伺服电机控制技术的应用与发展

伺服电机控制技术的应用与发展
伺服电机控制技术的应用与发展

龙源期刊网 https://www.360docs.net/doc/3b7755113.html,

伺服电机控制技术的应用与发展

作者:黄新宇

来源:《科学导报·科学工程与电力》2019年第07期

【摘要】现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。电机的

主要功能是将电能转变为机械能,应用领域非常广泛,涉及航空、机械运转以及运输等多个行业。电力电子技术水平的不断提升,使电机功能更加多样化,尤其是在信息时代下,更体现了智能化的特点。电机为电机控制技术发展提供推动力,使其可以更加多方位地满足安全需求。处理器和数字化伺服系统的协调发展,相应提高了数控系统计算性能,达到了缩减时间的目的。硬件伺服控制系统实现了向软件伺服控制系统的转变,提高了伺服系统运行性能。这些变革都为加工技术提供了推动力。

【关键词】伺服电机;控制技术;应用与发展

1 伺服控制系统

1.1 开环伺服系统

开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精準度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。

1.2 半闭环伺服系统

该系统中的主要装置为无刷旋转变压器,用以检测位置、速度,而最关键的部件是装载中放置的脉冲编码器。电机轴中装载了系统内全部反馈信号,此外也包括负责系统机械传动的装置。非线性因素不会对系统运行造成影响,相反还会为安装调试提供便利。机械传动装置精准度与半闭环伺服系统定位精准度有直接关系,即便是机械传动装置的精度低,但是通过数控装置中具备的误差补偿和间隙补偿两种功能,也会提升其精准度。所以,半闭环伺服系统更多被应用于数控机床。

