,有利于保持预浸料的储存期。利用Malek理论和SB(m, n)理论模拟了三种树脂体系在不同固化速率下的速率方程,PEA/DICY和L-DICY体系都较好的预测了实验数据。

化学动态流变学分析表明L-DICY与DICY体系有较长的低粘度平台,预浸料加工窗口较宽,双Arrhenius模型模拟了三种树脂体系的等温粘度曲线,在固化前期的低粘度区域能较好地预测树脂体系的粘度。研究了上述三种树脂体系的力学性能、耐热性、透光率和双氰胺在固化树脂中的分散性。

相比于DICY和PEA/DICY制备的树脂体系,L-DICY树脂体系的力学性能和玻璃化转变温度都没有明显降低,L-DICY树脂体系固化物的透光率最好,说明

L-DICY在固化物中基本没有双氰胺颗粒残留,DICY固化物的微观图像中有未固化的双氰胺颗粒,而PEA/DICY和L-DICY体系中基本没有,说明提高分散性促进了固化反应的进行。应用上述三种树脂体系,采用热熔两步法工艺制备了预浸料,讨论了预浸料复合材料的力学性能和耐湿热性能,评价了双氰胺在复合材料表面的分散情况。

相比于DICY和PEA/DICY制备的复合材料,L-DICY体系复合材料的力学性能没有明显下降。经过湿热处理后,L-DICY体系的力学性能下降幅度很小,DICY体系则降低明显,说明L-DICY体系有较好的耐湿热性。

DICY体系复合材料板材微观图像中有未固化的双氰胺颗粒存在,而在

PEA/DICY和L-DICY体系几乎没有颗粒残存,说明复合材料的耐湿热性与双氰胺在其中的残留有关。

复合材料预浸料自动铺带成型适宜性研究

第31卷 第21期 2009年11月武 汉 理 工 大 学 学 报JOURNALOFWUHANUNIVERSITYOFTECHNOLOGYVol.31 No.21 Nov.2009DOI:10.3963/j.issn.1671-4431.2009.21.012 复合材料预浸料自动铺带成型适宜性研究 蒋诗才,邢丽英,陈祥宝 (北京航空材料研究院,北京100095) 摘 要: 为考察不同耐温等级复合材料预浸料自动铺带工艺适宜性,研究了不同环氧及双马树脂体系预浸料的室温粘性,并给出预浸料分级的评分方法。结果表明:低温环氧LT03A/T700、中温环氧3234/T700、高温环氧5228A/T700为1级,适合室温自动铺带成型工艺;低温环氧LT03/T700、高温环氧5228/T700、双马5429/T700为2级不适合室温自动铺带成型工艺。对确定的预浸料体系自动铺带工艺适宜性方法进行了自动铺放工艺验证,证明预浸料体系自动铺带工艺适宜性的判定方法是有效的。 关键词: 预浸料; 粘性; 自动铺带; 成型适应性 中图分类号: V254.11文献标识码: A文章编号:1671-4431(2009)21-0044-04 ResearchonMoldingSuitabilityofPrepregCompositesforAutomatedTapePerformance JIANGShi-cai,XINGLi-ying,CHENXiang-bao (BeijingInstituteofAeronauticalMaterials,Beijing100095,China) Abstract: Forinvestigatingthemoldingsuitabilityofthedifferenttemperaturelevelsprepregcompositewithautomatedtapeperformance,theprepregviscositiesatroomtemperaturewithdifferentepoxyandbismaleimide(BMI)resinswerestudied,andascoreforclassificationofprepregmethodwasapprovedinthispaper.Theresultshowsthat,LT03A/T700withlow-tempera-ture,3234/T700withmiddle-temperatureepoxy,5228A/T700withhightemperatureepoxyisclassifiedas1-levelandissuit-abletoautomatedtapeperformanceatroomtemperature,whileLT03/T700withlow-temperatureepoxy,5228/T700withhigh-temperatureepoxy,BMI5429/T700areclassifiedas2-levelandisunsuitabletoautomatedtapeprocessatroomtempera-ture.Theprepregmoldingsuitabilityexperimentofautomatedtapeperformanceconfirmstheeffectivenessofthescoreforclassification.Keywords: prepreg; viscosity; automatedtapeperformance; moldingsuitability 收稿日期:2009-06-15.作者简介:蒋诗才(1973-),男,工程师.E-mail:li0324@sina.com自动铺带(AutomatedTape)成型以有隔离背衬纸的单向预浸带为原料,在铺带头中完成预定边界形状切割,然后在压辊作用下按设计轨迹直接铺叠到模具表面。有研究表明[1],手工铺叠复合材料效率为3磅/h,而自动铺带技术能达到15~30磅/h;手工铺叠复合材料废料量为15%~20%,而自动铺带技术只有5%左右。还有研究表明,利用自动铺带技术制备的复材料构件具有尺寸精度较高,内应力低等特点,是提高复合材料性能的一个重要途径。 从上世纪80年代起,已应用自动铺带机生产了军机如B1和B2轰炸机的机翼蒙皮;近年来用于NavyA6轰炸机机翼、F22战斗机机翼和波音777飞机机翼、水平和垂直安定面蒙皮。Vought飞机公司应用自动铺带机生产包括军用C-17运输机的水平安定面蒙皮、全球鹰PQ-4B大展弦比机翼,以及波音公司应用

