传感器检测技术实验报告材料

传感器检测技术实验报告材料
传感器检测技术实验报告材料

《传感器与检测技术》

实验报告

姓 名: 学 号: 院 系:仪器科学与工程学院 专 业: 测控技术与仪器 实 验 室: 机械楼5楼 同组人员: 评定成绩: 审阅教师:

传感器第一次实验

实验一 金属箔式应变片——单臂电桥性能实验

一、实验目的

了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。

二、基本原理

电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝

长度相对变化。

三、实验器材

主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤

1.根据接线示意图安装接线。

2.放大器输出调零。

3.电桥调零。

4.应变片单臂电桥实验。

测得数据如下,并且使用Matlab的cftool工具箱画出实验点的线性拟合曲线:

050

100150200

246810x

y

untitled fit 1y vs. x

由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。

系统灵敏度 (即直线斜率),非线性误差=

=

五、思考题

单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。

答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。

实验三 金属箔式应变片——全桥性能实验

一、实验目的

了解全桥测量电路的优点

二、基本原理

全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ?=?=?=?时,其桥路输出电压3o U EK ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。

三、实验器材

主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。

四、实验步骤

1.根据接线示意图安装接线。

2.放大器输出调零。

3.电桥调零。

4.应变片全桥实验

数据记录如下表所示,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:

重量(g)0 20 40 60 80 100 120 140 160 180 200 电压(mv)0 5 9 13 18 22 27 31 36 40 45

拟合值(mv)0.04

5

4.5

1

8.9

7

13.4

4

17.9

22.3

7

26.8

3

31.2

9

35.7

6

40.2

2

44.6

9

|△m x| 0.04

5 0.4

9

0.0

3

0.44 0.10 0.37 0.17 0.29 0.24 0.22 0.31

050100150200

10

20

30

40

x

y

2

由matlab拟合结果得到,其相关系数为0.9995,比上个实验中的单臂电桥线性度差,跟理论存在误差。

系统灵敏度V/Kg (即直线斜率),非线性误差δ= =,

可见全桥的灵敏度是单臂电桥的4倍可以看出,但非线性度却高于单臂电桥。

按照实验结果,对于灵敏度的测量时符合理论值的,但是非线性误差是有误的,分析其原因可能是测量过程中的仪器调节、读数误差、以及仪器本身存在的问题。我们在做实验的过程中,仪器存在一定问题,总是很难调节或者得到稳定的数据,不够精准。

五、思考题

1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以;(2)不可以。

答:(2)不可以。因为电桥平衡的条件为:R1R3=R2R4。

2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图2-8,能否如何利用四组应变片组成电桥,是否需要外加电阻。

图2-8 受拉力时应变式传感器圆周面展开图

答:能够利用它们组成电桥。

(a)图中4个应变片对称分布于测试棒上,检测试件横向拉力,如果已知试件泊松比

则可知试件纵向应变。任意选取两个电阻接入电桥的对边,输出为两倍的横向应变,并选取外加电阻使电桥平衡;

(b)图中R3、R4应变片检测试件纵向拉力,R1、R2检测横向拉力,可以选取R3、R4接入电桥对边,输出为两倍的纵向应变。需要接入与应变片阻值相等的电阻组成电桥。

3.金属箔式应变片单臂、半桥、全桥性能比较

基本原理如图2-9(a)、(b)、(c)。

比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论。

注意:比较实验中,(a)、(b)、(c)放大电路的放大器增益必须相同。

(a)单臂(b)半桥(c)全桥

图2-9 应变电桥

①单臂

U0 =U1-U3

=〔(R1+△R1)/(R1+△R1+R2)-R4/(R3+R4)〕E

=〔(1+△R1/R1)/(1+△R1/R1+R2/R2)-(R4/R3)/(1+R4/R3)〕E

设R1=R2=R3=R4,且△R1/R1<<1。

U0≈(1/4)(△R1/R1)E

所以电桥的电压灵敏度:S=U0/(△R1/R1)≈kE=(1/4)E

②半桥

U0≈(1/2)(△R1/R1)E

S=(1/2)E

③全桥

U0≈(△R1/R1)E

S=E

答:由以上可以看出,在灵敏度方面全桥的灵敏度最高,半桥次之,单臂最差,非线性度,单臂的非线性度最高即线性度最差,全桥的线性度最好

线性度:单臂>单桥>全桥

理论上: 灵敏度: 单臂 4E S =

,半桥 2E

S = ,全桥 S E =。 非线性度:单臂100%2K K ε

δε

=

?+,半桥 0δ=,全桥 0δ=。

如前所述,由于外界因素,导致我们的非线性误差的计算存在很大偏差,但是就根据理论分析来看,全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差。

