光伏并网微逆变器关键技术分析

光伏并网微逆变器关键技术分析
光伏并网微逆变器关键技术分析

光伏并网微逆变器关键技术分析2010年11月11日来源:英伟力新能源科技(上海)有限公司作者:吴红飞 [责任编辑:Aglaia]

微逆变器区别于传统逆变器的特点

微逆变器的设计考虑因素

微逆变器的关键性技术

引言:

常见的光伏并网发电系统结构包括集中式、串式、多串式和交流模块式等几种方案。集中式、串式和多串式系统中,都存在光伏组件的串联和并联,因此系统的最大功率点跟踪时针对整个串并联光伏阵列,无法兼顾系统中每个光伏阵列,单个光伏阵列利用率低、系统抗局部阴影能力差,且系统扩展灵活性不够。光伏并网微逆变器(简称微逆变器)与单个光伏组件相连,可以将光伏组件输出的直流电直接变换成交流电并传输到电网,具有以下优点:(1)保证每个组件均运行在最大功率点,具有很强的抗局部阴影能力;(2)将逆变器与光伏组件集成,可以实现模块化设计、实现即插即用和热插拔,系统扩展简单方便;(3)并网逆变器基本不独立占用安装空间,分布式安装便于配置,能够充分利用空间和适应不同安装方向和角度的应用;(4)系统冗余度高、可靠性高,单个模块失效不会对整个系统造成影响。

微逆变器的概念由来已久,但最初并没有引起人们的注意,近年来随着太阳能发电技术的发展以及技术的进步,使得微逆变器十分具有吸引力。美国加州Petaluma的Enphase 从2008年开始微逆变器的商业化量产,并取得了不错的销售成绩,使得微逆变器获得了更广泛的认可,吸引了众多公司纷纷加入到微逆变器的研发行列,德国艾斯玛太阳能技术股份公司(SMASolarTechnology)2009年通过技术收购荷兰OKE-Services光伏系统电子开发商,进入了微逆变器市场。国内众多的光伏并网逆变器生产厂商主要从事大功率集中并网逆变器产品的开发,随着国内外微逆变器市场的日益火热,众多厂商也纷纷蠢蠢欲动,尝试开始微逆变器产品的开发,英伟力(Involar)新能源科技公司是国内最早从事微逆变器研究的公司,公司从2008年初开始微逆变器技术的开发,经过近两年的努力已完全自主掌握了微逆变器的核心技术,并于2010年5月份成功发布了其第一代产品MAC250,目前该款微逆变器产品已经推向市场。

微逆变器不同于传统大功率集中式逆变器,本文重点分析微逆变器的关键性技术。

微逆变器的特点及设计考虑因素

微逆变器区别于传统逆变器的特点:

(1)逆变器输入电压低、输出电压高

单块光伏组件的输出电压范围一般为20~50V,而电网的电压峰值约为311V(220VAC)或156V(110VAC),因此,微逆变器的输出峰值电压远高于输入电压,这要求微逆变器需要采用具备升降压变换功能的逆变器拓扑;而集中式逆变器一般为降压型变换器,其通常采用桥式拓扑结构,逆变器输出交流侧电压峰值低于输入直流侧电压;

(2)功率小

单块光伏组件的功率一般在100W~300W,微逆变器直接与单块光伏组件相匹配,其功率等级即为100W~300W,而传统集中式逆变器功率通过多个光伏组件串并联组合产生足够高的功率,其功率等级一般在1kW以上。

微逆变器的设计考虑因素:

(1)变换效率高

并网逆变器的变换效率直接影响整个发电系统的效率,为了保证整个系统较高的发电效率,要求并网逆变器具有较高的变换效率。

(2)可靠性高

由于微逆变器直接与光伏组件集成,一般与光伏组件一起放于室外,其工作环境恶劣,要求微逆变器具有较高的可靠性

(3)寿命长

光伏组件的寿命一般为二十年,微逆变器的使用寿命应该与光伏组件的寿命相当。

(4)体积小

微逆变器直接与光伏组件集成在一起,其体积越小越容易与光伏组件集成。

(5)成本低

低成本是产品发展的必然趋势,也是微逆变器市场化的需求。

微逆变器的关键性技术

(1)微逆变器拓扑

微逆变器的特殊应用需求决定了其不能采用传统的降压型逆变器拓扑结构,如全桥、半桥等拓扑,而应该选择能够同时实现升降压变换功能的变换器拓扑,除能够实现升降压变换功能外,还应该实现电气隔离;另一方面,高效率、小体积的要求决定了其不能采用工频变压器实现电气隔离,需要采用高频变压器。

