静电场及其应用精选试卷测试卷(含答案解析)

静电场及其应用精选试卷测试卷(含答案解析)
静电场及其应用精选试卷测试卷(含答案解析)

静电场及其应用精选试卷测试卷(含答案解析)

一、第九章静电场及其应用选择题易错题培优(难)

1.如图所示,一带电小球P用绝缘轻质细线悬挂于O点。带电小球Q与带电小球P处于同一水平线上,小球P平衡时细线与竖直方向成θ角(θ<45°)。现在同一竖直面内向右下方缓慢移动带电小球Q,使带电小球P能够保持在原位置不动,直到小球Q移动到小球P位置的正下方。对于此过程,下列说法正确的是()

A.小球P受到的库仑力先减小后增大

B.小球P、Q间的距离越来越小

C.轻质细线的拉力先减小后增大

D.轻质细线的拉力一直在减小

【答案】AD

【解析】

【分析】

【详解】

画出小球P的受力示意图,如图所示

当小球P位置不动,Q缓慢向右下移动时,Q对P的库仑力先减小后增大,根据库仑定律可得,QP间的距离先增大后减小;轻质细线的拉力则一直在减小,当Q到达P的正下方时,轻质细线的拉力减小为零,故选AD。

2.如图所示,用两根等长的绝缘细线各悬挂质量分别m A和m B的小球,分别带q A和q B的正电荷,悬点为O,当小球由于静电力作用张开一角度时,A球悬线与竖直线夹角为α,B 球悬线与竖直线夹角为β,则()

A .

sin sin A B m m βα= B .sin sin A B B A m q m q βα

= C .

sin sin A B q q βα

= D .两球接触后,再静止下来,两绝缘细线与竖直方向的夹角变为α'、β',有

sin sin sin sin ααββ'

='

【答案】AD 【解析】 【分析】 【详解】

AB .如下图,对两球受力分析,根据共点力平衡和几何关系的相似比,可得

A m g OP F PA =库,

B m g OP

F PB

=库 由于库仑力相等,联立可得

A B m PB

m PA

= 由于sin cos OA PA αθ?=

,sin cos OB PB β

θ

?=,代入上式可得

sin sin A

B m m βα

= 所以A 正确、B 错误;

C .根据以上分析,两球间的库仑力是作用力与反作用力,大小相等,与两个球带电量的多少无关,所以不能确定电荷的比例关系,C 错误;

D .两球接触后,再静止下来,两绝缘细线与竖直方向的夹角变为α'、β',对小球A 、B 受力分析,根据上述的分析,同理,仍然有相同的关系,即

sin sin A B m m βα'

='

联立可得

sin sin sin sin ααββ'

='

D 正确。 故选AD 。

3.质量分别为A m 和B m 的两小球带有同种电荷,电荷量分别为A q 和B q ,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为1θ与

()212θθθ>。两小球突然失去各自所带电荷后开始摆动,最大速度分别为A v 和B v ,最大

动能分别为kA E 和kB E 。则( )

A .A m 一定大于

B m B .A q 一定小于B q

C .A v 一定大于B v

D .kA

E 一定大于kB E

【答案】CD 【解析】 【分析】 【详解】

A .对小球A 受力分析,受重力、静电力、拉力,如图所示

根据平衡条件,有

1A tan F m g

θ=

A 1tan F

m g θ=

?

同理,有

B 2

tan F

m g θ=

?