图1所示是伺服电机控制系统,它以C8051F060为核心,同时还有显示电路、编码器、编码器处理电路、RS485通信电路、伺服电机驱动电路、伺服电机。

2 伺服电机控制技术的应用

伺服电机控制技术的应用与发展 朱舒柏

伺服电机控制技术的应用与发展朱舒柏 发表时间:2019-11-26T09:27:03.093Z 来源:《中国西部科技》2019年第24期作者:朱舒柏 [导读] 近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 摘要:近年来,经济的发展,促进我国科技水平的提升。科技的进步促进伺服电机控制技术被广泛应用,不仅能够有效提升数控系统计算性能,缩短时间,还能够有效提升系统运行性能,逐渐向更加科学化、智能化方向转变。本文就伺服电机控制技术的应用与发展趋势,展开探讨。 伺服控制系统是一个整体,其主要组成元素包含了驱动、控制系统和保护系统还有电力的电子元件等,是从步进向直流进步,与数字脉宽调制技术、微电子技术等共同发展进步。同时,伺服控制技术又从直流发展到了交流,与特种电机材料技术和现代控制技术等同步发展。硬件服务控制系统为加工技术提供了推动力,实现了软件伺服控制系统的转变,提高了伺服系统运行的性能。同时,处理器和数字化伺服系统的协调发展,还提升了数控系统计算性能。 1.伺服控制系统 1.1开环伺服系统 开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精准度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。 1.2半闭环伺服系统 半闭环伺服系统,运行与调试步骤内容相对简捷,主要应用于对位置与速度的检测。测量位置无刷旋转变压器与测度的发电机构成半闭环伺服系统的两个主要部分。其中,脉冲编码器是无刷旋转变压器内部中最为重要的一个器件,抗干扰能力较强,不易受某些非线性因素影响,系统能够正常运行,实现对机械传动的控制。将系统内全部反馈信号装在电机轴中,能够有效对速度和位置两个重要信号量进行检测,并且为系统提供机械传动保障。在数控机床应用领域中半闭环伺服系统应用最广泛,由于机械传动装置精度与此系统定位精确度具有密切联系,所以即使机械传动装置精度不高,只需利用数控装置所具有的误差补偿与间隙补偿功能,也可以使其精确度有所提升。 1.3全闭环伺服系统 全闭环伺服系统是由各种装置组成,即:比较环节、伺服驱动放大器、机械传动装置、进给伺服电动机以及直线位移测量装置等。其中,全闭环伺服系统的驱动部件能够监测、反馈修正机床运动部件的移动量,即:直流伺服电动机或者交流伺服电动机。在测量机床部件时,能够构成一个较高精度的全闭环控制位置系统,可以直接利用安装在工作台的光棚或者感应同步器。在整个全闭环系统中,可以在移动的部件上,安装直线位移检测器,也就是说,这个位移检测器的精度和灵敏度就是移动部件测量精度、灵敏度,同样加工精度也相对地得到了提升。但机械传动装置之间的一些非线性因素,会影响整体的稳定性,如:摩擦阻尼、装置刚度以及反响间隙等。并且在整个全闭环伺服电机系统中,安装和调试全闭环伺服系统过程非常复杂。 2.伺服电控技术的应用 2.1低频特性中的应用 在实际低速运转过程中,步进电机常会出现低频振动现象,可见电机控制系统自身负载能力、驱动器性能好坏与低频振动有着密切关联。一般来说,电机空载起跳频率的一半就是振动频率,若是步进电机由于工作原理而产生低频振动问题,就会对运行带来阻碍,不能进行日常的工作;步进电机进入低速运转状态时,一般可以使用阻尼技术对低频振动问题加以控制。例如可以将阻尼器或驱动器中的一种,设置在电机中,通过细分技术进行控制。通过对比发现,交流伺服电机运转时稳定性更高,即使处于低速运转状态中,低频振动问题也不会出现。在交流伺服电机中,由于系统自带共振功能,能够弥补机械刚性中存在的不足进行问题,同时系统中还带有频率解析功能,可对机械共振点进行有效测量监视,及时发现问题,避免发生共振现象。 2.2在控制精准度的应用 全数字交流伺服是以2000线编码器为标准,控制交流伺服则更能体现控制精准度,将旋转编码器安装在交流伺服电机电机轴后方。驱动器的安装使用四倍频技术,脉冲量为0.045o。在数字化伺服电机系统中,如果使用17编码器其脉冲量可以换算为1.8的步距角,为 0.0027466o,电动机旋转1圈接收一次131072个脉冲。两相混合式和五相混合式是步进电机的两种形式,两相混合式步进电机的脉冲量数据较小,脉冲量为1/655.相比之下。其中,两相混合式性能较高,步距角则主要以1.8o、0.9o为主经过细分之后,性能较高的二相混合式步进电机步距角更小,可以有效实现五相混合式、普通二相混合式步距角的兼容,五相混合式步距角是以0.72o、0.36o为主;诸如0.072o、0.18o、0.9o等二相混合式在设置步距角时,可以利用拨码开关的方式。 2.3过载能力方面应用 步进电机并没有过载性能,相反交流伺服电机则体现出极强的过载能力。例如,SANYO交流伺服电机本身就有非常高的速度过载能力和转矩过载能力。因为步进电机并不具备过载能力,因此在实践过程中为了克服启动时产生的惯性力矩,一般会选择大机型电机。但是,其中存在的问题在于,实际应用期间不需要过高的电机转矩,很容易导致力矩浪费。 3.伺服电机控制技术的发展前景 电机控制专用继承电路是企业设计伺服电机最普遍的形式,设计软件主要为复杂可编程逻辑器件和现场可编程逻辑阵列。并且在设计电机控制集成电路时,需要依据用户、电子系统要求。该电路能够实现操作边界的有效扫描,特点在于用户现场可操控编程。电机控制专用集成电路具有设计、生产时间短等特征,主要体现在制定用户要求、数量少等方面。与通用电路相比,集成电路电子技术和用户积淀系统生产出来的产品,重量轻、成本低、体积小、功耗低,质量高。并且在电机控制MCU设计、电机控制DSP设计等方面,伺服电机控制技术也有所体现。交流伺服电动机属于无刷结构,提升功率与转速快、维修几率少。20世纪80年代中,伺服电机控制技术已经融合催化加工

