利用单片机进行复杂函数计算的一种高精度算法

利用单片机进行复杂函数计算的一种高精度算法
利用单片机进行复杂函数计算的一种高精度算法

利用单片机进行复杂函数计算的一种高精度算法

作者:逯伟

来源:《现代电子技术》2013年第17期

摘要:单片机在移动设备中的应用越来越广泛,要求单片机具备的数据处理能力越来越强。但单片机的资源有限,如何让其能够解算复杂函数变得非常具有实际意义,也成为困扰许多专家的难题之一。介绍了一种在汇编环境下如何利用插值法与查表法相结合进行复杂三角函数运算的方法。利用这种算法可使三角函数的解算精度达到0.000 1,存储空间减小了97%,对有关内容进行了比较全面的阐述。此方法计算精度高、应用范围广、易掌握。

关键词:单片机;复杂函数计算;插值法;查表法

中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2013)17?0163?02

0 引言

在各种测量及控制中,通常都要求仪器体积小、便携,所以单片机在测量仪器中的应用日益广泛。现代工业仪器智能化要求越来越高,对复杂三角函数的计算量越来越大,以目前单片机所具有的资源和技术能力,要想达到上述要求,对技术人员的编程技巧要求是非常高的,工作量也非常庞大。基于以上原因,目前特别需要研究出一种对单片机资源要求低,易编程,又能保证很高计算精度要求的算法。

1 单片机处理数据的常见方法

单片机处理数据的方法有两种:浮点数和定点数。浮点数数据运算在汇编环境下编程复杂、运算量大,对内存容量要求高,且对单片机的运算速度有很高要求,这样普通51系列单片机无法满足复杂函数的计算。定点数在数据运算中运算量较小,编程简单,速度快,但是精度低,如何做到既不降低计算精度又能保证数据处理速度,成为复杂函数在51单片机使用技术中的一个难点。

2 基本原理

求解三角函数采用的是综合运用数学中的插值法和查表法。

单纯使用查表法求解三角函数值时,如果把0~90°每隔0.01°的函数值都存储在列表中,需要存9 000个函数值,一个函数值占两个字节,9 000个函数值就是18 000 B,如果精度要求更高所需的字节更大,程序非常庞大,还要占用很大的内存空间,一般51系列单片机的内存

已不能满足要求,必须进行存储器扩展,这样势必加大成本,增大体积和功耗。所以单纯查表法求解三角函数计算精度就不能够要求太高,否则占用存储空间太大。

利用插值法加查表法则既扩大了查表范围,又不占用很大内存,在表格中只存放小部分函数值,其他函数值利用其相邻两个函数值,通过插值计算来得到,插值计算采用定点数运算,计算速度比较快,编程简单。

3 结语

该算法大大节省了单片机的存储器空间,提高了运算速度,且精度相当高。这种算法也可用于余弦、正切、余切或其他函数计算,只需将公式中的参数做相应变动即可。特别适用于在低成本单片机上使用,该算法已应用到89C51单片机上,该单片机只有2 KB的存储容量,计算精度达到了1/10 000。使用这种单片机可以降低设备的成本,提高产品竞争力。所以这种算法,具有很好的推广前景。

参考文献

[1] 陈章龙.使用单片机大全[M].哈尔滨:黑龙江科技出版社,1988.

[2] 张友德.单片机微型机原理应用与实验[M].上海:复旦大学出版社,1992.

[3] 张毅刚.MCS?51单片机应用设计[M].2版.哈尔滨:哈尔滨工业大学出版社,2004.

[4] 徐瑞华.单片机原理与接口技术[M].北京:人民邮电出版社,2008.

[5] 白其峥.数学建模案例分析[M].北京:海洋出版社,2000.

[6] 李火林.数学模型及方法[M].南昌:江西高校出版社,1997.

[7] 陈理荣.数学建模导论[M].北京:北京邮电大学出版社,1999.

