线性代数总结

线性代数总结
线性代数总结

线性代数总结 [转贴 2008-05-04 13:04:49]

字号:大中小

线性代数总结

一、课程特点

特点一:知识点比较细碎。

如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。

特点二:知识点间的联系性很强。

这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。

复习线代时,要做到“融会贯通”。

“融会”——设法找到不同知识点之间的内在相通之处;

“贯通”——掌握前后知识点之间的顺承关系。

二、行列式与矩阵

第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。

对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中为矩阵的特征值)。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

解线性方程组可以看作是出发点和目标。线性方程组(一般式)

还具有两种形式:

(Ⅰ)矩阵形式,其中

,,

(Ⅱ)向量形式,其中

,

向量就这样被引入了。

1)齐次线性方程组与线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的只能全为0才能使等式成立,而当齐次线性方程组有非零解时,存在不全为0的使上式成立;但向量部分中判断向量组是否线性相关\无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关\无关的概念就是为了更好地讨论线性方程组问题而提出的。

2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”,向量组组成的矩阵有说明向量组的极大线性无关组中有个向量,即线性无关,也即等式只有零解。所以,经过

“秩→ 线性相关\无关→ 线性方程组解的判定”

的逻辑链条,由就可以判定齐次方程组只有零解。当时,的列向量组线性相关,此时齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过个线性无关的解向量(基础解系)线性表示。

3)非齐次线性方程组与线性表示的联系

非齐次线性方程组是否有解对应于向量是否可由的列向量组线性表示,即使等式成立的一组数就是非齐次线性方程组的解。当非齐次线性方程组满足时,它有唯一解。这一点也正好印证了一个重要定理:“若线性无关,而线性相关,则向量可由向量组线性表示,且表示方法唯一”。

性质1.对于方阵有:

方阵可逆ó

ó 的行\列向量组均线性无关ó

ó 可由克莱姆法则判断有唯一解,

而仅有零解

对于一般矩阵则有:

ó 的列向量组线性无关

ó 仅有零解,有唯一解(如果有解)

性质2.齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关,而非齐次线性方程组是否有解对应于是否可以由的列向量组线性表出。

以上两条性质可视为是将线性相关、行列式、秩、线性方程组几部分知识联系在一起的桥梁。

应记住的一些性质与结论

1.向量组线性相关的有关结论:

1)向量组线性相关ó向量组中至少存在一个向量可由其余个向量线性表出。

2)向量组线性无关ó向量组中没有一个向量可由其余的向量线性表出。

3)若线性无关,而线性相关,则向量可由向量组线性表示,且表示法唯一。2.向量组线性表示与等价的有关结论:

1)一个线性无关的向量组不可能由一个所含向量个数比它少的向量组线性表示。

2)如果向量组可由向量组线性表示,则有

3)等价的向量组具有相同的秩,但不一定有相同个数的向量;

4)任何一个向量组都与它的极大线性无关组等价。

3.常见的线性无关组:

1)齐次线性方程组的一个基础解系;

2)、、这样的单位向量组;

3)不同特征值对应的特征向量。

4.关于秩的一些结论:

1);

2);

3);

4);

5)若有、满足,则;

6)若是可逆矩阵则有;

7)若可逆则有;

8)。

4.线性方程组的解:

1)非齐次线性方程组有唯一解则对应齐次方程组仅有零解;

2)若有无穷多解则有非零解;

3)若有两个不同的解则有非零解;

4)若是矩阵而则一定有解,而且当时有唯一解,当时有无穷多解;5)若则没有解或有唯一解。

四、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。本章知识要点如下:

1.特征值和特征向量的定义及计算方法

就是记牢一系列公式如、、和。

常用到下列性质:

若阶矩阵有个特征值,则有;

若矩阵有特征值,则、、、、、分别有特征值、、、、、,且对应特征向量等于所对应的特征向量;

2.相似矩阵及其性质

定义式为,此时满足、、,并且、有相同的特征值。

需要区分矩阵的相似、等价与合同:矩阵与矩阵等价()的定义式是,其中、为可逆矩阵,此时矩阵可通过初等变换化为矩阵,并有;当中的、互逆时就变成了矩阵相似()的定义式,即有;矩阵合同的定义是,其中为可逆矩阵。

由以上定义可看出等价、合同、相似三者之间的关系:若与合同或相似则与必等价,反之不成立;合同与等价之间没有必然联系。

3.矩阵可相似对角化的条件

包括两个充要条件和两个充分条件。充要条件1是阶矩阵有个线性无关的特征向量;充要条件2是的任意重特征根对应有个线性无关的特征向量;充分条件1是有个互不相同的特征值;充分条件2是为实对称矩阵。