由于12θθ>,故A B m m <,故A 错误;

B .两球间的库仑力是作用力与反作用力,一定相等,与两个球是否带电量相等无关,故B 错误;

C .设悬点到AB 的竖直高度为h ,则摆球A 到最低点时下降的高度

11

1

(1)cos cos h h h h θθ?=

-=- 小球摆动过程机械能守恒,有

2

12

mg h mv ?=

解得

2v g h =??由于12θθ>,A 球摆到最低点过程,下降的高度A B h h ?>?,故A 球的速度较大,故C 正确;

D .小球摆动过程机械能守恒,有

k mg h E ?=

k (1cos )(1cos )tan FL

E mg h mgL θθθ

=?=-=

- 其中cos L θ相同,根据数学中的半角公式,得到

k 1cos (1cos )cos ()cos tan tan sin 2

FL E FL FL θθ

θθθθθ-=

-==? 其中cos FL θ相同,故θ越大,动能越大,故kA E 一定大于kB E ,故D 正确。

故选CD 。

4.如图()a 所示,光滑绝缘水平面上有甲、乙两个点电荷.0t =时,甲静止,乙以

6m /s 的初速度向甲运动.此后,它们仅在静电力的作用下沿同一直线运动(整个运动过程

中没有接触),它们运动的v t -图像分别如图()b 中甲、乙两曲线所示.则由图线可知( )

A .两电荷的电性一定相反

B .甲、乙两个点电荷的质量之比为2:1

C .在20t ~时间内,两电荷的静电力先减小后增大

D .在30t ~时间内,甲的动能一直增大,乙的动能先减小后增大 【答案】BD 【解析】 【详解】

A .由图象0-t 1段看出,甲从静止开始与乙同向运动,说明甲受到了乙的排斥力作用,则知两电荷的电性一定相同,故A 错误.

B .由图示图象可知:v 甲0=0m/s ,v 乙0=6m/s ,v 甲1=v 乙1=2m/s ,两点电荷组成的系统动量守恒,以向左为正方向,由动量守恒定律得:

+=+m v m v m v m v 甲甲0乙乙0甲甲1乙乙1

代入数据解得:

m 甲:m 乙=2:1

故B 正确;

C .0~t 1时间内两电荷间距离逐渐减小,在t 1~t 2时间内两电荷间距离逐渐增大,由库仑定律得知,两电荷间的相互静电力先增大后减小,故C 错误.

D .由图象看出,0~t 3时间内,甲的速度一直增大,则其动能也一直增大,乙的速度先沿原方向减小,后反向增大,则其动能先减小后增大,故D 正确.

5.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()

3P L ,则以下说法正确的是 ( )

A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷

B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少

C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动

D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为2

34Qq

k L

【答案】BD 【解析】 【详解】

A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;

B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;

C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;

D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ?=,由叠加原理可得,P 点的场强为

22

32sin 2

sin 60(2)4P M kQ kQ E E L L

θ?

=== 所以电场力即为向心力为

3Qq

F k

= 故D 正确。

6.如图所示,竖直墙面与水平地面均光滑且绝缘,两个带有同种电荷的小球A、B分别处于竖直墙面和水平地面上,且处于同一竖直平面内,若用图示方向的水平推力F作用于小球B,则两球静止于图示位置,如果将小球B向左推动少许,待两球重新达到平衡时,则两个小球的受力情况与原来相比()

A.竖直墙面对小球A的弹力减小

B.地面对小球B的弹力一定不变

C.推力F将增大

D.两个小球之间的距离增大

【答案】ABD

【解析】

【分析】

【详解】

整体法可知地面对小球B的弹力一定不变,B正确;假设A球不动,由于A、B两球间距变小,库仑力增大,A球上升,库仑力与竖直方向夹角变小,而其竖直分量不变,故库仑力变小A、B两球间距变大,D正确;但水平分量减小,竖直墙面对小球A的弹力减小,推力F将减小,故A正确,C错误。

故选ABD。

7.真空中相距L的两个固定点电荷E、F所带电荷量大小分别是Q E和Q F,在它们共同形成的电场中,有一条电场线如图中实线所示,实线上的箭头表示电场线的方向.电场线上标出了M、N两点,其中N点的切线与EF连线平行,且∠NEF>∠NFE.则()