[8] 丁丽娟.数值计算方法[M].北京:北京理工大学出版社,1997.

[9] 刘满仓,雷卫宁,王春成.基于ARM的高精度数据采集系统设计[J].现代电子技术,2012,35(8):12?14.

[10] 郎杰,邹建彬,张尔扬.基于FPGA的高精度相位差测量算法实现[J].现代电子技术,2011,34(11):28?30.

作者简介:逯伟女,陕西西安人,中级职称。主要研究方向为光电数据处理。

高精度计算

高精度计算 由于计算机具有运算速度快,计算精度高的特点,许多过去由人来完成的烦琐、复杂的数学计算,现在都可以由计算机来代替。 计算机计算结果的精度,通常要受到计算机硬件环境的限制。例如,pascal 要计算的数字超过19位,计算机将按浮点形式输出;另一方面,计算机又有数的表示范围的限制,在一般的微型计算机上,实数的表示范围为l0-38 -l038。例如,在计算N!时,当N=21时计算结果就超过了这个范围,无法计算了。这是由计算机的硬件性质决定的,但是,我们可以通过程序设计的方法进行高精度计算(多位数计算)。 学习重点 1、掌握高精度加、减、乘、除法。 3、理解高精度除法运算中被除数、除数、商和余数之间的关系。 4、能编写相应的程序,解决生活中高精度问题。 学习过程 一、高精度计算的基本方法 用free pascal程序进行高精度计算,首先要处理好以下几个基本问题:【数据的输入与保存】 (1)一般采用字符串变量存储数据,然后用length函数测量字符串长度确定其位数。 (2)分离各位数位上的数字 分离各数位上的数通常采用正向存储的方法。以“163848192”为例,见下表:A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2] A[1] 1 6 3 8 4 8 1 9 2 基本原理是A[1]存放个位上的数字,A[2]存放十位上的数字,……依此类推。即下标小的元素存低位上的数字,下标大的元素存高位上的数字,这叫“下标与位权一致”原则。 【计算结果位数的确定】 (1)高精度加法:和的位数为两个加数中较大数的位数+1。 (2)高精度减法:差的位数为被减数和减数中较大数的位数。 (3)高精度乘法:积的位数为两个相乘的数的位数之和。 (4)高精度除法:商的位数按题目的要求确定。 【计算顺序与结果的输出】 高精度加、减、乘法,都是从低位到高位算起,而除法相反。输出结果都是从高位到低位的顺序,注意:高位上的零不输出(整数部分是零除外)。 高精度加法 【参考程序】 var a,b:array[1..10000] of byte; i,w,la,lb:integer;

算法时间复杂度的计算

算法时间复杂度的计算 [整理] 基本的计算步骤 时间复杂度的定义 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。 根据定义,可以归纳出基本的计算步骤 1. 计算出基本操作的执行次数T(n) 基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。 2. 计算出T(n)的数量级 求T(n)的数量级,只要将T(n)进行如下一些操作: 忽略常量、低次幂和最高次幂的系数 令f(n)=T(n)的数量级。 3. 用大O来表示时间复杂度 当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。 一个示例: (1) int num1, num2; (2) for(int i=0; i