材料制备方法

陶瓷基复合材料的制备 摘要:现代陶瓷材料具有耐高温、耐磨损、耐腐蚀及重量轻等许多优良的性能。但是,陶瓷材料同时也具有致命的缺点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。 因此,陶瓷材料的韧性化问题便成了近年来陶瓷工作者们研究的一个重点问题。现在这方面的研究已取得了初步进展,探索出了若干种韧化陶瓷的途径。其中,往陶瓷材料中加入起增韧作用的第二相而制成陶瓷基复合材料即是一种重要方法。 一.基体与增强体 1.1基体 陶瓷基复合材料的基体为陶瓷,这是一种包括范围很广的材料,属于无机化合物而不是单质,所以它的结构远比金属合金复杂得多。现代陶瓷材料的研究,最早是从对硅酸盐材料的研究开始的,随后又逐步扩大到了其他的无机非金属材料。 目前被人们研究最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。 1.2增强体 陶瓷基复合材料中的增强体,通常也称为增韧体。从几何尺寸上增强体可分为纤维(长、短纤维)、晶须和颗粒三类。 纤维:在陶瓷基复合材料中使用得较为普遍的是碳纤维、玻璃纤维、硼纤维等; 晶须为具有一定长径比(直径0.3~1μm,长0~100 μm) 的小单晶体。晶须的特点是没有微裂纹、位错、孔洞和表面损伤等一类缺陷,因此其强度接近理论强度。 颗粒:从几何尺寸上看,颗粒在各个方向上的长度是大致相同的,一般为几个微米。颗粒的增韧效果虽不如纤维和晶须。但是,如果颗粒种类、粒径、含量及基体材料选择适当仍会有一定的韧化效果,同时还会带来高温强度,高温蠕变

性能的改善。所以,颗粒增韧复合材料同样受到重视并对其进行了一定的研究. 二.纤维增强陶瓷基复合材料 在陶瓷材料中,加入第二相纤维制成复合材料是改善陶瓷材料韧性的重要手段,按纤维排布方式的不同,又可将其分为单向排布长纤维复合材料和多向排布纤维复合材料。 2.1单向排布长纤维复合材料 单向排布纤维增韧陶瓷基复合材料的显著特点是它具有各向异性,即沿纤维长度方向上的纵向性能要大大优于其横向性能。 在实际构件中,主要是使用其纵向性能。在单向排布纤维增韧陶瓷基复合材料中,当裂纹扩展遇到纤维时会受阻,这时,如果要使裂纹进一步扩展就必须提高外加应力。 2.2多向排布纤维复合材料 单向排布纤维增韧陶瓷只是在纤维排列方向上的纵向性能较为优越,而其横向性能显著低于纵向性能,所以只适用于单轴应力的场合。而许多陶瓷构件则要求在二维及三维方向上均具有优良的性能,这就要进一步研究多向排布纤维增韧陶瓷基复合材料。 二维多向排布纤维增韧复合材料的纤维的排布方式有两种:一种是将纤维编织成纤维布,浸渍浆料后,根据需要的厚度将单层或若干层进行热压烧结成型。这种材料在纤维排布平面的二维方向上性能优越,而在垂直于纤维排布面方向上的性能较差。一般应用在对二维方向上有较高性能要求的构件上。 另一种是纤维分层单向排布,层间纤维成一定角度。这种三维多向编织结构还可以通过调节纤维束的根数和股数,相邻束间的间距,织物的体积密度以及纤维的总体积分数等参数进行设计以满足性能要求。 2.3制备方法 目前采用的纤维增强陶瓷基复合材料的成型主法主要有以下几种: 1.泥浆烧铸法 这种方法是在陶瓷泥浆中分散纤维。然后浇铸在石膏模型中。这种方法比较古老,不受制品形状的限制。但对提高产品性能的效果显著,成本低,工艺

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.360docs.net/doc/3b5286803.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