4.实对称矩阵及其相似对角化

阶实对称矩阵必可正交相似于对角阵,即有正交矩阵使得,而且正交矩阵由对应的个正交的单位特征向量组成。

可以认为讨论矩阵的相似对角化是为了方便求矩阵的幂:直接相乘来求比较困难;但如果有矩阵使得满足(对角矩阵)的话就简单多了,因为此时

而对角阵的幂就等于,代入上式即得。引入特征值和特征向量的概念是为了方便讨论矩阵的相似对角化。因为,不但判断矩阵的相似对角化时要用到特征值和特征向量,而且中的、也分别是由的特征向量和特征值决定的。

五、二次型

本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵存在正交矩阵使得可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

本章知识要点如下:

1.二次型及其矩阵表示。

2.用正交变换化二次型为标准型。

3.正负定二次型的判断与证明。

标签: 线性代数总结.

学习线性代数总结

2009年06月14日星期日上午 11:12

学习线性代数总结

线性代数与数理统计已经学完了,但我认为我们的学习并没有因此而结束。我们应该总结一下这门课程的学习的方法,并能为我们以后的学习和工作提供方法。这门课程的学习目标:《线性代数》是物理系等专业的一门重要的基础课,其主要任务是使学生获得线性代数的基本思想方法和行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识,它一方面为后继课程(如离散数学、计算方法、等课程)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力,培养学生的抽象思维和逻辑推理能力等重要作用。同时随着计算机及其应用技术的飞速发展,很多实际问题得以离散化而得到定量的解决。作为离散化和数值计算理论基础的线性代数,为解决实际问题提供了强有力的数学工具。

我总结了《线性代数》的一些学习方法,可能有的同学会认为这已经为时过晚,但我不这么认为。从这门课程中,我们学会的不仅仅是线性代数的一些相关知识(行列式、线性方程组、矩阵论、二次型、线性空间、线性变换等方面的系统知识),更重要的是,从这门课程中我们应该掌握一种很重要的思想——学习如何去使用工具的方法。这个工具狭隘的讲是线性代数这门数学知识,但从广义地说:这个工具应该是生活中的一切工具(如电脑软件的学习方法、机器的操作方法、科学调查方法等)。在这门课程给我的感触就是:这门课告诉我们如何去学知识的方法。

我认为:学习任何一门知识的方法是:

一、明确我们要学习什么知识或者要掌握哪些方面的技能。

只能我们明白我们自己要学习什么之后,我们才会有动力去学习,在我们的大学里,有些同学不明白学习课本知识有何作用,认为学习与不学习没有什么区别,或者认为学习课本知识没有多大的作用,就干脆不学(当然我在这里没有贬低任何人的意思)。不过我认为学习好自己的专业的知识,掌握专业技能是每个大学生的天职。

二、知道知识是什么,了解相关知识的概念和定义。

这是学习的一切学习的基础,只有把握这个环节,我们的学习实践活动才能得以开展,知识是人类高度概括、总结的经验,不可能像平常说话那么通俗易懂。所以我们要想把知识学好,就得在概念上下功夫。例《线性代数》这门课程中的实二次型,那我们首先得非常清楚的知到,什么叫做实二次型。否则这一块的知识没有办法开展。

三、要知到我们学的知识可以用到何处,或

者能帮我们解决什么问题。

其实这一点和第一点有点重复。但是对于我们的课本知识非常得有用,因为我们现在所学的课本知识。说句实在话,我们确实不知到能为我们生活中能解决什么问题,但如果我们知到它能用到何处,相信将来一定会有用。有一句话说得好,书到用时方恨少,说得是这个道理。总之,我们现在要为以后遇到问题而积累解决问题的方法,我们现在是在为以后的人生在打基础。

四、学习相关概念后,要学会如何去操作。

像《线性代数》这门课程,在这一点就体现得很突出。如在我们学习正交矩阵这个概念后,我们得要学会如何去求正交矩阵;再如,当我们认识了矩阵的对角化定义之后,我们得掌握如何去将一个矩阵对角化。其实,就是学会如何去操作,这是我们掌握数学工具的使用方法的重要途径,所以这部分的工作是我们的学习中心和重点。只有掌握了这部分,我们才能在以后学习或者生活中遇到相似的问题,就有了这个工具去为我们解决实际的问题。

五、将所学习的知识反作用于生活(即将所学的知识用到实处)。

这才是我们学习的真正目的所在。一个人的解决问题的能力应该和他所掌握的知识成正比。学之所用才叫学到实处,才能发挥真正学习的作用。记得这个给我印象最深的是:在我们学C++编程时,有一道题是讲的是用一百元钱去买母鸡、公鸡、小鸡。母鸡5元钱一只,公鸡3元钱一只,小鸡3只一元,并且母鸡、公鸡、小鸡的总数为一百只,求有多少种可能。