第4章_隶属函数的确定方法

第4章隶属函数的确定方法 在模糊理论的应用中,我们面临的首要问题就是建立模糊集的隶属函数。对于一个特定的模糊集来说,隶属函数不仅基本体现了它所反映的模糊概念的特性,而且通过量化还可以实现相应的数学运算和处理。因此,“正确地”确定隶属函数是应用模糊理论恰如其分地定量刻划模糊概念的基础,也是利用模糊方法解决各种实际问题的关键。 然而,建立一个能够恰如其分地描述模糊概念的隶属函数,并不是一件容易的事情。其原因就在于一个模糊概念所表现出来的模糊性通常是人对客观模糊现象的主观反映,隶属函数的形成过程基本上是人的心理过程,人的主观因素和心理因素的影响使得隶属函数的确定呈现出复杂性、多样性,也导致到目前为止如何确定隶属函数尚无定法,没有通用的定理或公式可以遵循。 但即便如此,鉴于隶属函数在模糊理论中的重要地位,确定隶属函数的方法还是受到了特别的重视,至今已经提出了十几种确定隶属函数的方法,而且其中一些方法基本上摆脱了人的主观因素的影响。本章将选择4种经常使用的、具有代表性的方法予以介绍,它们是:直觉方法,二元对比排序法,模糊统计试验法,最小模糊度法。 4.1 直觉方法 直觉的方法就是人们用自己对模糊概念的认识和理解,或者人们对模糊概念的普遍认同来建立隶属函 例1、“正好”、“热”和“很热” 图1 空气温度的隶属函数 例2根据人们对汽车行驶速度中“慢速”、“中速”和“快速”这三个概念的普遍认同,可以给出描

图2 汽车行驶速度的隶属函数 虽然直觉的方法非常简单,也很直观,但它却包含着对象的背景、环境以及语义上的有关知识,也包含了对这些知识的语言学描述。因此,对于同一个模糊概念,不同的背景、不同的人可能会建立出不完全相同的隶属函数。例如,模糊集A = “高个子”的隶属函数。如果论域是“成年男性”,其隶属函数的曲线如图3(a )所示;而如果论域是“初中一年级男生”,其隶属函数的曲线则为图3(b )所示的情形。 (a) (b) 图3 不同论域下“高个子”的隶属函数 4.2 二元对比排序法 建立一个模糊集的隶属函数,实际上可以看成是对论域中每个元素隶属于某个模糊概念的程度进行比较、排序。但一般来讲,人们对多个事物的同时比较存在着度量上的困难,为此Saaty 教授在设计层次分析法时提出了两两比较的策略。借鉴两两比较排序的思想,人们提出了确定隶属函数的二元对比排序法。 二元对比排序方法就是通过对多个事物进行两两对比来确定某种特征下的顺序,由此来决定这些事物对该特征的隶属函数的大致形状。这种方法更适用于根据事物的抽象性质由专家来确定隶属函数的情形,可以通过一名专家或者一个委员会,甚至一次民意测验来实施,是一种比较实用的确定隶属函数的方法。 二元对比排序方法的基本步骤如下:设X = {x , y , z , …} 为给定的论域。对于某一模糊概念A ,任取一

高精度数计算

C语言课程设计-高精度数计算 源代码: #include #include #include int main() { int a,b; int c; int i; int *Numa,*Numb,*Sum; printf("请输入第一个加数的位数(小于1000位),加数由系统随机生成:"); scanf("%d",&a); printf("请输入第二个加数的位数(小于1000位),加数由系统随机生成:"); scanf("%d",&b); Numa=(int *)malloc(a*sizeof(int)); Numb=(int *)malloc(b*sizeof(int)); srand( (unsigned)time( NULL ) );//产生随机种子 //随机产生加数a for(i=0;i

{ printf("%d",Numa[i]); } printf("\n"); printf("随机产生的加数b为:\n"); for(i=0;i=b)//加数a大 { c=a; Sum=(int *)malloc((c+1)*sizeof(int)); tag=0; for(i=0;i=10)//如果和大于10 { Sum[c-i]=Sum[c-i]-10; tag=1;//标志进位 } else { tag=0; } } else//有进位 { Sum[c-i]=Numa[a-i-1]+Numb[b-i-1]+1; if(Sum[c-i]>=10)//如果和大于10 { Sum[c-i]=Sum[c-i]-10; tag=1;//标志进位 } else { tag=0; } }

算法的时间复杂性

算法的时间复杂度计算 定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0;(一次) for(i=1;i<=n;i++) (n次) for(j=1;j<=n;j++) (n^2次) sum++;(n^2次) 解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