A.E带正电,F带负电,且Q E >Q F

B.在M点由静止释放一带正电的检验电荷,检验电荷将沿电场线运动到N点

C.过N点的等势面与EF连线垂直

D.负检验电荷在M点的电势能大于在N点的电势能

【答案】C

【解析】

【分析】

【详解】

根据电场线的指向知E带正电,F带负电;N点的场强是由E、F两电荷在N点产生场强的叠加,电荷E在N点电场方向沿EN向上,电荷F在N点产生的场强沿NF向下,合场强水平向右,可知F电荷在N点产生的场强大于E电荷在N点产生的场强,而,所

以由点电荷场强公式知,A错误;只有电场线是直线,且初速度为0或初

速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.而该电场线是一条曲线,所以运动轨迹与电场线不重合.故在M点由静止释放一带正电的检验电荷,不可能沿电场线运动到N点,B错误;因为电场线和等势面垂直,所以过N点的等势面与过N点的切线垂直,C正确;沿电场线方向电势逐渐降低,,再根据,q为负电荷,知,D错误;故选C.

【点睛】

只有电场线是直线,且初速度为0或初速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.电场线和等势面垂直.N点的切线与EF连线平行,根据电场线的方向和场强的叠加,可以判断出E、F的电性及电量的大小.先比较电势的高低,再根据,比较电势能.

8.如右图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,.电荷量相等、符号相反的两个电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至P点,则O点的场强大小变为E2.E1与E2之比为( )

A.1:2 B.2:1 C.D.

【答案】B

【解析】

【分析】

【详解】

试题分析:由得:;若将N点处的点电荷移至P点,则O点的场强大小变为E2,知两点电荷在O点的场强夹角为1200,由矢量的合成知,得:,B对

9.如图所示:在光滑绝缘水平面上,ABCD分布在边长为L的正方形四个顶点。在A和D处分别固定电荷量为Q的正点电荷,B处固定电荷量为Q的负点电荷,O点为两对角线

的交点,静电力常量为k 。关于三个点电荷形成的静电场,下列说法中正确的是( )

A .O 处电场强度大小为22kQ

L B .C 处电场强度大小为

2

kQ L C .从O 到C 的过程中电场强度大小逐渐增大 D .从O 到C 的过程中电场强度大小先减小后增大 【答案】A 【解析】 【分析】 【详解】

A .A 、D 两点点电荷在O 点的场强相互抵消,故O 点的场强大小等于

B 点的负点电荷Q 在O 点产生的场强,即

2

2

22()O kQ

E k

L L == 故A 正确;

B .A 、D 两点点电荷在

C 处的合场强为

122

22C Q kQ

E k

L L

== 方向OC 方向,B 点的负点电荷Q 在C 点产生的场强为

2222(2)C kQ

E k

L

L ==

方向沿CO 方向,故C 处的场强为

12222

21(2)

22C C C kQ kQ kQ

E E E L L L =-=

-= 方向沿OC 方向,故B 错误;

CD .从O 到C 的过程中电场强度大小先减小后增大再减小,故CD 错误。 故选A 。

10.如图所示,半径为R 的绝缘光滑半球内有A 、B 两个带电小球(均可视为点电荷),A

球固定在半球的最低点,B 球静止时,A 、B 两球之间的距离为R ,由于漏电,B 球缓慢向A 球靠近,设A 、B 两球之间的库仑力大小为F ,光滑半球对B 球的弹力大小为N ,A 、B 两球之间的距离用x 表示,则F -x 、N -x 的关系图象正确的是( )

A .

B .

C .

D .

【答案】B 【解析】 【分析】 【详解】

以B 球为研究对象,受到重力G ,A 球对它的斥力F 和光滑半球对B 的弹力N 三个力作用,受力如图:

由几何关系可知,力的三角形F BN 合与三角形ABO 相似,则有

=G N F R OB AB

因为G 、R 、OB 不变,则N 不变,AB 在减小,因此F 减小 选项B 正确,ACD 错误。 故选B 。

11.如图所示,导体球A 与导体球壳B 同心,原来都不带电,也不接地,设M 、N 两点的场强大小为E M 和E N ,下列说法中正确的是

A .若使A 带电,则E M ≠0,E N =0

B .若使B 带电,则E M ≠0,E N ≠0

C .若使A ,B 两球分别带上等量异种电荷,则E M ≠0,E N =0

D .若使A 球带电,B 球接地,则

E M =0,E N =0 【答案】C 【解析】 【详解】

A .如果A 带电,则会感应

B 内部带异种电荷,外部电性与A 相同,那么E M ≠0,E N ≠0;故A 错误;