这其实就是一道最简单的线性代数题了,设x代表小鸡,y代表公鸡,z 代表母鸡:则根据题意有线性方程组

x\3+3y+5z=100

x+y+z=100

解此线性方程组得

x=3z/4+75

y=-7z/4+25

z=z

用z作为循环变量控制,这个程序不到十行就可以编出来。这就说明学习知识总会有用的,只要我们去积累,只要我们现在把基础打牢,我相信以后解决问题的方法多了,大脑用活了,我们的竞争力就强了,自然在社会上有一席之地。

总之:我个人觉得学习知识很有用处。虽然就业压力在压着大家,大家为就业而奔波,但至少现在找工作不是我们的重点。把我们手头上的事做好才是最关键,我还是喜欢军训中我的那个“胖胖”所说的话:“一个萝卜,一个坑”,一步一个脚印,脚踏实地。相信我们80年后或90年后的一代能够担任起国家建设的重任和使命。

楼主大中小发表于 2008-10-10 23:50 只看该作者

线性代数超强总结.

√ 关于:

①称为的标准基,中的自然基,单位坐标向量;

② 线性无关;

③ ;

④ ;

⑤任意一个维向量都可以用线性表示.

√ 行列式的计算:

① 若都是方阵(不必同阶),则

②上三角、下三角行列式等于主对角线上元素的乘积.

③关于副对角线:

√ 逆矩阵的求法:

√ 方阵的幂的性质:

√ 设,对阶矩阵规定:为的一个多项式.

√ 设的列向量为 , 的列向量为,的列向量为 ,

√ 用对角矩阵左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的行向量;

用对角矩阵右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的列向量.

√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,

与分块对角阵相乘类似,即:

√ 矩阵方程的解法:设法化成

当时,

√和同解(列向量个数相同),则:

① 它们的极大无关组相对应,从而秩相等;

② 它们对应的部分组有一样的线性相关性;

③ 它们有相同的内在线性关系.

√ 判断是的基础解系的条件:

①线性无关;

②是的解;

③.

①零向量是任何向量的线性组合,零向量与任何同维实向量正交.

②单个零向量线性相关;单个非零向量线性无关.

③部分相关,整体必相关;整体无关,部分必无关.

④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.

⑤两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关.

⑥向量组中任一向量≤ ≤ 都是此向量组的线性组合.

⑦向量组线性相关向量组中至少有一个向量可由其余个向量线性表示.

向量组线性无关向量组中每一个向量都不能由其余个向量线性表示.

⑧维列向量组线性相关;

维列向量组线性无关 .

⑨.

⑩若线性无关,而线性相关,则可由线性表示,且表示法惟一.

矩阵的行向量组的秩等于列向量组的秩.

阶梯形矩阵的秩等于它的非零行的个数.

矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.

矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.

向量组等价和可以相互线性表示. 记作:

矩阵等价经过有限次初等变换化为 . 记作:

矩阵与等价作为向量组等价,即:秩相等的向量组不一定等价.

矩阵与作为向量组等价

矩阵与等价.

向量组可由向量组线性表示≤ .

向量组可由向量组线性表示,且,则线性相关.

向量组线性无关,且可由线性表示,则≤ .

向量组可由向量组线性表示,且,则两向量组等价;

任一向量组和它的极大无关组等价.

向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.

若两个线性无关的向量组等价,则它们包含的向量个数相等.

若是矩阵,则 ,若,的行向量线性无关;

若,的列向量线性

无关,即:

线性无关.

线性方程组的矩阵式向量

矩阵转置的性质:

矩阵可逆的性质:

伴随矩阵的性质:

线性方程组解的性质:

√ 设为矩阵,若 ,则 ,从而一定有解.

当时,一定不是唯一解. ,则该向量组线性相关.

是的上限.

√ 矩阵的秩的性质:

②≤

③≤

⑥ ≥

⑦≤

⑩且在矩阵乘法中有左消去律:

标准正交基个维线性无关的向量,两两正交,每个向量长度为1.

.

是单位向量.

√ 内积的性质:① 正定性:

② 对称性:

③ 双线性:

施密特线性无关,

单位化:

正交矩阵.

√是正交矩阵的充要条件:的个行(列)向量构成的一组标准正交基.

√ 正交矩阵的性质:①;

②;

③是正交阵,则(或)也是正交阵;

④ 两个正交阵之积仍是正交阵;

⑤ 正交阵的行列式等于1或-1.