三角函数值的计算

第一章直角三角形的边角关系 2. 30°,45°,60°角的三角函数值 一、学生知识状况分析 学生的知识技能基础:本节课前学生已经学习了正切、正弦、余弦的定义。 学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。 二、教学任务分析 本节课教学目标如下: 知识与技能: 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。 2.能够进行30°、45°、60°角的三角函数值的计算 3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小 过程与方法: 经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力。 情感态度与价值观: 培养学生把实际问题转化为数学问题的能力。 教学重点: 能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小 教学难点:三角函数值的应用 三、教学过程分析 本节课设计了六个教学环节:复习巩固、活动探究、讲解新课、知识应用、

A C B b a c 小结与拓展、作业布置。 第一环节 复习巩固 活动内容:如图所示 在 Rt △ABC 中,∠C=90°。 (1)a 、b 、c 三者之间的关系是 , ∠A+∠B= 。 (2)sinA= ,cosA= , tanA= 。 sinB= ,cosB= ,tanB= 。 (3)若A=30°,则 c a = 。 活动目的:复习巩固上一节课的内容 第二环节 活动探究 活动内容: [问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度. 我们组设计的方案如下: 让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可. 我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

高精度运算(C++)

书籍是人类知识的总结,书籍是全世界的营养品。——莎士比亚 万进制高精度运算(C++语言) 目前在青少年信息学奥林匹克竞赛中所涉及到的高精度计算包括加(addition)、减(subtract)、乘(multiply)、除(divide)四种基本运算。其中乘法分高精度数乘高精度数和单精度数乘高精度数两种,除法一般指两个单精度数相除,求解最终指定精度的解,找出循环节或输出指定精度位数的小数。(注:高精度数与单精度数均指整数) 主要的解题思想是利用在小学就曾学习过的竖式加减乘除法则,用程序语言实现存在的问题主要有如何存储高精度数的值,如何实现计算等问题。 一. 高精度数字的存储 我们日常书写一个高精度数字,左侧为其高位,右侧为其低位,在计算中往往会因进位(carry )或借位(borrow )导致高位增长或减少,因此我们定义一个整型数组(int bignum[maxlen])从低位向高位实现高精度整数的存储,数组的每个元素存储高精度数中的一位。(如下表所示) 高精度数 3(高位) …… 7 9 4(低位) int bignum[i] n …… 2 1 显然,在C++语言中,int 类型(4个字节/32位计算机)元素存储十进制的一位数字非常浪费空间,并且运算量也非常大,因此常将程序代码优化为万进制,即数组的每个元素存储高精数字的四位。在后面的叙述过程中均以万进制为例介绍。(为什么选择万进制,而不选择更大的进制呢?十万进制中的最大值99999相乘时得到的值是9999800001超过4个字节的存储范围而溢出,从而导致程序计算错误。) 在实际编写程序代码过程中常作如下定义: const int base=10000; const int maxlen=1000+1; int bignum[maxlen]; 说明:base 表示进制为万进制,maxlen 表示高精度数的长度,1个元素能存储4个十进制位,1000个元素就存储4000个十进制位,而加1表示下标为0的元素另有它用,常用作存储当前高精度数字的位数。 二. 各种运算的程序实现 (一)加法: 首先回顾一下小学中曾学习的竖式加法,见图一: bignum1[] 9475 46 1243 bignum2[] 918 1324 341 carry 1 0 0 0 bignum_ans[] 1 393 1370 1584 图一 加法的计算过程 从上面的图中我们可以得知,做加法运算是从低位向高位进行,如果有进位,下一位进行相加时要加上进位,如果最高位已计算完还有进位,就要增加存储结果的位数,保存起进位来。关于进位的处理,往往定义单独变量carry 进行存储,程序实现的过程如图二所示: 初始化 进位carry 赋初始值0,结果的位数为两个加数的最大位数。 当前位超过最高位了? 处理当前位和进位 N Y 还有进位么? N 结束 处理进位 Y