预浸料性能及指导应用案例

一、预浸料定义 1、预浸料定义 预浸料俗称模塑料,是用树脂在严格控制条件下浸渍连续纤维及其织物而制成的组合体,是制造先进复合材料的中间体。具有一定力学性能的结构单元,可进行结构设计,其某些性质直接移植到复合材料制品中,预浸料的质量直接影响到复合材料的质量。 2、预浸料产品标准 QJ 3184 T300碳纤维∕AG-80环氧树脂预浸料规 HB 6701 LWR—1 T300中温固化环氧碳纤维预浸料 GJB 3945 芳纶∕环氧树脂预浸料规 GB/T 25043 连续树脂基预浸料用多轴向经编增强材料 HB 7069 环氧树脂玻璃布预浸料规 JB/T 10942 干式变压器用F级预浸料 HB 7737 飞机辅机零件专用环氧聚酰胺涂料规 JC/T 774 预浸料凝胶时间试验方法 JC/T 775 预浸料树脂流动度试验方法 JC/T 776预浸料挥发物含量试验方法 JC/T 780 预浸料树脂含量试验方法

ASTM D 3532 环氧碳纤维预浸料凝胶时间试验方法 HB 7736 复合材料预浸料物理性能试验方法 二、预浸料种类 预浸料是复合材料的中间体,根据选用树脂种类可以分为:热固性预浸料和热塑性预浸料;根据选用树脂的类型分为:环氧预浸料、聚酰胺预浸料、酚醛预浸料、氰酸酯预浸料、聚砜预浸料、聚醚预浸料等;根据增强材料类型分为:碳纤维预浸料、玻璃纤维预浸料、芳纶纤维预浸料、玄武岩纤维预浸料、硼纤维预浸料等;根据增强材料结构型式可分为:单向纤维预浸料、短切纤维预浸料、织物预浸料等。我公司主要生产以碳纤、芳纶、玻纤为增强材料的环氧、氰酸酯、聚酰亚胺类的热固性树脂预浸料。

复合材料的预浸料模压成型工艺

复合材料的预浸料模压成型工艺 模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有油酸、石蜡、硬脂酸、硬脂酸锌、有机硅油、硅脂和硅橡胶等。所涂刷的脱模剂在满足脱模要求的前提下,用量尽量少些,涂刷要均匀。一般情况下,酚醛型模压料多用有机油、油酸、硬脂酸等脱模剂,环氧或环氧酚醛型模压料多用硅脂和有机硅油脱模剂,聚酯型模压料多用硬脂酸锌、硅脂等脱模剂。 (3)预压 将松散的粉状或纤维状的模压料预先用冷压法压成重量一定、形状规整的密实体。采用预压作业可提高生产效率、改善劳动条件,有利于产品质量的提高。 (4)预热 在压制前将模压料加热,去除水分和其它挥发份,可以提高固化速率,缩短压制周期;增进制品固化的均匀性,提高制品的物理机械性能,提高模压料的流动性。

(5)表压值的计算 在模压工艺中,首先要根据制品所要求的成型压力,计算出压机的表压值。成型压力是指制品水平投影面上单位面积所承受的压力。它和表压值之间存在的函数关系: 复合材料的预浸料模压成型工艺 在模压成型工艺中,成型压力的大小决定于模压料的品种和制品结构的复杂程度,成型压力是选择压机吨位的依据。 2、压制工艺 (1)装料和装模 往模具中加入制品所需用的模压料过程称为装料,装料量按估算结果,经试压后确定。装模应遵循下列原则:物料流动路程最短:物料铺设应均匀;对于狭小流道和死角,应预先进行料的铺设。 (2)模压温度制度 模压温度制度主要包括装模温度、升温速率、成型温度和保温时间的选择。 ①装模温度 装模温度是指将物料放入模腔时模具的温度,它主要取决于物料的品种和模压料的质量指标。一般地,模压料挥发份含量高,不溶性树脂含量低时,装模温度较低。反之,要适当提高装模温度。制品结构复杂及大型制品装模温度一般宜在室温-90℃范围内。 ②升温速率 指由装模温度到最高压制温度地升温速率。对快速模压工艺,装模温度即为压制温度,不存在升温速率问题。而慢速模压工艺,应依据模压料树脂的类型、制品的厚度选择适当的升温速率。 ③成型温度