B .如果B 带电,由于同种电荷的排斥,电荷只分布在外表面E 内=0,即E M =0,E N ≠0,B 错误;

C .如果A 、B 带等量异种电荷,A 与B 的静电感应使B 外表面恰好无电荷量,则E M ≠0,E N =0,故C 正确;

D .如使A 球带电,B 球接地,是接地屏蔽,

E M ≠0,E N =0,D 错误。

12.如图,质量分别为 m A 和 m B 的两小球带有同种电荷,电荷量分别为 q A 和 q B ,用绝缘细线悬挂在天花板上.平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为 θ1 与 θ2(θ1>θ2).两小球突然失去各自所带电荷后开始摆动,最大速度分别 v A 和 v B ,最大动能分别为 E kA 和 E kB .则( )

A .m A :m

B =tan θ1: tan θ2 B .q A :q B =1: 1

C .1

2

:tan

tan 2

2A B v v θθ=

D .1

2

:tan :tan

2

2

kA kB E E θθ=

【答案】D 【解析】 【分析】 【详解】

A .对A 球进行受力分析可知,A 所受到的库仑力大小为

A 1tan F m g θ=

同理B 受到的库仑力为

B 2tan F m g θ=

两球间的库仑力大小相等方向相反,因此

A B 21:tan :tan m m θθ=①

A 错误;

B .两个小球间的库仑力总是大小相等,与两小球带电量大小无关,因此无法求出两球电量

间的关系,B错误;

CD.由于两球处于同一高度,则

1122

cos cos=

l l h

θθ

=②

又由于两球下摆的过程中,机械能守恒,则

2

k

1

(1cos)

2

mgl E mv

θ

-==③

由②③联立可得

1

1

2

2

1

1

cos

1

1

cos

v

v

θ

θ

-

=

-

由①②③联立利用三角函数关系可得

1

kA

2

kB

tan

2

tan

2

E

E

θ

θ

=

C错误,D正确。

故选D。

13.如图所示,三个质量均为m的带电小球(球A、球B和球C)被三根不可伸长的绝缘细绳(绳①、绳②和绳③)系于O点,三球平衡时绳②处于竖直方向,且悬点O、球A、球B和球C所在位置正好组成一个边长为a的正方形。已知球A、球B和球C均带正电,电荷量分别为1q、2q和3q,若

2

1

2

kq

mg

a

=,静电力常量为k,重力加速度为g,则下列说法正确的是()

A.1q和3q可以不相等

B.绳①和绳②的拉力之比为1:2

C.绳②的拉力为2mg

D.122:1

q q=

:

【答案】B

【解析】

【分析】 【详解】

A .因②竖直,可知两边电荷AC 对

B 的库仑力相等,因距离相等可知A

C 带电量必然相等,选项A 错误;

BC .因为2

12kq mg a

=,且13q q =,则

1

2CA F mg =

= 对A 受力分析可知绳①的拉力

1132

cos 45cos 452T mg mg mg =

+= 对ABC 整体受力分析可得

212cos 453T T mg +=

解得

23

2

T mg =

12T T =:选项B 正确,C 错误;

D .对球B ,设A 对B 以及C 对B 的库仑力均为F ,则

22cos 45T mg F =+

解得

4

F =

12

2

4

q q k

F a == 结合2

12kq mg a

=可得

12q q =:

选项D 错误。 故选B 。

14.如图所示,用两根长度均为l 的绝缘轻绳将正电的小球悬挂在水平的天花板下,小球的质量为m ,轻绳与天花板的夹角均为θ=30°,小球正下方距离也为l 的A 处有一绝缘支架上同样有一个带电小球,此时轻绳的张力均为0,现在将支架水平向右移动到B 处,B 处位置为与竖直方向的夹角为θ处,小球处于静止状态,则( )