算法的时间复杂度

算法的时间复杂度 Prepared on 22 November 2020

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。 当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。 此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。 常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶 O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。 下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。 1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^+5000nlgn 请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^ (4) h(n)=O(nlgn)

这里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤Cf(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。 ◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆(2)成立。与上同理。 ◆(3)成立。与上同理。 ◆(4)不成立。由于当n→∞时n^比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。 2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。 (1) i=1; k=0 while(i

三角函数快速算法

三角函数快速算法(反正切,正余弦,开平方) 2010-09-08 09:14:27| 分类:| 标签:|字号订阅 #define REAL float #define TAN_MAP_RES 0.003921569 /* (smallest non-zero value in table) */ #define RAD_PER_DEG 0.017453293 #define TAN_MAP_SIZE 256 #define MY_PPPIII 3.14159 #define MY_PPPIII_HALF 1.570796 float fast_atan_table[257] = { 0.000000e+00, 3.921549e-03, 7.842976e-03, 1.176416e-02, 1.568499e-02, 1.960533e-02, 2.352507e-02, 2.744409e-02, 3.136226e-02, 3.527947e-02, 3.919560e-02, 4.311053e-02, 4.702413e-02, 5.093629e-02, 5.484690e-02, 5.875582e-02, 6.266295e-02, 6.656816e-02, 7.047134e-02, 7.437238e-02, 7.827114e-02, 8.216752e-02, 8.606141e-02, 8.995267e-02, 9.384121e-02, 9.772691e-02, 1.016096e-01, 1.054893e-01, 1.093658e-01, 1.132390e-01, 1.171087e-01, 1.209750e-01, 1.248376e-01, 1.286965e-01, 1.325515e-01, 1.364026e-01, 1.402496e-01, 1.440924e-01, 1.479310e-01, 1.517652e-01, 1.555948e-01, 1.594199e-01, 1.632403e-01, 1.670559e-01, 1.708665e-01, 1.746722e-01, 1.784728e-01, 1.822681e-01, 1.860582e-01, 1.898428e-01, 1.936220e-01, 1.973956e-01, 2.011634e-01, 2.049255e-01, 2.086818e-01, 2.124320e-01, 2.161762e-01, 2.199143e-01, 2.236461e-01, 2.273716e-01, 2.310907e-01, 2.348033e-01, 2.385093e-01, 2.422086e-01, 2.459012e-01, 2.495869e-01, 2.532658e-01, 2.569376e-01, 2.606024e-01, 2.642600e-01, 2.679104e-01, 2.715535e-01, 2.751892e-01, 2.788175e-01, 2.824383e-01, 2.860514e-01, 2.896569e-01, 2.932547e-01, 2.968447e-01, 3.004268e-01, 3.040009e-01, 3.075671e-01, 3.111252e-01, 3.146752e-01, 3.182170e-01, 3.217506e-01, 3.252758e-01, 3.287927e-01, 3.323012e-01, 3.358012e-01, 3.392926e-01, 3.427755e-01, 3.462497e-01, 3.497153e-01, 3.531721e-01, 3.566201e-01, 3.600593e-01, 3.634896e-01, 3.669110e-01, 3.703234e-01, 3.737268e-01, 3.771211e-01, 3.805064e-01, 3.838825e-01, 3.872494e-01, 3.906070e-01, 3.939555e-01, 3.972946e-01, 4.006244e-01, 4.039448e-01, 4.072558e-01, 4.105574e-01, 4.138496e-01, 4.171322e-01, 4.204054e-01, 4.236689e-01, 4.269229e-01, 4.301673e-01, 4.334021e-01, 4.366272e-01, 4.398426e-01, 4.430483e-01, 4.462443e-01, 4.494306e-01, 4.526070e-01, 4.557738e-01, 4.589307e-01, 4.620778e-01, 4.652150e-01, 4.683424e-01, 4.714600e-01, 4.745676e-01,4.776654e-01, 4.807532e-01, 4.838312e-01,