交流伺服电动机的原理及三种转速控制方式

交流伺服电动机的原理及三种转速控制方式 交流伺服电机的定子装有三相对称的绕组,而转子是永久磁极。当定子的绕组中通过三相电源后,定子与转子之间必然产生一个旋转场。这个旋转磁场的转速称为同步转速。电机的转速也就是磁场的转速。由于转子有磁极,所以在极低频率下也能旋转运行。所以它比异步电机的调速范围更宽。而与直流伺服电机相比,它没有机械换向器,特别是它没有了碳刷,完全排除了换向时产生火花对机槭造成的磨损,另外交流伺服电机自带一个编码器。可以随时将电机运行的情况“报告”给驱动器,驱动器又根据得到的11报告"更精确的控制电机的运行。 由此可见交流伺服电机优点确实很多。可是技术含量也高了,价格也高了。最重要是对交流伺服电机的调试技术提高了。也就是电机虽好,如果调试不好一样是问题多多。伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与H标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。其作用为把接受的电信号转换为电动机转轴的角位移或角速度,按电流种类的不同,伺服电动机可分为直流和交流两大类。下面简单介绍交流伺服电动机有以下三种转速控制方式: (1)幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。 (2)相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。 (3)幅值一相位控制同时改变控制电压幅值和相位.交流伺服电动机转轴的转向随控制电压相位的反相而改变。

机械工程师必知的三种直线模组+伺服电机的控制方式已应用

机械工程师必知的三种直线模组+伺服电机的控制方式 直线模组+伺服电机速度控制和转矩控制都是用模拟量来控制,位置控制是通过发脉冲来控制。详细具体的想采用什么样的控制方式要按照客户的实际需求和功能来选型。那么直线模组配伺服电机的三种控制方式是什么呢? 列举:您对电机的速度、位置都没有要求,只要输出一个恒转矩,那么就是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用速度或位置模式相对来说比较实用。 如果控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看:转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算

速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率;如果有更好的控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么做。 一般说驱动器控制的好坏,有个比较直观的比较方式,叫响应带宽。当转矩控制或速度控制时,通过脉冲发生器给它一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时频率的高低,就能说明控制的好坏了,一般电流环能做到1000HZ 以上,而速度环只能做到几十赫兹。 1、转矩控制 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 一般说驱动器控制的好不好,每个厂家的都说自己做的最好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000Hz以上,而速度环只能作到几十赫兹。 换一种比较专业的说法: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