可选的拓扑方案包括:高频链逆变器、升压变换器与传统逆变器相组合的两级式变换、基于隔离式升降压变换器的Flyback逆变器等几种,其中Flyback变换器拓扑结构简洁,控制简单、可靠性高,是一种较好的拓扑方案,目前Enphase、Involar(英伟力)等公司开发的微逆变器产品均是基于Flyback变换器。

(2)高效率变换技术

为了减小微逆变器的体积,要求提高逆变器的开关频率,而开关频率的提高必然导致开关损耗升高、变换效率下降,因此小体积与高效率两者之间是矛盾的,高频软开关技术是解决两者矛盾的有效方法,软开关技术可以在不增加开关损耗的前提下提高开关频率。

研究和开发简单有效的软开关技术并将软开关技术与具体的微逆变器拓扑相结合是微逆变器开发需要解决的关键问题之一,据报道,英伟力公司引入谐振软开关技术有效改善了微逆变器的变换效率,其发布的MAC250微逆变器产品最高效率达到95%以上,CEC效率达到94.5%以上。

(3)并网电流控制技术

传统的集中式并网逆变器中一般采用电流闭环控制技术保证进网电流与电网电压同频同相,实现高质量的并网电流控制,如采用PI控制、重复控制、预测电流控制、滞环控制、单周期控制、比例谐振控制等控制方法,上述方法都需要采用电流霍尔等元件采样进网电流,进而实现并网电流的控制。

由于微逆变器的小功率特色,为了降低单位发电功率的成本,且考虑到体积要求,开发新型的高可靠性、低成本小功率并网电流控制技术是微逆变器开发需要解决的另一个关键性问题。

(4)高效率、低成本最大功率点跟踪(MPPT)技术

光伏发电系统的效率为电池板的光电转换效率、MPPT效率和逆变器效率三部分乘积,高效率MPPT技术对光伏发电系统的效率提高和成本降低有十分重要的意义。

常见的MPPT算法包括开路电压法、短路电流法、爬山法、扰动观察法、增量电导法以及基于模糊和神经网络理论的智能跟踪算法等,上述MPPT方法中一般需要同时检测光伏

输出侧电压和电流,进而计算出并网功率。

微逆变器的光伏侧输入电压低,因此光伏侧的电流较大,如果采用电阻检测输入侧电流,对微逆变器的整机效率影响较大,而采用霍尔元件采样光伏侧电流则会增加系统成本及逆变器体积,因此针对微逆变器的特殊要求,需要开发新型的无需电流检测的高效率MPPT 技术。据报道,英伟力公司研究了一种无电流传感器MPPT技术来适应微逆变器的应用需求,MPPT效果良好,跟踪精度达到99.9%以上。

(5)孤岛检测技术

孤岛检测是光伏并网发电系统必备的功能,是人员和设备安全的重要保证。针对微逆变器的特殊应用需求,开发简单、有效、零检测盲区、不影响进网电流质量的孤岛检测技术是微逆变器开发需要解决的一个重要课题。

(6)无电解电容变换技术

光伏组件的寿命一般为20~25年,要求微逆变器的寿命必须接近光伏组件,而电解电容式功率变换器寿命的瓶颈,要使微逆变器达到光伏组件的寿命,必须减少或避免电解电容的使用,因此研究和开发无电解电容功率变换技术是微逆变器开发需要解决的另一个课题。

(7)信息通信技术

当多个微逆变器组成分布式发电系统时,系统需要实时收集每个微逆变器的信息,以实现有效的监测与管理,因此需要低成本、高效、高可靠性信息通信技术作为保证,可以利用的通信技术包括PLC、ZigBee、Z-Wave、6LowPA、PoE、GPRS、GSM技术等。

英伟力微逆变器产品分析

英伟力新能源科技(上海)有限公司最近发布的一款微逆变器产品MAC250主要参数如下:

额定输出功率:180VA;