给出以下算法的时间复杂度

第1章绪论 1、填空题 1.常见的数据结构有_________结构,_________结构,_________结构等三种。 2.常见的存储结构有_________结构,_________结构等两种。 3.数据的基本单位是_________,它在计算机中是作为一个整体来处理的。 4.数据结构中的结构是指数据间的逻辑关系,常见的结构可分为两大类,_________和_________。 2、应用题 1、给出以下算法的时间复杂度. void fun(int n) { int i=1,k=100; while(i

while(inext=p->next; p->next=s; (B)p->next=s; s->next=p->next;

隶属函数确定方法探讨

隶属函数确定方法探讨 袁 力,姜 琴 (郧阳师范高等专科学校,湖北丹江口442700) [摘 要]隶属函数描述了研究对象对于某模糊子集的隶属程度,是模糊数学最显著的特征,也是模糊数学应用中最关键的参量.隶属函数有很多不同的确定方法,确定过程中又有很多人为的技巧.文中就隶属函数的一般确定方法以及其它确定方法进行了探讨. [关键词]模糊;隶属函数;隶属度 [中图分类号]TP391.4 [文献标识码]A [文章编号]1008—6072(2009)06—0044—03 1 引言 模糊集理论由Zadeh首次提出后,得到了迅速的发展,并广泛应用于控制系统、人工智能、数据挖掘、模式识别等领域.在应用模糊集理论时,一个不容忽视的问题就是隶属函数的构建,它是正确运用该模糊集理论的关键所在. 隶属函数是模糊数学最显著的特征,它描述了事物的不确定性,加上其值域与概率密度函数的值域相同,使人容易将两者混淆.虽然两者都研究不确定性,但却有着本质的区别.概率论研究的是事物出现与否所表现的不确定性,而事物本身的含义十分明确.比如某市车祸的概率,车祸本身没有什么不明确,只是它发生的频数是个不确定的数,但徘徊在某一数值的左右.然而模糊数学所研究的不确定性则是事物本身.这种事物被说成是甲还是乙,有时到了模棱两可的地步,最后只能说它是甲的程度是多少,是乙的可能性是多少,即这一事物是否符合某一概念没有明确的界限,仅用隶属度对符合的程度进行度量. 隶属函数的确定有很多方法,可以通过模糊统计,可以通过推理,可以采用二元对比排序的方法,可以通过“学习”逐步修改、调整和完善,也可以采用典型的隶属函数作为近似[1].确定的过程是客观的,但期间又可以加上人为的技巧. 2 常见的方法 2.1 模糊统计法 概率统计是通过大量随机试验确定某事物发生的概 率,如食物A在n次试验中出现了k次,则A事物出现的概率表示为: P A=Lim N→∞ k n (1) 一般在n足够大时,P A值稳定于[0,1]中某一个数 值,从而得到A发生的概率. 模糊统计在形式上类似于概率统计,并且都是用确定性手段研究不确定性.但两者属于不同的数学模型,它们有如下的重要区别. 随机试验最基本的要求是:在每次试验中,事件A发生(或不发生)必须是确定的.在各次试验中,A是确定的,基本空间Ω中的元素ω是随机变动的.做n次试验,计算A发生的频率= “ω∈A”的次数 n (2) 随着n增大,通常会表现出频率稳定性.频率稳定所在的那个数,叫做在某种条件下的概率. 模糊统计试验的基本要求[2]是:要对论域上固定的元 μ 0是否属于论域上一个可变动的普通集合A3(A3作为模糊集A的弹性疆域),作一个确切的判断.这要求在每次试验中,A3必须是一个取定的普通集合.在各次试验中,μ0是固定的,而A3在随机变动,做n次试验,计算μ0对A的隶属频率=“ μ 0∈A3”的次数 n (3) 随着n的增大,隶属频率也会呈现稳定性.频率稳定值就叫做μ0对A的隶属度. 在进行模糊统计试验时,必须遵循一个原则:被调查的对象一定要对模糊词汇的概念熟悉并有用数量近似表达这一概念的能力;对原始数据要进行初步分析,删去明 2009年12月郧阳师范高等专科学校学报Dec.2009第29卷第6期Journal of Yunyang Teachers College Vol.29No.6 3 33[收稿日期]2009-08-10 [作者简介]袁 力(1977-),男,湖北丹江口人,郧阳师范高等专科学校数学系讲师,硕士,主要从事统计与金融数 学方面的研究. YYSZXB44