机器人应用技术分析

2014年12月(下) 机器人应用技术分析 石红梅 ( 北京信息职业技术学院专业部,北京市100070) [摘要]机器人的应用领域十分广泛,包括工业生产、海空探索、康复和军事等。此外,机器人已逐渐在医院、家庭和一些服务行业获得 应用,并且已经进入高校的课堂。根据其功能可分为工业机器人、服务机器人、探索机器人和军事机器人。机器人核心技术的应用围绕基本结构优化与技术参数的提高。本文先将机器人的技术参数进行简单描述,对其主要知识基础与技术要求做了简单的论述,其应用的核心技术是目前国际各大企业关注的问题。[关键词]机器人;控制器;伺服系统;核心 机器人是“一种装备有记忆装置和末端执行装置的、能够完成各种移动来代替人类劳动的通用机器”。它又分为以下两种情况来定义: 工业机器人是“一种能够执行与人的上肢类似动作的多功能机器”;如图1所示。 智能机器人是“一种具有感觉和识别能力,并能够控制自身行为的机器”。如图2所示。 1工业机器人基本结构及技术参数1.1工业机器人基本结构 从机械结构上,可以分为串联和并列机器人,目前广泛应用的是串联通用机器人。串联通用机器人一般由手臂、手腕组成。机器人手臂具有3个自由度(运动坐标轴),机器人作业空间由手臂运动范围决定。手腕是机器人工具(如焊枪、喷嘴、机加工刀具、夹爪)与主构架的连接机构,它具有3个自由度。如图1所示。 图1串联通用机器人 图2智能机器人 从机器人系统整体来看,分为控制器(包括示教器)、伺服驱动系统、机构、测量及传感器。其中控制器,用于控制机器人各运动部件的位置、速度和加速度,使机器人手爪或机器人工具的中心点以给定的速度沿着给定轨迹到达目标点。控制器是机器人的大脑,其性能和功能直接决定了机器人的整体能力。驱动系统,为机器人各运动部件提供力、力矩、速度、加速度。驱动系统是机器人的肌肉,其质量、驱动能力、响应速度、稳定性,直接决定了机器人的运动能力。 目前国产工业机器人,绝大多数使用日本品牌的伺服驱动系统,如松下、安川、三菱、三洋、富士等。测量系统,用于机器人运动部件的位移、速度和加速度的测量以及工作对象的测量,如工件及其位置的识别,障碍物的识别,抓举工件的重量是否过载等。通常机器人自身运动部件及工件重量的测量,使用伺服驱动系统提供的位置及电流信息,工件位置、障碍物识别等使用机器视觉等外接的测量设备。 1.2工业机器人技术参数1.2.1自由度数和类型 自由度(DOF)是指机器人所具有的独立坐标轴运动的数目。自 由度越多就越灵活,但结构也越复杂。机器人的自由度要根据其用途设计,一般在3 ̄6个之间。如果小于3个,不能称为机器人。大于6个的自由度称为冗余自由度(空间位姿只有6个参数)。冗余自由度能使机器人避开障碍物和改善机器人的动力性能。设计人类的手臂共有7个自由度。类型指的是所设计的关节属于转动关节还是移动关节。 1.2.2结构形式 结构形式指机器人运动链的形式,包括并联、串联、混合形式,决定了机器人适应的行业。串联结构优点是工作范围大,缺点是最大速度和刚度较差。并联结构优点是速度和刚度很好,但是工作范围小。 1.2.3运动范围 运动范围指机器人关节的运动范围,决定了工作空间的大小。由于末端执行器的形状和尺寸是多种多样的,为真实反映机器人的特征参数,故工作空间是指不安装末端执行器时的工作区域。工作空间的大小不仅与机器人各连杆的尺寸有关,而且与机器人的总体结构形式有关。工作空间的形状和大小是十分重要的,机器人在执行某作业时可能会因存在手部不能到达的盲区而不能完成任务。 1.2.4最大速度 最大速度指机器人关节或末端操作器的最高运动速度,决定了机器人的最大效率。 有的厂家指工业机器人主要自由度上最大的稳定速度,有的厂家 指手臂末端最大的合成速度,对此通常都会在技术参数中加以说明。最大工作速度愈高,其工作效率愈高。 1.2.5负载能力 负载能力指机器人在一定精度和运动条件下所能承担的最大负载,是决定机器人成本的主要参数。承载能力是指机器人在作业范围内的任何位姿上所能承受的最大质量。承载能力不仅取决于负载的质量,而且与机器人运行的速度和加速度的大小和方向有关。为保证安全,通常将承载能力这一技术指标确定为高速运行时的承载能力。 1.2.6重复定位精度 重复定位精度指机器人经过多次循环运动后,到达空间同一位置和姿态的最大误差范围。重复定位精度是指在同一环境、同一条件、同一目标动作、同一命令之下,机器人连续重复运动若干次时,其位置的分散情况,是关于精度的统计数据。因重复定位精度不受工作载荷变化的影响,故通常用重复定位精度这一指标作为衡量示教-再现工业机器人水平的重要指标。 1.2.7控制方式 控制方式指机器人运动控制的方式,如示教再现、点位控制、或轨迹控制,是机器人控制器的基本指标。 1.2.8驱动方式 驱动方式指机器人是采用液压、气动、交流电机或步进电机控制等,目前先进的工业机器人通常采用交流电机驱动。 2机器人技术涉及的基本知识 机器人技术所涉及的基本知识范围广,归纳起来包括以下几个学科:1)工程力学(理论力学、材料力学)。2)高等代数(线性代数、矩阵分析)。 14

PLC控制伺服电机的方法

伺服电机的PLC控制方法 以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置

控制模式控制信号接线图"连接导线 3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC 的输出端子)。 5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。 7(com+)与外接24V直流电源的正极相连。 29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编