全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差。

4、金属箔式应变片的温度影响

电阻应变片的温度影响主要有两个方面。敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致而产生附加应变。当温度变化时,即使被测体受力状态不变,输出也会有变化。

① 按照全桥性能实验步骤,将200g 砝码放在砝码盘上,在数显表上读取数值Uo 1。

② 将主机箱中直流稳压电源+5V 、地(⊥)接于实验模板的加热器+6V 、地(⊥)插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uo t 。

(U ot -U 01)即为温度变化的影响。

温度变化产生的相对误差:

%

10001

1

ot ?-=

U U U o δ

②如何消除金属箔式应变片温度影响?

答:可以采用温度自补偿法或者桥路补偿法。

实验五差动变压器的性能实验

一、实验目的

了解差动变压器的工作原理和特性。

二、基本原理

差动变压器由一只初级线圈和二只次级线圈及一个铁芯组成,根据外层排列不同,有两段式和三段式,本实验采用三段式。

当被测物体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化。将两只次级反向串接,引出差动电势输出。其输出电势反映出被测物体的移动量。

三、实验器材

主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器、万用表、导线等。

四、实验步骤

1.按照接线图连接线路。

2.差动变压器L1的激励电压从主机箱中的音频振荡器的Lv端引入,音频振荡器的频率为4~5KHz,本次实验选取4561Hz,输出峰峰值为2V。

3.松开测微头的紧固螺钉,移动测微头的安装套使变压器次级输出的Vp-p较小。然后拧紧螺钉,仔细调节测微头的微分筒使变压器的次级输出Vp-p为最小值(零点残余电压,约为0.035v),定义为位移的相对零点。

4.从零点开始旋动测微头的微分筒,每隔0.2mm(微分筒转过20格)从示波器上读出示波器的输出电压Vp-p,记入表格中。一个方向结束后,退到零点反方向做相同的实验。

5.根据测得数据画出Vop-p —X曲线,做出位移为±1mm、±3mm时的灵敏度和非线性误差。

数据表格如下:

实验曲线如下:

-2

-1.5-1-0.500.51 1.52

050

100

150

200

250

300

从图可以看出,数据基本呈线性,关于x=0对称的,在零点时存在一个零点误差,即零点残余电压,在15mv 左右。

位移为1mm 时, 灵敏度为151V/m ,非线性度δ= =;

位移为-1mm 时,灵敏度为138.9V/m ,非线性度δ= =

由上式得到的非线性度可知,差动式变压器输出的非线性较好。

五、思考题

1.用差动变压器测量,振动频率的上限受什么影响?

答:受导线的驱肤效应和铁损等的影响,若频率过大超过某一数值时(该值视铁心材料而定)将会导致灵敏度下降。

2.试分析差动变压器与一般电源变压器的异同?

答:相同点:都利用了电磁感应原理。

不同点:一般变压器为闭合磁路,初、次级间的互感为常数;

差动变压器为开磁路,初、次级间的互感随衔铁移动而变,且两个次级绕组按

差动方式工作。

传感器第二次实验

实验九电容式传感器的位移实验

一、实验目的

了解电容式传感器结构及其特点。

二、基本原理

利用电容C=εA/d的关系式,通过相应的结构和测量电路,可以选择ε、A、d三个参数中保持二个参数不变,而只改变其中一个参数,就可以组成测介质的性质(ε变)、测位移(d变)和测距离、液位(A变)等多种电容传感器。

本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图3-6所示:由二个圆筒和一个圆柱组成。

设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/ln(R/r)。图中C1、C2是差动连接,当图中的圆柱产生X位移时,电容量的变化量为C=C1-C2=ε2 2 X/ln(R/r),式中ε2 、ln(R/r)为常数,说明C与位移X成正比,配上配套测量电路就能测量位移。

图3-6 电容式位移传感器结构

三、实验器材

主机箱、电容传感器、电容传感器实验模板、测微头。

四、实验步骤

图3-7 电容传感器位移实验原理图

1、按图3-8将电容传感器装于电容传感器实验模板上,实验模板的输出Vo1接主机箱电压表的Vin。

2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传3圈)。

3、将主机箱上的电压表量程(显示选择)开关打到2v档,合上主机箱电源开关;旋转测微头改变电容传感器的动极板位置使电压表显示0v ,再转动测微头(向同一个方向)5圈,记录此时测微头读数和电压表显示值,此点为实验起点值;