高精度运算(C++)

万进制高精度运算(C++语言) 目前在青少年信息学奥林匹克竞赛中所涉及到的高精度计算包括加(addition)、减(subtract)、乘(multiply)、除(divide)四种基本运算。其中乘法分高精度数乘高精度数和单精度数乘高精度数两种,除法一般指两个单精度数相除,求解最终指定精度的解,找出循环节或输出指定精度位数的小数。(注:高精度数与单精度数均指整数) 主要的解题思想是利用在小学就曾学习过的坚式加减乘除法则,用程序语言实现存在的问题主要有如何存储高精度数的值,如何实现计算等问题。 一. 高精度数字的存储 我们日常书写一个高精度数字,左侧为其高位,右侧为其低位,在计算中往往会因进位(carry )或借位(borrow )导致高位增长或减少,因此我们定义一个整型数组(int bignum[maxlen])从低位向高位实现高精度整数的存储,数组的每个元素存储高精度数中的一位。(如下表所示) 高精度数 3(高位) …… 7 9 4(低位) int bignum[i] n …… 2 1 显然,在C++语言中,int 类型(4个字节/32位计算机)元素存储十进制的一位数字非常浪费空间,并且运算量也非常大,因此常将程序代码优化为万进制,即数组的每个元素存储高精数字的四位。在后面的叙述过程中均以万进制为例介绍。(为什么选择万进制,而不选择更大的进制呢?十万进制中的最大值99999相乘时得到的值是9999800001超过4个字节的存储范围而溢出,从而导致程序计算错误。) 在实际编写程序代码过程中常作如下定义: const int base=10000; const int maxlen=1000+1; int bignum[maxlen]; 说明:base 表示进制为万进制,maxlen 表示高精度数的长度,1个元素能存储4个十进制位,1000个元素就存储4000个十进制位,而加1表示下标为0的元素另有它用,常用作存储当前高精度数字的位数。 二. 各种运算的程序实现 (一)加法: 首先回顾一下小学中曾学习的坚式加法,见图一: bignum1[] 9475 46 1243 bignum2[] 918 1324 341 carry 1 0 0 0 bignum_ans[] 1 393 1370 1584 图一 加法的计算过程 从上面的图中我们可以得知,做加法运算是从低位向高位进行,如果有进位,下一位进行相加时要加上进位,如果最高位已计算完还有进位,就要增加存储结果的位数,保存起进位来。关于进位的处理,往往定义单独变量carry 进行存储,程序实现的过程如图二所示: 图二 加法的实现过程 初始化 进位carry 赋初始值0,结果的位数为两个加数的最大位数。 当前位超过最高位了? 处理当前位和进位 N Y 还有进位么? N 结束 处理进位 Y