复合材料界面制备技术的研究发展现状

复合材料界面制备技术的研究发展现状 孟明艾复合1001 3100706025 摘要:材料界面直接影响着材料的物理、化学、力学等性能与应用范围, 复合材料整体性能的优劣与复合材料界面结构和性能关系密切。分析材料界面的物理与化学过程、物质传输、能量转化及研究材料界面的结构与性能间的关系,对研究新材料和传统材料及其应用有着愈来愈重要的意义。 复合材料界面介绍 复合材料是由两种或两种以上不同物理、化学性质的以微观或宏观的形式复合而组成的多相固体材料。复合材料中增强体与基体接触构成的界面,是一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相——界面相(界面层)。界面是复合材料极为重要的微结构,它是增强体和基体相连接的“纽带”,也是应力及其他信息传递的桥梁,其结构与性能直接影响着复合材料的性能。因此,深入研究复合材料界面的的制备、技术形成过程、界面层性质、结合强度、应力传递行为对宏观力学性能的影响规律,从而有效进行控制界面,是获得高性能复合材料的关键。 复合材料界面及其组成 界面相并没有十分清晰的界限。界面相内部即使是同一组分其内部性质也有很大的不同,无论从物理状态还是化学情况,界面相各个组分之间都存在着相互扩散和相互影响,并不是一个绝对规整的结构。对于界面相,界面层的形成和结构大体可分为:1.表面的粗糙及活性而形成的吸附层;2.表面的化学物质与基质发生化学反应而成的物质;3.表面诱导的结晶层;4.聚合物和纤维冷却时,因收缩差所引起的残留应力层。 复合材料界面研究现状 界面与材料的各种性能的关系是复合材料研究的前沿领域,当前界面研究的重点是界面润湿、界面结构、界面结合机制和界面稳定性,它对颗粒的分布往往起着决定性的作用。因此,有关润湿机理、改善途径及影响因素仍是今后界面研究的重要课题。 但是,由于界面尺寸很小且不均匀,化学成分及结构复杂,对于界面的结合强度、界面的厚度、界面的应力状态尚无直接和准确的定量的方法,对于界面结合状态、形态、结构以及它对复合材料的影响尚没有适当的试验方法,需要借助电子质谱、红外扫描等试验逐步摸索和统一认识。因此,迄今为止,对复合材料界面的认识还不是很充分,主要表现在:(1)界面表征手段测试手段存在局限;(2)界面改善方法:无法解释界面在材料失效过程的确切作用;(3)材料力学研究:理论模型与材料加工的实际过程有很大差异。 复合材料界面制备技术的研究 制备技术不仅很大程度上影响着复合材料的性能,同时也是它进一步应用发展的重要因素。材料界面制备技术主要是接合。所谓接合,是指为得到具体指定特性的坯料而使用的一种材料复合手段。接合形式有物理吸附、化学反应、

预浸料成型标准工艺规范标准

预浸料成型工艺在复合材料产业中的应用 预浸料简介 预浸料是树脂基体在严格控制条件下浸渍连续纤维或者纤维织物,制备成树脂基体与增强体的一种组合物,是制造复合材料的中间材料。 预浸料按物理状态,化学性能有很多种分类方法:按物理状态分类,预浸料分成单向预浸料、单向织物预浸料、织物预浸料;按树脂基体不同,预浸料分成热固性树脂预浸料和热塑性树脂预浸料;按增强材料不同,分成碳纤维(织物)预浸料、玻璃纤维(织物)预浸料、芳纶(织物)预浸料;根据纤维长度不同,分成短纤维预浸料、预浸料和连续纤维预浸料;按固化温度不同,分成中温固化(120℃)预浸料、高温固化(180℃)预浸料以及固化温度超过200℃的预浸料等。我司事业部在预浸料方面应用也很广泛,根据不同的产品以及性能应用不同种类的材料,常用的预浸料有单向碳纤预浸料,玻纤织物预浸料,碳纤织物预浸料,酚醛玻纤织物预浸料等等。 预浸料制备 预浸料的制备方法有干法和湿法两种。 干法有粉末法和热溶法之分。粉末预浸料是指树脂粉末附着于纤维,经过部分融化,形成树脂不连续,纤维未被树脂充分浸透的一种复合物。热溶法预浸料将树脂体系加热熔融成为流动状态,用其浸渍纤维或织物而制备的预浸料。 图1 干法制备预浸料示意图 湿法预浸料是通过树脂溶液浸渍纤维束或者织物制备的预浸料。 比较由干法预浸料和湿法预浸料制成的复合材料,一般前者外观更好,材料内树脂含量的控制精度更高。就目前航空用先进复合材料而言,常表现出热溶法复合材料的湿热稳定性优于溶液法复合材料:同在沸水中煮48h,前者的力学性能(如弯曲模量与强度、层间剪切强度等)保持率,特别是高温力学性能的保持率,明显高于后者。