峰值输出功率:220VA

输入电压:20V~50V;

输入电压:187VAC~242VAC;

工作频率范围:49.5Hz~50.5Hz;

最大效率:95%;

CEC效率:94%

工作环境温度:-40~65℃

重量:2.4kg

体积:240mm*138mm*35mm

保修期:15年。

从上述指标可知,该款微逆变器产品已经满足了上述设计和使用要求,变换效率等指标达到了集中式并网逆变器的技术水平。

总结

本文分析了微逆变器的发展现状,重点分析了微逆变器开发所需要解决的关键性问题,分析表明,微逆变器与传统重大功率集中并网逆变器存在明显的不同,为了掌握微逆变器的核心技术,需要解决包括逆变器拓扑、软开关、并网电流控制、MPPT等多个关键性核心技术。

太阳能照明系统关键技术的研究

2010年11月22日来源:《硅谷》作者:薛勇; 毛明科; 汪明健 [责任编辑:doeboy]

【中心议题】

?详细阐述太阳能照明系统的调光、驱动方式以及散热问题

?介绍了蓄电池的种类,容量的确定方法

【解决方案】

?采用电流调节和脉冲宽度调制两种方式进行调光

?利用开关电源驱动LED

?提高散热性能

0 引言

随着煤炭,石油,天然气等不可再生能源的日趋枯竭,能源问题己经成为制约人类经济社会发展的重要问题之一,太阳能作为无污染的可再生的绿色能源,越来越受到世界各国的青睐,充分开发利用太阳能是各国政府可持续发展的能源战略,是解决能源与环境保护的主要对策之一。目前,利用太阳能的有效途径就是将它转换成电能的光伏发电技术,而太阳能照明系统就是光电转换的一个重要用途。

1 太阳能照明系统的结构

一般太阳能照明系统包括太阳能电池板,蓄电池,控制器和照明负载(LED灯)。在白天有阳光的时候,太阳能电池所产生的电量一部分是供给照明负载,一部分是储存在蓄电池当中。当晚上或则阴雨天气的时候,照明负载就完全由蓄电池来供电。由于光伏系统容易受外界的影响,所以配备一个控制器实现调节、控制、保护等功能。图一所列的是太阳能照明系统的框图。

2 照明负载(LED灯)

随着各种不可再生能源的不断匾乏,寻求新能源是头等大事,但与此同时节约能源也是我们面临的重要的问题。在整个照明领域,以白炽灯为主力军的角色己经发生改变,目前备受人们关注的LED灯已经开始进入市场。

它作为一种新型的绿色照明光源,势必会以独特的优势取代传统光源。

2.1 LED的特点。

本系统中照明负载采用的是LED灯,它是一种能够将电能转化成化学能的半导体器件。它主要有以下几个特点:①LED的发光效率高,理论上分析,它的转换率可达到100%,是荧光灯的两倍,比白炽灯高10倍。②由于LED灯的特性是直流低压,而太阳能组件输出与蓄电池所储存的都是直流电压,故省去了交直流转换的逆变器,节约了成本。③寿命长,LED灯的理论寿命可长达10万小时。目前,国外的产业化的LED灯寿命在3一5万小时。④除此之外,它还有可靠稳定,寿命长,环保等特点。

2.2 LED的调光方式。

LED的调光方式主要分为两种:①电流调节方式。LED具有类似二极管的正向电压特性曲线,所以LED的亮度由电流来控制。一般情况下,它随着电流的增大,亮度会增加,所以我们可以通过改变电流的大小来调节LED灯的亮度。但是此种调光方式,只有工作在某个特定的正向电流值的范围内,LED的亮度才与电流成正比。如果超出这个范围,LED就会变色,可能偏蓝或偏紫。同时,由于电流增大,相应的温度会升高,这会对LED器件造成损坏,影响其使用寿命。②脉冲宽度调制。它是在恒定电流和恒定功率的情况下,通过改变P姗信号的占空比来调节LED的亮度,所以就不会出现电流调节方式的变色和损坏器件等现象。如需要50%的亮度就提供50%的占空比的电流。