A .A 处的带电小球带负电

B .A 处与B 处库仑力大小之比为23

C .支架处于B 处,左边绳子张力为3

mg D .支架处于B 处,右边绳子张力为3

mg + 【答案】C 【解析】 【分析】 【详解】

A 当绝缘支架上的带电小球在A 位置时,轻绳的张力均为0,说明上方小球受力平衡,受力分析可知其只受重力和库仑力,因此A 处的带电小球带正电,故选项A 错误; B.根据库仑定律可得

2

Qq F k

r = 因此在A 处与B 处库仑力大小之比等于带点小球距离平方的倒数比,即

2

22

1A B F r F r = 因为θ=30°,所以

:4:3A B F F =

故选项B 错误;

CD. 支架处于B 处,两球间的库仑力为

3344

B A F F mg =

= 设左、右绳的张力分别为F 1和F 2,则由正交分解可得

123

sin 30cos33040cos mg F F +=

123

cos30sin 30304

cos F F mg mg ++=

解得

1

3 2

F mg mg =-

2

3 4

F mg mg

=-

故选项C正确,选项D错误。

故选C。

15.已知均匀带电球壳内部电场强度处处为零,电势处处相等.如图所示,正电荷均匀分布在半球面上,Ox为通过半球顶点与球心O的轴线.A、B为轴上的点,且OA=OB.C、D 为直径上的两点,且OC=OD.则下列判断正确的是( )

A.A点的电势与B点的电势相等

B.C点的电场强度与D点的电场强度不相同

C.A点的电场强度与B点的电场强度相同

D.在A点由静止开始释放重力不计的带正电粒子,该粒子将沿AB做匀加速直线运动【答案】C

【解析】

【分析】

【详解】

试题分析:由题意可知半球面右边的电场线是水平向右的,沿电场线方向电势逐渐降低,A点电势高于B点电势,A错误;有对称性原理及电场叠加可知C点和D点场强一样;B 错误;B错误;均匀带电半球相当于一个均匀带正电的球和半个均匀带负电的球,这个半球放在图的另一边.然后看AB两点,可以看到,AB两点在在上述涉及到的正电半球和负电半球中的相同的位置上.而由题目给出的条件,正电球在AB两点产生的电场为零.所以,A点正电半球产生的电场强度相当于负电半球产生的电场强度,而与B点的环境比较,唯一的区别是电荷符号相反,从而电场大小相同,只有可能有方向的区别,而分析可知,方向是相同的,故电场强度相等,C正确;电场线方向水平向右,所以在A点释放静止带正电的微粒(重力不计),微粒将作加速运动,距离远后电场力减小,所以是变加速运动,D错误;

二、第九章静电场及其应用解答题易错题培优(难)

16.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O,半径为r,A、B、C、D分别是圆周上的点,其中A、C分别是最高点和最低点,BD连线与水平方向夹角为

37?。该区间存在与轨道平面平行的水平向左的匀强电场。一质量为m 、带正电的小球在

轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6?=,cos370.8?=),求: (1)小球所受的电场力大小;

(2)小球经过A 点时对轨道的最小压力。

【答案】(1)4

3

mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】

(1)由题意可知 :

tan 37mg

F

?= 所以:

43

F mg =

(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:

2sin 37B v mg

m r

?= 小球由B 运动到A 的过程根据动能定理有:

()

22

111sin 37cos3722

B A mgr Fr mv mv ??--+=-

小球在A 点时根据牛顿第二定律有:

2A

N v F mg m r

+=

联立以上各式得:

2N F mg =

由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.

17.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远

小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .

①求该双星系统中每个星体的线速度大小v ;

②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为

12

p m m E G

r

=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12

p q q E k

r

=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线

速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.