码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也

交流伺服电机的应用领域

交流伺服电机的应用领域 下面我们来看一下伺服电机和其他电机(如步进电机)相比到底有什么优点 1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; 2、转速:高速性能好,一般额定转速能达到2000~3000转; 3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; 4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; 5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内; 6、舒适性:发热和噪音明显降低。 简单点说就是:我们平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。而伺服电机和步进电机是说停就停,说走就走(反应极快)。但步进电机存在失步现象。 (当然有这么多好处价格就相应的上去了就看怎么选择了) 至于原理什么的我觉得就没有必要深入了解了(如果你是做销售的话) 应用领域就太多了。只要是要有动力源的,而且对精度有要求的一般都可能涉及到伺服电机。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、自动化生产线等对工艺精度、加工效率和工作可靠性等要求相对较高的设备。 本人感觉数控机床上用的尤其多,你重点跑一些数控机床厂,一台机床(就说小型数控),他的主轴部分就需要一台,进给部分也需要一台(其他部分根据要求厂家会选择动力源),比如客户会因为成本原因选择步进电机,但你值得一试 你也可以多关心一下那些老师傅们经常跑那些领域 谢谢不够的话你再补充一下问题,我可以再详细一点 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较c。一、控制精度不同两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。四、过载能力

伺服电机的三种控制方式有哪些

伺服电机是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。在不同场景下,伺服电机的控制方式各有不同,在进行选择之前你需要先了解伺服电机是三种控制方式各有其特点,下面小编就给大家介绍一下伺服电机的三种控制方式。 伺服电机控制方式有脉冲、模拟量和通讯控制这三种 1、伺服电机脉冲控制方式 在一些小型单机设备,选用脉冲控制实现电机的定位,应该是最常见的应用方式,这种控制方式简单,易于理解。基本的控制思路:脉冲总量确定电机位移,脉冲频率确定电机速度。都是脉冲控制,但是实现方式并不一样: 第一种,驱动器接收两路(A、B路)高速脉冲,通过两路脉冲的相位差,确定电机的旋转方向。如上图中,如果B相比A相快90度,为正转;那么B相比A相慢90度,则为反转。运行时,这种控制的两相脉冲为交替状,因此我们也叫这样的控制方式为差分控制。具有差分的特点,那也说明了这种控制方式,控制脉冲具有更高的抗干扰能力,在一些干扰较强的应用场景,优先选用这种方式。但是这种方式一个电机轴需要占用两路高速脉冲端口,对高速脉冲口紧张的情况,比较尴尬。

第二种,驱动器依然接收两路高速脉冲,但是两路高速脉冲并不同时存在,一路脉冲处于输出状态时,另一路必须处于无效状态。选用这种控制方式时,一定要确保在同一时刻只有一路脉冲的输出。两路脉冲,一路输出为正方向运行,另一路为负方向运行。和上面的情况一样,这种方式也是一个电机轴需要占用两路高速脉冲端口。 第三种,只需要给驱动器一路脉冲信号,电机正反向运行由一路方向IO信号确定。这种控制方式控制更加简单,高速脉冲口资源占用也最少。在一般的小型系统中,可以优先选用这种方式。 2、伺服电机模拟量控制方式 在需要使用伺服电机实现速度控制的应用场景,我们可以选用模拟量来实现电机的速度控制,模拟量的值决定了电机的运行速度。模拟量有两种方式可以选择,电流或电压。电压方式,只需要在控制信号端加入一定大小的电压即可。实现简单,在有些场景使用一个电位器即可实现控制。但选用电压作为控制信号,在环境复杂的场景,电压容易被干扰,造成控制不稳定;电流方式,需要对应的电流输出模块。但电流信号抗干扰能力强,可以使用在复杂的场景。