2.3 LED的驱动方式。

LED驱动方式主要有电阻限流和恒流源两种工作方式。蓄电池在充放电时,电压和电流都存在着波动,而电阻限流的驱动方式缺点是,会随着蓄电池的这种变化致使LED灯的亮度发生改变,而且工作在此种方式下,附加的电阻会损耗很多的能量。正因如此,我们考虑恒流源驱动。前面所介绍LED的亮度,寿命等与电流有着直接的关系,所以恒流源驱动是最好的工作方式。

其中,恒流源驱动又包括电荷泵和开关电源两种。电荷泵是以电容器为储能元件,利用分离电容器将电源从输入端传送至输出端,而不需要附加电感。但它有个缺点,只能提供有限的输出电压,一般都低于输入电压的两倍,所以必须采用并联的驱动方式。开关电源是以电感为储能元件,有Boost(升压电路),Buek(降压电路),Buek一Boost(升压/降压电路)三种。它的工作方式是,先对电感进行充电,之后电感释放所储存的电能,从而得到输出电压,电路中的滤波电容、储能电感、续流二极管的结构不同,实现升压或降压的功能。开关电源以其输出范围宽,工作效率高等特点,得到广泛的应用。

2.4 LED的散热技术。

相对于传统光源,LED是属于冷光源型,因为LED发光的时候不会出现大量的红外辐射。但是它发光的时候会使PN结产生热量,致使温度升高,影响LED的寿命,所以必须提高它的散热功能。一般我们会研究以下几个方面来解决LED的散热问题:①在LED的热沉上装散热片,一般是选择导热性能好的铝片,以加快热量从外延层向散热基板散发。②LED的热阻越低越好,这对导出PN结的温度十分重要。③LED产生的热量与内量子效应有关,可以通过改进氮化稼生长过程中的材料结构,获得高质量的外延片,提高内量子效应,加快芯片结到外延层的热传导。

3 电池

考虑到晚上或者连续阴雨天气的状况,照明系统中必须配备蓄电池,以满足对照明负载的供电。蓄电池的种类很多,有铅酸蓄电池,锡镍蓄电池,铁镍蓄电池,铿离子蓄电池等等。但是,目前市场上使用最多的是铅酸蓄电池。使用蓄电池必须注意一下几点:①尽量使用MPPT充分利用太阳能电池。②充电特性要满足蓄电池的要求,这样才能更好的延长蓄电池的寿命。由于不同负载对蓄电池的容量要求不同,包括放电深度,温度,控制器效率,放电率等都会对蓄电池的容量造成影响,所以系统对蓄电池的容量选择非常的重要。如果采用免维护铅酸阀控式蓄电池,则按照以下的公式确定容量:蓄电池容量二(自给天数x日平均负载)/最大放电深度。

4结束语

太阳能照明是光伏发电的重要部分,由于它是可再生能源,无污染,不需要铺设电缆线等优点,得到大力的推广。随着科学的发展,提高LED能量转化效率,更好的处理散热问题,拥有一个合理的价格,不久的将来LED灯必定会普照社会的每一个角落。

太阳能光伏发电在住宅户用供电系统的应用2010年11月22日来源:《科技信息》作者:张红莲 [责任编辑:doeboy]

【中心议题】

?介绍了光伏供电系统的原理及技术

?给出了太阳能光伏发电在住宅户用供电系统的应用

【解决方案】

?采用了无变压器式的能量变换器

?遵循216V供电体制

?运用小电流放电方式

0引言

日益恶化的生态环境、能源短缺使人们逐步认识到,人类必须走可持续发展的道路,大力开发和利用可再生能源是必由之路,开发绿色的、可持续的新型能源已成为历史必然。

随着我国经济发展,工业化、城镇化进程的加速,对能源、电力的需求越来越大。而洁净安全的太阳能发电技术,越来越得到广泛的重视和应用,也越来越贴近人们的生活。本文讨论太阳能光伏发电在居民住宅供电上的应用。

1光伏发电在住宅供电的必要性

在偏远农村山区无电地区,人们生活、生产用电无法得到保障,如果这些地区光照充足,采用太阳能光伏供电,可以解决照明、配电问题。在城镇,人民生活水平不断提高,各种家电逐渐走人日常居民家庭。一些老住宅,由于在规划设计中对居民用电负荷估计太低,选用的线路截面、负荷开关容量偏小等,造成用电线路经常性的过负荷跳闸,超负荷运行烧毁开关、电能表、电线等现象,产生了很大的安全隐患。