的特征矩阵.

的特征多项式.

的特征方程.

√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素.

√ 若 ,则为的特征值,且的基础解系即为属于的线性无关的特征向量.

√ 若 ,则一定可分解为 = 、 ,从而的特征值为: , .

√ 若的全部特征值,是多项式,则:

①的全部特征值为;

② 当可逆时, 的全部特征值为 ,

的全部特征值为 .

与相似(为可逆阵)记为:

√相似于对角阵的充要条件:恰有个线性无关的特征向量. 这时, 为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.

√可对角化的充要条件:为的重数.

√ 若阶矩阵有个互异的特征值,则与对角阵相似.

与正交相似(为正交矩阵)

√ 相似矩阵的性质:①若均可逆

③(为整数)

④,从而有相同的特征值,但特征向量不一定相同.即: 是关于的特征向量, 是关

于的特征向量.

⑤从而同时可逆或不可逆

√ 数量矩阵只与自己相似.

√ 对称矩阵的性质:

① 特征值全是实数,特征向量是实向量;

② 与对角矩阵合同;

③ 不同特征值的特征向量必定正交;

④重特征值必定有个线性无关的特征向量;

⑤ 必可用正交矩阵相似对角化(一定有个线性无关的特征向量, 可能有重的特征值,重

数= ).

可以相似对角化与对角阵相似. 记为:(称是的相似标准型)√ 若为可对角化矩阵,则其非零特征值的个数(重数重复计算) .

√ 设为对应于的线性无关的特征向量,则有:

.

√ 若 , ,则: .

√ 若 ,则 , .

二次型为对称矩阵

与合同. 记作:()

√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.

√ 两个矩阵合同的充分条件是:

√ 两个矩阵合同的必要条件是:

√经过化为标准型.

√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由惟

一确定的.

√ 当标准型中的系数为1,-1或0时,则为规范形 .

√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.

√ 任一实对称矩阵与惟一对角阵合同.

√ 用正交变换法化二次型为标准形:

①求出的特征值、特征向量;

②对个特征向量单位化、正交化;

③构造(正交矩阵), ;

④作变换 ,新的二次型为 , 的主对角上的元素即为的特征值.

正定二次型不全为零, .

正定矩阵正定二次型对应的矩阵.

√ 合同变换不改变二次型的正定性.

√ 成为正定矩阵的充要条件(之一成立):

①正惯性指数为;

②的特征值全大于;

③的所有顺序主子式全大于;

④合同于,即存在可逆矩阵使;

⑤存在可逆矩阵,使(从而);

⑥存在正交矩阵,使(大于).

√ 成为正定矩阵的必要条件:;.

b b s . k ao y a n .

c o m

内容相互纵横交错线性代数复习小结

概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三,根据考试大纲的要求,这里再具体指出如下:

行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,

或用定义,或是用公式 A -1= 1 A*,或 A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。

关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。

向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

在 Rn中,基、坐标、基变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,应先化简,后代入具体的数值进行计算。

行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如 OAO≠0〈===〉A是可逆阵〈===〉r(A)=n(满秩阵)〈===〉A的列(行)向量组线性无关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1 P2 …PN,其中PI(I=1,2,…,N)是初等阵〈===〉r(AB)=r(B)<===>A初等行变换

I〈===〉A的列(行)向量组是Rn的一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之间的联系综合命题创造了条件,故对考生而言,应该认真总结,开拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也能顺利地到达彼岸。

关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程 O λE-AO=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A 的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及An.

将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。

一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。

线性代数的概念很多,重要的有:

代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。

例如,矩阵A=(α1,α2,…,αm)与B=(β1,β2…,βm)等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩r(A)与r(B)是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价,可知矩阵A=(α1,α2,…αm)与B=(β1,β2,…βm)等价,但矩阵A与B等价并不能保证这两个向量组等价。

又如,实对称矩阵A与B合同,即存在可逆矩阵C使CTAC=B,要实现这一点,关键是二次型xTAx与xTBx的正、负惯性指数是否相同,而A与B相似是指有可逆矩阵P使P-1AP=B成立,进而知A与B有相同的特征值,如果特征值相同可知正、负惯性指数相同,但正负惯性指数相同时,并不能保证特征值相同,因此,实对称矩阵A~B A B,即相似是合同的充分条件。

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =-K N N √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→M M 初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? O O 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ?????????? N N

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数公式总结大全

线性代数公式 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 8. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

线性代数总结归纳

线性代数总结归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

行列式 1.为何要学习《线性代数》 学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列【 知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列【 知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序【 知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数【 知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列【

线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

相关文档
最新文档