伺服电机应用技术

3.2.4 定位运行 1、运行模式 NC213的定位运行模式有多种选择,分成两类。第一类称为direct operation,第二类称为memory operation,这两类操作是伺服控制模块普遍使用的方式。Memory operation一般用于较高级控制模块,direct operation则高、低级控制模块均可采用。 伺服控制模块为PLC系统中的一组扩充单元,由CPU模块指挥控制,direct operation 与memory operation差别就在于指挥方式的不同。 1)direct operation运行模式 如图3.23所示,CPU模块每下一次指令,控制器执行一次运行动作;如果要进行三个运行动作,必须由CPU按照程序下指令。因此,CPU工作负荷较重,而且指令下达需要传递处理,密集操作运动时不易掌控时间间隔,适合运动控制较不密集的系统。Direct operation 的控制参数较少,用户较易使用。 2)memory operation运行模式 如图3.24所示,CPU模块每下一次指令,控制器可执行连续不同的运行动作,运行动作之间的逻辑控制由伺服控制器自行处理。因此,CPU工作负荷较轻,可处理较多其他工作。Memory operation运行效率较佳,但控制参数较复杂,就好像管理者工作项目要交代清楚,而执行者必须全权处理的方式。NC213为双轴控制模块,memory operation运行模式可进行二轴直线补间运动等较复杂的运行动作控制。 2、direct operation参数设置区 Direct operation定位运行只要在已定义的参数区内设置运行参数即可,以绝对坐标定位及相对坐标定位所需参数如图3.25所示。必须注意的是,当前使用的模块型号为NC213,注意寄存器的分配方式。

工程师必备的伺服电机3种控制方式

工程师必备的伺服电机3种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制,位置控制是通过发脉冲来控制。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。 接下来,给大家介绍伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用速度或位置模式比较好。 如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看:转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率;如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么做。 一般说驱动器控制的好坏,有个比较直观的比较方式,叫响应带宽。当转矩控制或速度控制时,通过脉冲发生器给它一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时频率的高低,就能说明控制的好坏了,一般电流环能做到1000HZ以上,而速度环只能做到几十赫兹。 1、转矩控制 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出