再者,由于老住宅的用户密度高,预留空间小,对于重排供配电线路或加设线路都有较大的难度,且线路的安全性也受到威胁。因此研究太阳能光伏发电在住宅供配电系统的应用很有必要。

2光伏供电系统介绍

光伏供电系统结构如图1。太阳能电池序列将太阳能转换为直流电能,给蓄电池组充电,由蓄电池组给直流负载供电,而能量变换器将光伏发电获得的直流电能转换成恒压恒频交流电能,供交流负载用电,是太阳能利用的关键技术。

2.1太阳能电池阵列

系统中的太阳能电池阵列,采用12V×l8的串联形式,每块太阳电池的功率可根据系统所需功率来确定。选用效率高(11%)、成本低的纳米晶体化学太阳电池,成本是晶体硅太阳电池成本的1/5~1/10,寿命可达20a,应用这种光电池可大幅度地降低系统的成本。相应地采用串联形式的12V×18的蓄电池组,其容量可根据需要灵活配置。

2.2能量变换器

大多数中、小型光伏发电系统,一般都采用直流供电体制供直流系统使用,或者经逆变器把直流电变换成220V方波供交流电器使用,这样使系统的使用效率受到了极大的限制,整个系统的使用效率限制在85%左右。太阳能电池的效率不高,单晶硅为15%,多晶硅为14%。非晶硅和薄膜太阳电池为10%,蓄电池的充放电效率为85%。如果系统的使用效率不提高,势必会增加整个系统的成本。

本系统中,采用的无变压器式的能量变换器,其电路原理图如图2所示,其效率大幅度提高,不小于95%。对以交流负载为主的家用光伏供电系统来说,采用这种供电体制,可大大节约昂贵的“太阳电”,降低了整个光伏系统的成本。

2.3蓄电池组

光伏发电为绿色能源发电,唯一的环境隐患在蓄电池上。由于蓄电池中的铅酸有很强的腐蚀性,且铅元素有毒,对环境有一定的危害。蓄电池最大的污染问题存在于生产和回收环节容易造成铅酸的泄露。本系统中的蓄电池考虑自给天数为

2d,每户平均容量为1.3kW,选择GMF—200型深放电阀吸液式密封铅酸蓄电池,放电深度(DOD)为0.8。使用期间无酸雾和气体逸出,不会对用户家庭造成污染,降低了维护成本。

3负载

负载采用分类使用的办法。系统有两路输出:一路是交流负载,由无变压器式能量变换器供电;另一路是直流负载,由太阳能电池或是蓄电池直接供电,不需要通过能量变换器,可提高系统效率、节约能源和延长能量变换器的寿命,提高了系统的可靠性。本供电系统中,由于采用216(12×18)V供电制,照明负载可以选用市场上的常规照明用具,避免了以往光伏系统采用12V供电,而必须使用特制的照明灯具或者必须经过能量变换器后才能使用的问题。选用特制的12V照明灯具,具有下列不足之处:一是灯具一旦损坏,在市场上难以购买,用户很不方便;二是特制的12V照明灯使用量少,未形成批量生产,造价高,可靠性差。

目前,节能照明灯的技术已达到比较先进的水平,紧凑型荧光灯得到了推广应用。据统计,我国已是世界上第一大节能灯生产国和出口国。同时,可低压起动的节能型电子镇流器的电路技术也得到了长足的发展,为光伏供电体制中的照明系统的选用提供了保证。本系统所设计的这种照明系统具备的优点:可随处购买,便于更换;可靠性高,寿命长;成本低,价格便宜。

4结束语

本文中光伏供电系统采用了无变压器式的能量变换器、216V供电体制和小电流放电方式,系统的效率大幅度地提高,能量损失大大地减少,系统成本降低。采用光伏户用发电可以实现无电地区的供电,缓解城镇的用电压力,合理地应用于住宅供配电,能解决老式住宅供配电难以增容的问题,推动光伏发电系统的应用。

单机版-研旭光伏并网逆变器说明书_图文(精)

研旭光伏并网逆变器 YXSG-2.5KSL , YXSG-3KSL , YXSG-5KSL 安装使用手册 目录 1、安全说 明 (3) 2、产品描 述 (5) 2.1光伏并网系 统 .................................................................................................................... 6 2.2电路结构 ............................................................................................................................ 7 2.3特点 . .. (7)