预浸料成型工艺(精编文档).doc

【最新整理,下载后即可编辑】 预浸料成型工艺在复合材料产业中的应用 预浸料简介 预浸料是树脂基体在严格控制条件下浸渍连续纤维或者纤维织物,制备成树脂基体与增强体的一种组合物,是制造复合材料的中间材料。 预浸料按物理状态,化学性能有很多种分类方法:按物理状态分类,预浸料分成单向预浸料、单向织物预浸料、织物预浸料;按树脂基体不同,预浸料分成热固性树脂预浸料和热塑性树脂预浸料;按增强材料不同,分成碳纤维(织物)预浸料、玻璃纤维(织物)预浸料、芳纶(织物)预浸料;根据纤维长度不同,分成短纤维预浸料、预浸料和连续纤维预浸料;按固化温度不同,分成中温固化(120℃)预浸料、高温固化(180℃)预浸料以及固化温度超过200℃的预浸料等。我司事业部在预浸料方面应用也很广泛,根据不同的产品以及性能应用不同种类的材料,常用的预浸料有单向碳纤预浸料,玻纤织物预浸料,碳纤织物预浸料,酚醛玻纤织物预浸料等等。 预浸料制备 预浸料的制备方法有干法和湿法两种。 干法有粉末法和热溶法之分。粉末预浸料是指树脂粉末附着于纤维,经过部分融化,形成树脂不连续,纤维未被树脂充分浸透的一种复合物。热溶法预浸料将树脂体系加热熔融成为流动状态,用其浸渍纤维或织物而制备的预浸料。

图1 干法制备预浸料示意图 湿法预浸料是通过树脂溶液浸渍纤维束或者织物制备的预浸料。比较由干法预浸料和湿法预浸料制成的复合材料,一般前者外观更好,材料内树脂含量的控制精度更高。就目前航空用先进复合材料而言,常表现出热溶法复合材料的湿热稳定性优于溶液法复合材料:同在沸水中煮48h,前者的力学性能(如弯曲模量与强度、层间剪切强度等)保持率,特别是高温力学性能的保持率,明显高于后者。 图2 湿法制备预浸料示意图

预浸料质量要求、使用特点及生产工艺

预浸料质量要求、使用特点及生产工艺 https://www.360docs.net/doc/3b5286803.html,/news/detail_31104_1.html 热固性树脂基体预浸料方法是目前比较成熟的一种工艺。热固性树脂基体预浸料目前主要分为两种工艺:溶液浸渍法和热熔法。热熔法愈来愈普及。国外对热熔法生产则实现了工艺过程的自动监控,在制模阶段使用计算机控制胶膜厚度,从而确保了树脂含量的均匀度。 碳纤维织物预浸料 预浸料是在严格控制的条件下用树脂基体浸渍连续纤维或织物制成的树脂基体与增强体的组合物,是制造复合材料的中间材料,可直接用以制造各种复合材料构件。 一.预浸料质量要求 预浸料是复合材料性能的基础,其质量优劣直接关系到复合材料的质量,复合材料成型时的工艺性能和力学性能取决于预浸料的性能。因此,预浸料对复合材料的应用和发展具有重要意义。一般对预浸料的基本要求如下: 1.树脂基体和增强体要匹配:增强体表面经过处理和树脂要基本相容,这样复合材料才可能具有优良的层间强度。 2. 具有适当的黏性和铺覆性:黏性也不宜太大,以便铺层有误时,可以分开重新进行铺贴,而又无损预浸料。另一方面,黏性也不能太小,如果黏性太小,在工作温度下,两块预浸料则无法粘贴在一起,因此无法服帖地粘贴在模具上,去掉外力后就会反弹,从模具脱开。 3. 树脂含量偏差应尽可能低:至少应控制在±3%以内,以保证复合材料纤维体积含量和力学性能的稳定性。尤其是非吸胶预浸料,树脂含量偏差最好能控制在±1%以内。 4. 挥发分含量尽可能小:一般控制在2%以内,旨在降低复合材料中的孔隙含量,以提高复合材料的力学性能。主要承力构件预浸料的挥发分含量要求控制在0.8%以内。 5.贮存寿命要长:通常要求室温下的黏性储存期大于1个月,-18摄氏度下大于6个月,旨在满足复合材料铺贴工艺和力学性能要求。 6. 固化成型时有较宽的加压带:即在较宽的温度范围内加压,均可获得期望的复合材料构件,而对性能则无明显影响。 7. 具有适宜的流动度:层合件用预浸料的树脂流动度可适当大一些,以便树脂均匀分布并浸透增强材料;夹层结构面板用预浸料的树脂流动应比较小,以使面板和芯材能牢固地结合在一起。