【答案】(1

)①v =②202M G L -(2)①2

-2ke r

②模型Ⅰ的简化是合理的

【解析】

(1)① 22

002/2

M M v G L L =,解得

v =

②双星系统的动能22

00k 0012222GM GM E M v M L L =?==

,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =2

02M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=2

2ke r

又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2

-2ke r

对于模型Ⅱ:对电子有:22121mv ke r r =, 解得 22

112

mv r r ke

= 对于原子核有:22222Mv ke r r =, 解得 22

222

Mv r

r ke = 因为r 1+r 2=r ,所以有2222

1222

+mv r Mv r

r ke ke =

解得E k Ⅱ=222

1211222ke mv Mv r

+=

又因电势能2p

e E k r =-Ⅱ

,所以E Ⅱ= E k Ⅱ+E p Ⅱ=2

-2ke r

即模型Ⅰ、Ⅱ中系统的能量相等,均为2

-2ke r

②解法一:

模型Ⅰ中:对于电子绕原子核的运动有22I I 2=mv ke m v r r ω=,解得2

I 2

=

ke v m r ω 模型Ⅱ中:

对电子有:2

2II 1II 21=mv ke m v r r ω=, 解得2

II 2

1=ke v m r ω

对于原子核有:22

222

=ke Mv M v r r ω=

, 因ω1=ω2,所以mv Ⅱ=Mv

又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动,因此ω1=ω2=ω,即可视为v Ⅰ=v Ⅱ.故从线速度的角度分析模型Ⅰ的简化是合理的. ②解法二:

模型Ⅰ中:对于电子绕原子核的运动有22I 2mv ke r r =,解得I v

模型Ⅱ中:

库仑力提供向心力:2

22122=ke mr Mr r

ωω== (1)

解得

12=r M r m

; 又因为r 1+r 2=r 所以1=M r m M + 2=m

r m M

+

带入(1)式:ω=

所以:1v r ω=Ⅱ2

v r ω=又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.

18.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O

点,下端系一质量21010m .-=?kg 、带电量8

2.010q -=?C 的小球(小球的大小可以忽

略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,

sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;

(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;

(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.

【答案】(1) 63.7510E =?N/C (2)2

1.2510F W J -=? (3)0.31t s =

【解析】 【详解】

(1)带电小球静止,受到合力等于零,电场力与重力的关系是:

tan Eq mg α=,即tan mg

E q

α=

代入数值计算得电场场强大小:63.7510/E N C =?

(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:

sin (cos )0F W Eql mg l l αα-+-=

所以sin tan (cos )F mg

W q mg l l q

ααα=

-- 代入数值解得电场场强大小:2

1.2510F W J -=?

(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为

5

cos 4

mg F mg α=

= 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。 小球的运动可等效为在某个场强大小为5

4

g mg '=,方向与竖直方向成α角斜向右下的场中做简谐运动,其周期为

225/4

l l T g g =='

故从C到B 最短的时间

1

0.10.31

4

t T s

π

===

19.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2?一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用?当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点?已知静电力恒量为k,求:

(1)AB两处的点电荷在c点产生的电场强度的大小;

(2)物块在运动中受到的阻力的大小;

(3)带电物块在电场中运动的总路程?

【答案】(1)

(2)

(3)

【解析】

【分析】

【详解】

(1)设两个正点电荷在电场中C点的场强分别为E1和E2,在C点的合场强为E C;则

1

2

()

2

kQ

E

L

;2

2

3

()

2

kQ

E

L

则E C=E1-E2

解得:E C=

2

32

9

kQ

L

(2)带电物块从C点运动到D点的过程中,先加速后减速.AB连线上对称点φC=φD,电场力对带电物块做功为零.设物块受到的阻力为f,

由动能定理有:?fL=0?

1

2

mv02

解得:2

1

2

f mv

L

(3)设带电物块从C到O点电场力做功为W电,根据动能定理得:

22

00

11

222

L

W f n mv mv

-??-

解得:()20

1

21

4

W n mv

-

相关主题
相关文档
最新文档