2.4逆变器外观描 述 (8) 3、安 装 .......................................................................................................................................... 10 3.1 安装须 知 ......................................................................................................................... 10 3.2 安装流程说明 .. (11) 3.3安装准备 .......................................................................................................................... 12 3.4 选择合适的安装场 地 ..................................................................................................... 12 3.5 安装逆变 器 (14) 3.6 电气连 接 (14) 4、 LCD 操作说 明 . ......................................................................................................................... 21 4.1 按键功能说明 .. (21) 4.2 界面介 绍 (22) 5、故障排 除 (27) 5.1 初始化失败 ..................................................................................................................... 27 5.2 LCD 显示故 障 (27)

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

光伏逆变器功能特点和主要技术参数说明

光伏逆变器功能特点和主要技术参数说明 将直流电能变换成为交流电能的过程称为逆变,完成逆变功能的电路称为逆变电路,而实现逆变过程的装置称为逆变器或逆变设备。太阳能光伏系统中使用的逆变器是一种将太阳能电池产生的直流电能转换为交流电能的转换装置。它使转换后的交流电的电压、频率与电力系统交流电的电压、频率相一致,以满足为各种交流用电装置、设备供电及并网发电的需要,它是光伏系统的大脑。 1.离网逆变器的主要特点 (1)采用16位单片机或32位DSP微处理器进行控制; (2)太阳能充电采用PWM控制模式,大大提高了充电效率; (3)采用数码或液晶显示各种运行参数,可灵活设置各种定值参数; (4)方波、修正波、正弦波输出。纯正弦波输出时,波形失真率一般小于5%; (5)稳压精度高,额定负载状态下,输出精度一般不大于±3%; (6)具有缓启动功能,避免对蓄电池和负载的大电流冲击; (7)高频变压器隔离,体积小、重量轻; (8)配备标准的RS232/485通信接口,便于远程通信和控制; (9)可在海拔5500m以上的环境中使用。适应环境温度范围为-20~50℃; (10)具有输入接反保护、输入欠压保护、输入过压保护、输出过压保护、输出过载保护、输出短路保护、过热保护等多种保护功能。 2.并网型逆变器主要性能特点 (1)功率开关器件采用新型IPM模块,大大提高系统效率; (2)采用MPPT自寻优技术实现太阳能电池最大功率跟踪,最大限度地提高系统的发电量; (3)液晶显示各种运行参数,人性化界面,可通过按键灵活设置各种运行参数; (4)设置有多种通信接口可以选择,可方便地实现上位机监控(上位机是指:人可以直接发出操控命令的计算机,屏幕上显示各种信号变化如电压、电流、水位、温度、光伏发电量等); (5)具有完善的保护电路,系统可靠性高; (6)具有较宽的直流电压输入范围; (7)可实现多台逆变器并联组合运行,简化光伏发电站设计,使系统能够平滑扩容; (8)具有电网保护装置,具有防孤岛保护功能。 二、光伏逆变器的主要技术参数 1.额定输出电压 光伏逆变器在规定的输入直流电压允许的波动范围内,应能输出额定的电压值,一般