光固化预浸料修理技术在飞机蒙皮修复中的应用

龙源期刊网 https://www.360docs.net/doc/3b5286803.html, 光固化预浸料修理技术在飞机蒙皮修复中的应用 作者:杨天贺 来源:《山东工业技术》2017年第20期 摘要:随着科学技术的发展,现代飞机的各种技术正在不断进步,对于大型客机而言, 航空公司对飞机的舒适度、可靠性、减重方面的要求不断提高,传统的材料已经不能再满足航空业的要求了。本文重点介绍了光固化预浸料修理技术的特点及工艺流程,最后介绍了光固化复合材料补片在飞机蒙皮修复中的应用。 关键词:复合材料;光固化;修理工艺;维修技术 DOI:10.16640/https://www.360docs.net/doc/3b5286803.html,ki.37-1222/t.2017.20.038 1 光固化预浸料修理技术 1.1 概念及应用范围 光固化预浸料修理技术就是用紫外灯照射填补在损伤处的光敏预浸料,使其迅速固化,对损伤进行快速修复,光固化预浸料修理技术适用于多种不同材料的损伤修复。光固化预浸料修复技术由于采用的是紫外光,能耗低,节能性好,相比于其他修复技术不会产生有害物质,不会污染空气,不会对自然产生危害,是一项新型环保修理技术。 1.2 特点 光固化预浸料修理技术的主要优点如下:(1)由于无需在修理过程中准备补片,缩短了维修时间,提高了维修效率;(2)可靠性,修理不使用螺钉或铆钉,不需要对原结构开新孔,不会形成新的应力集中源,修理强度高,有利于提高结构的抗疲劳性能和损伤容限性能;(3)通用、实用性好,适用于金属和复合材料等材质的修理;(4)增重小,粘接修理补片比强度高,比刚度高,自身重量轻并且减少了连接结构件的使用;(5)清洁无污染。 1.3 光固化预浸料修理技术工艺流程 这一新兴技术主要修复流程如下: (1)将自由基固化型树脂作为基体材料,其为乙烯基酯树脂、不饱和聚酯树脂或聚氨酯丙烯酸酯树脂;并做一定改性处理,包括合成、置换和添加光活性交联单体手段; (2)将自由基型光引发剂和热引发剂,匹配组成高效“光-热复合引发体系”;

(国内外)--新材料技术及其产业发展趋势及技术预见

新材料技术与其产业发展趋势及技术预见 孙高云贾宝平 (黑龙江省科学技术情报研究所哈尔滨 150001) 摘要:我国新材料产业目前正处于强劲发展阶段,北京和上海等地新材料产业处于国内领先地位。黑龙江省是材料和资源大省,具备发展新材料产业的资源基础条件与区位比较优势,通过对黑龙江省新材料领域技术及其产业发展的研究与技术预见,在SWOT 分析的基础上,开展德尔菲问卷的设计与调查,制定未来一段时期内新材料领域发展技术路线图,选择需要重点研发的重点领域关键技术,通过新材料领域技术发展路线图的研究制定,明确未来一段时期内的研发重点、优先次序、发展路径、实现时间等,凝练和发展一批重大技术和项目。 新材料是指新出现的或正在发展中的、具有传统材料所不具备的优异性能和特殊功能的材料,或采用新技术使传统材料性能有明显提高或产生新功能的材料。新材料具有优异性能,与传统材料相比,新材料产业技术高度密集、更新换代快、研究与开发投入高、保密性强、产品的附加值高、应用范围广, 主要包括复合材料;智能材料;电子信息、光电、超导材料;生物功能材料;能源材料和生态环境材料;高性能陶瓷材料及新型工程塑料;粉体、纳米、微孔材料和高纯金属及高纯材料;表面技术与涂层和薄膜材料;新结构功能助剂材料、优异性能的新型结构材料等。 现代高技术的发展紧密依赖于新材料技术的发展,传统产业的技术进步和产业结构调整也离不开新材料技术的推动,现代科技和经济的历史表明,每一项重大新技术的发现和新兴产业的形成都离不开新材料产业的发展,新材料作为高新技术的重要组成部分和高新技术及其产业发展的基础

和先导,已成为当今世界发展最快和最具发展潜力的高新技术。由于新材料产业的重要性,世界各国都不失时机地调整产业政策,抢占新材料产业发展的制高点,研究开发具有自主知识产权的新材料,企图垄断国际市场,新材料产业已成为各国发展工业的热点,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 一、国内外新材料领域发展现状与趋势 从国内外新材料的发展趋势看,高性能结构材料、钢铁材料和有色金属材料的生产一直在向短流程、高效率、节能降耗、洁净化、高性能化、多功能化的方向发展;高性能结构陶瓷在保持原有耐高温、高强度的前提下向强韧化、易成形加工方向发展;高分子材料向材料的微观设计、多层次结构调控、集成化、智能化、多功能化方向发展;复合材料以高性能、低成本制造技术为发展重点,向材料设计—制造—评价一体化、功能化、智能化的方向发展。结构材料追求高性能化和功能材料要求多功能化是新材料技术总体发展方向,复合化、智能化和环境友好则是新材料发展的共同趋势。 1.国外发展趋势 发达国家发展新材料产业各具特色,侧重发展领域有所不同,美国加强在生物材料、信息材料、纳米材料、极端环境材料及材料计算科学等新材料科技领域的研究与开发,并保持全球的领先地位。日本对新材料的研发与传统材料的改进采取了并进的策略,注重于已有材料的性能提高、合