伺服电机的发展及研究综述

129 机械装备研发 Research & Development of Machinery and Equipment 伺服电机的发展及研究综述 彭小武,刘江涛,赖德全 (西华大学机械工程学院,四川 成都 610039) 摘 要:随着社会的不断发展和进步,伺服驱动技术在工业发展中的作用愈加明显。高速加工技术和以高速、高精度为基础的其他技术的发展,推动了伺服电机的快速发展,世界各国都将其作为发展工业技术的重要战略。文章针对伺服电机的发展及研究做了综述,希望对我国伺服电机的发展起到一定的推动作用。关键词:伺服电机;发展;对策中图分类号:TM383.4 文献标志码:A 文章编号:1672-3872(2019)12-0129-01 ——————————————作者简介: 彭小武(1996—),男,四川成都人,本科,研究方向: 机械电子工程。 伺服系统在数控机床、工业机器人、坐标测量机等自动化制造、装配及测量设备中,应用非常广泛,伺服电机是电气伺服系统中的重要执行机构。在当今快速发展的信息社会下,伺服电机将会朝着数位化、自动化路径发展,使其可以更加多方位地满足在工业发展中的需求[1]。 1 国内发展研究情况 由于我国伺服电机的发展相对滞后,因此被欧美和日本的外企占据主要市场份额。自2013年以来,得益于产业升级带来的积极影响,国内伺服电机自主支撑能力已经形成。大以内,并有超过20个更大规模的伺[2]。 GM7系列交流伺国只有自主开发和设计专利知识产权和自主设施。 2)广州数控在1997~1999年不断探索,于1999年交流伺服研发成功,填补此产品在国家的空白,将同类国外产品的价格降低50%。2002年,其被评为国家863重点项目“中档数控系统产业化支撑技术”的承接企业。2010年,中档数控系统产业化已成为中国市场的主流,建立广州CNC、发那科、西门子三足鼎立局面。 迄今,我国较佳的伺服品牌主要有汇川技术、台达伺服,南京埃斯顿等。其中,埃斯顿交流伺服系统拥有中国最完整的EDC、EDB、ProNet、ETS 系列和25种规格。埃斯顿交流伺服系统的主要功率范围为50W ~300kW,具有直接驱动系列、速度低转矩大的交流伺服系统产品和CAN、PROFIBUS、EtherCAT 系列产品。 2 国外发展研究情况 20世纪80年代初期,我国正处于改革开放初始时段,美、日、德等工业大国的伺服研究机构和企业就已经在不间断推出享有自主知识产权的伺服控制产品,比较著名的电机有德国西门子,日本安川、三菱等。随着工业的发展,伺服技术的研究,不仅是国内外大型企业非常看重,许多知名高校的学者也在探讨研发怎么满足工业生产所需要的高性能伺服产品。时至今日,大多的外国伺服厂家在高速、高精密电子技术层面做的相当优异:部分伺服的产品依靠同轴电缆来进行通信,其不低于5Mbit/s 的传送运动速度在极大地减少延迟的同时,抗干扰能力也取得了相当大的增强[3]。 外国较为著名的伺服电机厂商有日本安川、三菱、松下、三洋,德国西门子、伦茨、博士力士力,瑞典ABB,韩国三星、LG 等。 德国西门子公司拥有100多年的机械制造研发实战经验,是全球性遥遥领先的电机制造厂商。西门子电机产品几乎涵盖了所有的可以使用电机的工业领域,无论何种负载驱动,西门子电机都能满足系统的特定需求。应用行业:通用机械传动恒速传动,风机式(恒速变扭矩负载调速),替代国产Y、Y2系列电机升级客户产品泵负载(恒速变扭矩负载调速),压缩机式负载(恒速变扭矩负载调速)[4]。 3 目前存在的问题及解决方案 存在的问题:1)伺服系统精准度偏低,与外国的高分辨率编解码器相比较,差异较多。2)国内目前伺服产品的结构上还需优化改进,在电机尺寸以及输出功率方面有待提升。3)伺服系统整体的性能同国外的大品牌伺服电机相比有一定的差距,在高性能核心算法方面还需进一步突破。 解决方案:1)提高精度,系统各组成环节的精度需适当提高,其中就包括机械传动与支撑装置的精度,还可以在结构上的创新,改变原有结构形式或者发展组合电机来提高系统精度。2)在满足电机各种性能指标的要求下,改进设计,简化结构并且尽量减小电机尺寸。3)采用低速驱动元件消除减速齿轮和发展组合电机,并且优化核心算法等。 4 发展趋势 随着全数位化以及自动化的伺服电机控制系统的日渐普及,交流或直流伺服电机的应用将会日趋普遍。在过去,交流伺服系统供不应求,产品严重缺货,大量供应商生产紧张的局面。因为现在全球市场对伺服系统产品需求量很大,所以老旧的伺服系统已经不能达到目前市场的需求。伺服电机产品必将向高性能、小体积、永磁化和无刷方向发展。我国在中、高档数控系统产业中,还出现极大的空缺。要在伺服电机这片领域中研发出属于自己的自主知识产权。坚信将来,伺服电机在各个领域的应用均会有极大的提高。参考文献: [1]张小明.数控交流伺服产品和技术特点分析[A].2009海峡两岸机 械科技论坛论文集[C].2009:4.[2]刘泽洋.高速全伺服热收缩膜包装机的电气自动化设计[D].上海: 上海交通大学,2012.[3]张建刚.基于多层网络的Q 系列PLC 三维伺服控制系统研究[D]. 成都:西华大学,2010.[4]王秀季.伺服电机在高精度控制设备中的应用分析[J].机电信 息,2019(15):45-46. (收稿日期:2019-6-12)

伺服电机的PLC控制

伺服电机的PLC控制方法 以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。 伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线3(PULS1), 4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V 直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求. 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW). 5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

关于伺服的三种控制方式

关于伺服的三种控制方式 简介:一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。想知道的就是这三种控制方式具体根据什么来选择的? 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具 ... 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。想知道的就是这三种控制方式具体根据什么来选择的? 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调

整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V 对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

伺服电机控制方式的选择

伺服电机控制方式的选择 一般伺服电机主要有三种控制方式,即速度控制方式,转矩控制方式和位置控制方式,下面分别对每种控制方式进行详细说明。 1.速度控制方式 通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位机控制装置的外环PID控制时,速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位机反馈以做运算用。速度模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 2.转矩控制方式 转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为:例如10V对应5Nm的话,当外部模拟量设定为5V时,电机轴输出为2.5Nm,如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转。可以通过即时的改变模拟量的设定来改变设定力矩的

大小,也可以通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备。 3.位置控制方式 位置控制方式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服驱动器可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置,应用领域如数控机床、印刷机械等等。 如何选择伺服电机的控制方式呢? 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 如果对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如

相关文档
最新文档