单相逆变器并网工作原理分析与仿真设计

第2章 基于定频积分的逆变器并网控制 2.1 引言 本章探索了一种基于定频积分控制的可选择独立工作和并网运行两种工作模式的光伏逆变器控制方案,对其工作原理以及并网电流纹波影响因素进行了理论分析,推导了控制方程,并给出了计算机仿真分析结果。 2.2 逆变器并网控制系统总体方案设计 如本文第一章所述,并网型逆变器主要应用在可再生新能源并网发电技术中,因此,对逆变器并网控制方案的研究也必须结合新能源发电的特点,达到最大限度的利用可再生资源。作者设计了一种既可以控制逆变器工作在并网送电状态,又可以控制逆变器工作在独立带载状态的逆变器并网控制系统。逆变器的具体工作模式由工作场合和用户需求决定,系统具有多功能。 本系统采用以定频积分为核心的控制方案。逆变器并网工作时采用基于定频积分的电流控制方案;独立工作时,在并网电流控制方案的基础上加入电压PI 外环,实现输出电压控制。定频积分控制不仅将并网输出电流控制和独立输出电压控制有机地融合在一起,而且使系统在两种工作模式下都具有良好的性能。 2.3 定频积分控制的一般理论 所谓定频积分控制是指保持电路工作的开关频率S f 不变,而通过积分器和 D 触发器来控制开关器件在每个周期的导通时间on T 和关断时间off T 。图2-1所示为定频积分控制的一般原理图。 定频积分控制是基于单周期控制的一种控制方法[43~45]。单周期控制是一种非线性控制技术, 该控制方法的突出特点是:无论是稳态还是暂态,它都能保持受控量(通常为斩波波形)的平均值恰好等于或正比于给定值,即能在一个开关周期,有效的抵制电源侧的扰动,既没有稳态误差,也没有暂态误差,这种控制技术可广泛应用于非线性系统的场合,比如脉宽调制、谐振、软开关式的变换器等。下面具体从理论上分析基于单周控制的定频积分控制的一般原理和特点。

太阳能光伏并网逆变器的设计原理框图

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图 逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。

图2 逆变器原理框图 控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。 图1 光伏并网系统结构图 图3 控制矢量图 在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式: (2) 在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式: (3)式中K= L/TC,TC为载波周期。 从该模型即可以得到本系统所采用的图4所示的控制框图。此方法称为基于改进周期平均模型的固定频率电流追踪法。

并网逆变器工作原理

并网逆变器工作原理 逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V,在中、小容量的逆变器中,由于直流电压较低,如12V、24V,就必须设计升压电路。 中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。 控制电路工作 逆变器的主电路均需要有控制电路来实现,一般有方波和正弦波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。 1.方波输出的逆变器 方波输出的逆变器目前多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。 2.正弦波输出的逆变器 正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、下桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。 主电路功率器件的选择 逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOS-FET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

光伏逆变器的设计原理

光伏逆变器的设计原理 并网光伏逆变器的基本设计 无论采用何种技术,逆变器的基本设计都很明确,且非常相似。其核心就是将直流电压(光伏组件)转换成交流电压(可并网)的过程。在转变的过程中,不停地转换直流电的正负极连接,从而形成方向变化的交流电。所以,逆变器的关键部件是桥接开关(晶体管元件,见图1:a)),这个开关桥的一侧连接输入的直流电源,在另一侧连接交流电网。在工作过程中,只有两个相对的开关可以同时关闭。 如果将此开关桥的开关速度设置成与电网频率相同,则在理论上可以将桥的输出侧与电网连接。但是,由于这样输出的电流是方波,且强度没有变化,因此需要在输出端安装一个具有铁芯的电感器,用以将输出电流控制成为正弦波形状。桥的断开采用脉冲过程进行,从而形成与脉冲相关的较小电流分量。这样的电流分量可以对电感器的电流进行控制。脉冲的频率一般为20KHz ,这样就完全可以形成50Hz的电流,见图1:b)。 对于光伏逆变器来说,还有一个非常重要的设备不能遗漏:输入端的电容器,见图1: c ) 。电容器的作用是储存电能,确保来自发电侧的电流持续一致供给桥接开关,并通过与电网频率同步变化的桥进入电网。只有在输入电容器的容量足够大的情况下,才能够保证光伏发电系统的持续、正常运行。 图1:光伏逆变器的基本设计 图2描述了可用于直接并网的逆变器的基本功能。但在实际应用中,输入电压的范围具有一定的局限性。对于并网发电应用,其输入电压必须在任何时刻都高于电网的峰值电压。当电网电压的有效值为250V时,达到正常并网要求的发电源侧的最低电压应为354V。 与标准逆变器的基本设计不同,直接并网逆变器有很多方法来调整或提升输入电压范围。常用的逆变器技术方案与结构都各不相同:

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网逆变器拓扑结构的研究

光伏并网逆变器拓扑的研究 陈德双,陈增禄 (西安工程大学电子信息学院,西安 710048) 摘要:本文介绍了多种光伏并网逆变器常用的拓扑方案,分析了各自拓扑结构的特点、功率及适用场合,对逆变器的选型与设计提供了借鉴和参考。 关键词:光伏并网;并网逆变器;拓扑结构;Buck-boost ;三相 1 引言 跨入21世纪之后,全球正在面临能源危机,新能源已经成为世界经济发展中最具决定力的五大技术领域之一。太阳能光伏发电技术作为新能源的重要一员得到了持续的发展。 太阳能光伏发电系统可区分为两大类:一是独立系统,二是并网系统。独立系统是由太阳能电池直接给负载提供功率,多用于向偏远无电地区供电,易受到诸如时间和季节的影响。独立系统结构图如图1-1所示。 图1-1 独立系统结构图 随着电力电子技术的进步和控制理论的发展,光伏并网发电已经成为太阳能利用的主要形式。并网发电系统的特点是通过控制逆变器,直接将太阳能电池阵列发出的直流电转换为交流电,输向电网,如图1-2所示。寻求高性能、低造价的光伏材料和器件以减小光伏发电系统的自身损耗是其研究热点之一。作为光伏阵列与电网系统间进行能量变换的逆变器,其安全性、可靠性、逆变效率、制造成本等因素对发电系统的整体投资和收益具有举足轻重的地位。因此,对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。 图1-2 并网发电系统结构图 太阳光

2 光伏并网逆变器拓扑方案 并网逆变器作为并网发电系统进行电能变换的核心,具体电路拓扑众多,根据直流侧电源性质的不同可分为两种:电压型逆变器和电流型逆变器,结构如图2-1。电流型逆变器,其直流侧输入为电流源,需要串联一大电感提供较为稳定的直流电流输入,但此大电感会导致系统动态响应差,因此当前世界范围内大部分并网逆变器均采用直流侧以电压源为输入的电压型逆变器。 根据逆变器的输入端和输出端是否隔离,可将逆变器分为隔离型和非隔离型。隔离型逆变器一般都采用变压器进行隔离。隔离型逆变器又可分为高频变压器型和工频变压器型。也可以根据功率变换的级数将逆变器分为单级式和多级式。 图2-1 按直流侧电源性质分类的并网逆变器结构图 2.1 按是否隔离分类 工频变压器型逆变器采用一级DC/AC 主电路,变压器置于逆变器与电网之间,如图2-2所示。这种方式可有效阻止逆变器输出波形中的直流分量注入电网,减少对电网的污染。 图2-2 工频变压器型逆变器拓扑 高频变压器型逆变器采用两级或多级变换实现并网逆变。以两级变换为例,如图2-3所示。前级将直流电压斩波为高频脉冲,通过高频变压器后整流,后级通过逆变器并网。 电压型逆变器 s s

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

第五章--单相并网逆变器

第5章单相并网逆变器 后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。 光伏并网逆变器拓扑结构 按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。 5.1.1推挽式逆变电路 推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。 U 图5-1 推挽式逆变器电路拓扑 推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。因此适合应用于直流母线电压较低的场合。此外,变压器的利用率较低,驱动感性负载困难。推挽式逆变器拓扑结构如图5-1 所示。 5.1.2半桥式逆变电路 } 半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥

式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。 图5-2 半桥式逆变器电路拓扑 5.1.3全桥式逆变电路 全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。这意味着输出功率相同时,全桥逆变器的输出电流和通过开关元件的电流均为半桥式逆变电路的一半。 本文采用的是单相全桥式逆变器,其拓扑结构如图5-3 所示,它结构简单且易于控制,在大功率场合中广为应用,可以减少所需并联的元件数。其不足是要求较高的直流侧电压值。 图5-3 单相全桥逆变器电路拓扑 光伏并网逆变器的控制 光伏并网逆变器按控制方式分类,可分为电压源电压控制、电压源电流控制、电流源电压控制和电流源电流控制四种方法。以电流源为输入的逆变器,其直流侧需要串联大电感提供稳定的直流电流输入,但由于此大电感往往会导致系统动态响应差,因此当前大部分并网逆变器均采用以电压源输入为主的方式,即电压型逆变器。采用电压型逆变主电路,可以实现有源滤波和无功补偿的控制,在实际中已经得到了广泛的研究和应用,同时可以有效地进行光伏发电、提高供电质

太阳能光伏并网逆变器的设计原理框图概要

太阳能光伏并网逆变器的设计原理框图 随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网逆变器是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图

逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。 图2 逆变器原理框图

控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

相关文档
最新文档