算法时间复杂度计算示例

基本计算步骤 示例一: (1) int num1, num2; (2) for(int i=0; i

1.3《三角函数的计算》教学设计

《三角函数的计算》教学设计 一、学生知识状况分析 1. 本章前两节学生学习了三角函数的定义,三角函数sinα、cosα、tanα值的具体意义,并了解了30°,45°,60°的三角函数值. 2. 学生已经学会使用计算器进行有理数的加、减、乘、除及平方运算,对计算器的功能及使用方法有了初步的了解. 二、教学任务分析 随着学习的进一步深入,当面临实际问题的时候,如果给出的角不是特殊角,那么如何解决实际的问题,为此,本节学习用计算器计算sinα、cosα、tanα的值,以及在已知三角函数值时求相应的角度.掌握了用科学计算器求角度,使学生对三角函数的意义,对于理解sinα、cosα、tanα的值∠α之间函数关系有了更深刻的认识. 根据学生的起点和课程标准的要求,本节课的教学目标和任务是: 知识与技能 1. 经历用计算器由已知锐角求三角函数的过程,进一步体会三角函数的意义. 2. 能够用计算器进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题. 过程与方法 在实际生活中感受具体的实例,形成三角形的边角的函数关系,并通过运用计算器求三角函数值过程,进一步体会三角函数的边角关系.

情感态度与价值观 通过积极参与数学活动,体会解决问题后的快乐. 感悟计算器的计算功能和三角函数的应用价值 教学重点:用计算器求已知锐角的三角函数值.能够用计算器辅助解决含三角函数值计算的实际问题. 教学难点:能够用计算器辅助解决含三角函数值计算的实际问题三、教学过程分析 三、教学过程分析 本节课设计了六个教学环节:复习引入,探索新知、例题讲解,随堂练习,课堂小结,布置作业,课外探究. 第一环节 复习引入 活动内容: 用多媒体展示学生前段时间所学的知识,提出问题,从而引入课题. 直角三角形的边角关系: 三边的关系: 222a c b =+,两锐角的关系: ∠A+∠B=90°. 边与角的关系: 锐角三角函数 c a B A ==cos sin ,c b B A ==sin cos ,b a A =tan , 特殊角30°,45°,60°的三角函数值. 引入问题: 1、你知道sin16°等于多少吗? 1sin A ?4 A =∠=2、已知则

高精度算法(c语言版)

高精度算法 #include #include #include #include int an,bn,fa=1,fb=1; /* 把an,bn,k设为全局变量,an纪录第一个高精度数组的位数,bn纪录第二个高精度数组的位数,k纪录输出结果的位数*/ char b1[250], b2[250]; /*纪录需要计算的两个高精度数据*/ void input(int a1[],int a2[]) /*函数input为输入函数,用来纪录两个待计算的高精度数据,以数组首地址为参数.以实现返回两个高精度数据*/ { int i,ai=1,bi=1; scanf ( "%s%s", b1, b2 ); /*输入两个高精度数据*/ an = strlen( b1 ); /*an纪录b1的位数*/ bn = strlen( b2 ); /*bn纪录b2的位数*/ if(b1[0]==45) { an--; fa=-1;ai=0;} /*判断数组的符号*/ if(b2[0]==45) { bn--; fb=-1;bi=0;} for (i=0; i0||q) { if(an>bn) k=an; else k=bn; /*用k纪录结果的最小位数*/ for(i=0;i=0;i--) printf("%d",c[i]); /*输出结果*/ return; } else subtraction(a,b,1); return;

如何计算时间复杂度

如何计算时间复杂度 求解算法的时间复杂度的具体步骤是: ⑴ 找出算法中的基本语句; 算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。 ⑵ 计算基本语句的执行次数的数量级; 只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。 ⑶ 用大Ο记号表示算法的时间性能。 将基本语句执行次数的数量级放入大Ο记号中。 如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如: for (i=1; i<=n; i++) x++; for (i=1; i<=n; i++) for (j=1; j<=n; j++) x++; 第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为 Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环 语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和 Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者是有效算法,把这类问题称为P类问题,而把后者称为NP问题。 这只能基本的计算时间复杂度,具体的运行还会与硬件有关。

相关文档
最新文档