复合材料的预浸料模压成型工艺

复合材料的预浸料模压成型工艺 预浸料模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有油酸、石蜡、硬脂酸、硬脂酸锌、有机硅油、硅脂和硅橡胶等。所涂刷的脱模剂在满足脱模要求的前提下,用量尽量少些,涂刷要均匀。一般情况下,酚醛型模压料多用有机油、油酸、硬脂酸等脱模剂,环氧或环氧酚醛型模压料多用硅脂和有机硅油脱模剂,聚酯型模压料多用硬脂酸锌、硅脂等脱模剂。 (3)预压 将松散的粉状或纤维状的模压料预先用冷压法压成重量一定、形状规整的密实体。采用预压作业可提高生产效率、改善劳动条件,有利于产品质量的提高。 (4)预热 在压制前将模压料加热,去除水分和其它挥发份,可以提高固化速率,缩短压制周期;增进制品固化的均匀性,提高制品的物理机械性能,提高模压料的流动性。 (5)表压值的计算

模压工艺生产操作-成型工艺知识讲解

模压工艺生产操作-成型工艺 (一)预浸布层压成型工艺 1. 概述 层压成型工艺是指将浸渍或涂有树脂的片材层叠,组成叠合体,送入层压机,在加热和加压条件下,固化成型复合材料制品的一种成型工艺。层压成型工艺主要是生产各种规格、不同用途的复合材料板材。它具有机械化、自动化程度高、产品质量稳定等特点,但是设备一次性投资大。 层压成型技术特点是加压方向与制品的板面方向垂直。层压成型技术包含两方面内容:胶布生产技术和压制成型技术。 2.层压板成型工艺 在上述生产工艺中,热压过程的温度、压力和时间是三个最重要的工艺参数。 复合材料的层压工艺的热压过程,一般分为预热预压和热压两个阶段。 (1)第一阶段一预热预压阶段。 此阶段的主要目的是使树脂熔化,去除挥发物、浸渍纤维,并且使树脂逐步固化至凝胶状态。此阶段的成型压力为全压的1/3-1/2。 (2)第二阶段-中间保温阶段 这一阶段的作用是使胶布在较低的反应速度下进行固化。保温过程中应密切注意树脂的流胶情况。当流出的树脂已经凝胶,不能拉成细丝时,应立即加全压。 (3)第三阶段-升温阶段 目的在于提高反应温度,加快固化速度。此时,升温速度不能过快,否则会引起暴聚,使固化反应放热过于集中,导致材料层间分层。 (4)第四阶段-热压保温阶段 目的在于使树脂能够充分固化。从加全压到整个热压结束,称为热压阶段。而从达到指定的热压温度到热压结束的时间,称为恒温时间。热压阶段的温度、压力和恒温时间,也是由配方决定。 (5)第五阶段-冷却阶段 在保压的情况下,采取自然冷却或者强制冷却到室温,然后卸压,取出产品。冷却时间过短,容易使产品产生翘曲、开裂等现象。冷却时间过长,对制品质量无明显帮助,但是使生产效率明显降低。 (二)预浸料模压成型工艺 预浸料模压成型工艺基本过程是:将一定量经一定预处理的模压料放入预热的模具内,施加较高的压力使模压料填充模腔。在一定的压力和温度下使模压料逐渐固化,然后将制品从模具内取出,再进行必要的辅助加工即得产品。 1.压制前的准备 (1)装料量的计算 在模压成型工艺中,对于不同尺寸的模压制品要进行装料量的估算,以保证制品几何尺寸的精确,防止物料不足造成废品,或者物料损失过多而浪费材料。常用的估算方法有①形状、尺寸简单估算法,将复杂形状的制品简化成一系列简单的标准形状,进行装料量的估算:②密度比较法,对比模压制品及相应制品的密度,已知相应制品的重量,即可估算出模压制品的装料量:③注型比较法,在模压制品模具中,用树脂、石蜡等注型材料注成产品,再按注型材料的密度、重量及制品的密度求出制品的装料量。 (2)脱模剂的涂刷 在模压成型工艺中,除使用内脱模剂外,还在模具型腔表面上涂刷外脱模剂,常用的有

预浸料成型工艺报告

预浸料成型工艺报告 袁思海2014.4.25 预浸料可用不同成型方法,根据不同应用选择较合适的成型方法。预浸料成型工艺主要有真空袋工艺、热压罐工艺、模压工艺、搓管工艺、拉挤成型工艺、辊压成型工艺、缠绕成型工艺、压力袋工艺等。其中真空袋工艺主要用在船舶工业铁道系统内装饰,热压罐工艺主要用在高质量复合材料,模压工艺主要用在平板、体育用品、雪撬、工业品,搓管工艺主要用在钓鱼杆、滑雪杆、高尔夫球杆、管件,压力袋工艺主要用在桅杆、天线杆、各种管件。 一、真空袋工艺 定义: 真空袋成型工艺,就是将产品密封在模具和真空袋之间,通过抽真空对产品加压,使产品更加密实、力学性能更好的成型工艺。 优点: ?纤维含量高,产品的力学性能更好; ?均匀加压,产品的性能均匀; ?有效控制产品厚度和含胶量; ?减少产品中的气泡; ?可以成型复杂、大型制件; ?减少挥发份对人员的损伤。 真空袋湿法工艺过程: 1、模具准备,涂脱模剂 2、产品积层(手糊、喷射、预浸料)

3、铺脱模布 4、铺隔离膜或带孔隔离膜(可以不铺) 5、铺透气毡 6、粘贴密封胶条(可以提前) 7、封真空袋膜 8、安装真空阀、快速接头和真空管 9、接气源,检验真空度 10、抽真空,产品固化 11、产品脱模 二、热压罐成型技术 特点:罐内压力均匀,快速,罐内空气温度均匀,高精度,高质量,适应范围广泛,适合批量,成型工艺可靠;缺点是成本高,初投资大。 三、辊压成型 辊压成型主要借鉴于金属成型方法。设备由一系列(一组或多组)热压辊和冷压辊组成,铺好的预浸料受热后首先通过一组热辊使预浸料变形,然后通过一组间距逐渐减小的冷辊成型。 优点:(1).坯体致密,强度高,不易变形。(2).水分低,制品光洁平整,产品规格一致。(3).生产率高,劳动强度较低。(4).适应于阴、阳模成型,单机联线。(5).操作技术不要很高,便于组成自动化生产线。 按成形工艺分为阳模成型和阴模成型。

浅析预浸料的固化工艺

浅析预浸料的固化工艺 主要简述了预浸料,预浸料特性及其应用。重点综述了预浸料在中温固化过程中,如何借助于真空辅助技术获得高性能的风机叶片。 标签:预浸料;压力;温度;流动性;固化 引言 作为风能的世界领先者,维斯塔斯一直致力于将风能发展为可与石油和天然气相媲美的行业。其风机的技术先进,能更有效的利用风能,并降低能源成本;确保风力发电机在设计使用寿命内能够稳定的运转,从而实现其最大发电潜力。叶片作为风力发电机组的核心部件,其选材及工艺决定着它本身的质量。维斯塔斯使用的预浸料真空固化工艺,已经使叶片的各项性能得以淋漓尽致的体现,本文也将重点阐述预浸料的层压固化工艺。 预浸料Prepreg是“pre impregnation”的缩写,指的是纤维束或纤维布经过树脂浸润后形成的均匀预固化材料,预固化材料可直接用于复合材料结构如风电叶片的制造。按物理状态分类,预浸料分成单向预浸料、双向预浸料、三向预浸料;按树脂基体不同,预浸料分成热固性树脂预浸料和热塑性树脂预浸料;按增强材料不同,分成碳纤维预浸料、玻璃纤维预浸料、芳纶预浸料;按固化温度不同,分成中温固化(120℃)预浸料、高温固化(180℃)预浸料以及固化温度超过200℃的预浸料等。 在维斯塔斯使用的是热固性的单向、双向和三向预浸料。预浸料树脂通常粘度较高,在室温下呈固态,便于操作、切割和在模具中铺层,且不需要导入树脂,减小树脂污染。利用预浸料的这一特点,将预浸料一层层地铺贴在已经涂有胶衣的模具中,然后铺贴可剥离保护层,离型膜,吸脂棉和真空膜,最后密封模具四周并抽真空,参考图1。 图1 模具铺贴固化系统 上述的工艺名为真空辅助的釜内成型工艺,已经置于模具内的预浸料在固化釜内的温度和压力环境中,实现固化成型,称为一个固化周期。在维斯塔斯,一个固化周期细分成五个步骤:升温-保温-升温-固化-冷却,参考图2。 图2 固化工艺曲线 结构件固化过程中,温度的加热作用使预浸料树产生流动性。随着温度的升高,树脂基体的粘度下降,不但树脂流动性增强,也是固化交联反应的必要条件。由于真空的作用,使结构件层与层之间产生压力,压力的作用使层合结构得以巩固,使树脂分布更均匀。在保温阶段,树脂的流动使层与层之间紧密结合而不存在任何缝隙,同时,通过真空系统将材料内生成的气体排除。当温度再次升高后,

相关文档
最新文档