此后,反方向每转动测微头1圈即△x=0.5mm位移读取电压表读数,共转10圈读取相应的电压表读数(单行程位移方向做实验可以消除测微头的回差);将数据填入表3-7并作出x-v实验曲线。

X(mm) 16.741 16.24

1 15.74

1

15.24

1

14.74

1

14.24

1

13.74

1

13.24

1

12.74

1

12.24

1

V(mv) -316 -248 -188 -120 -60 -10 57 119 178 236 拟合值

(mv)

-287 -230 -174 -118 -61 -5 51 107 163 220 |△m x| 29 18 14 2 1 5 6 12 15 16

X(mm) 11.741 11.241

10.741 10.241 9.741 9.241 8.741 8.241 7.741 7.241

V(mv) 293 350 408 461 514 565 618 665 693 740 拟合值(mv) 276

332

389

445

501

557

614

670

726

783

|△m x |

17 18 19 16 13 8 4 15 33 37

表3-7 电容传感器位移与输出电压值

实验曲线

7

8

9

10

11

1213

14

15

16

17

-300

-200-1000100200300400500600700x

y

4、根据表3-7数据计算电容传感器的系统灵敏度S 和非线性误差

V/m

δ=

=;

五、思考题

试设计利用的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?

答:原理:测谷物的湿度时,稻谷的含水率不同,介电常数也不同,可确定谷物含水率,当电容的A与d为恒定值,C=f()中发生变化。

结构:传感器为上下两个极板,谷物从传感器之间穿过。

考虑因素:感应器是否与谷物接触的充分、谷物是否均匀的从传感器之间穿过以及直板传感器的边缘效应。

实验十一压电式传感器振动测量实验

一、实验目的

了解压电传感器的测量振动原理和方法。

二、基本原理

压电式传感器由惯性质量块和受压的压电片等组成。工作时传感器感受与试件相同的振动频率,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶体上产生正比于运动速度的表面电荷。

三、实验器材

主机箱、差动变压器实验模板、振动源、示波器。

四、实验步骤

1、按照连线图将压电传感器安装在振动台上,振动源的低频输入接主机箱的低频振荡器,其它连线按照图示接线。

2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出波形。

3、用示波器的两个通道同时观察低通滤波器输入和输出波形;在振动台正常振动时用手指敲击振动台,同时观察输出波形的变化。

4、改变振动源的频率,观察输出波形的变化。

低频振荡器的幅度旋钮固定至最大,调节频率,用频率表监测,用示波器读出峰峰值填入表格。

电气检测技术试验报告

本科生实验报告 实验课程电气测试技术学院名称核技术与自动化工程学院专业名称电气工程及其自动化学生姓名刘恒学生学号50504 指导教师王洪辉实验地点逸夫楼6C801 实验成绩 二O—四年十二月 填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用 A4 纸双面打印(封面双面打印)或在 A4 大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,倍行距,页边距采取默认形式(上下,左右,页 眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%间距:标准);页码用小五号字底 端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小 4 号宋体);关 键词(隔行顶格书写“关键词”三字,提炼 3-5 个关键词,用分号隔开,小 4 号黑体); 正文部分采用三级标题; 第1章XX (小二号黑体居中,段前行) XXXXX小三号黑体XXXXX(段前、段后行) 1.1.1 小四号黑体(段前、段后行) 参考文献(黑体小二号居中,段前行),参考文献用五号宋体,参照《参考文献著录规则

( GB/T 7714-2005)》。

实验一 金属箔式应变片性能 一单臂电桥 (910 型 998B 型) 1.1实验目的 (1) 了解金属箔式应变片,单臂单桥的工作原理和工作情况。 (2) 观察了解箔式应变片的结构及粘贴方式; (3) 测试应变梁变形的应变输出; (4) 熟悉传感器常用参数的计算方法。 实验原理 本实验说明箔式应变片及单臂单桥的工作原理和工作情况。应变片是最常用的测力 传感元 件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形 变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成 电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种, 当电桥平衡时,桥路对臂电阻乘积 R1、R2 R3 R4中,电阻的相对变化率分别为 2迟;用四个应变片组成二个差对工作,且 R R1=R2=R3=R4=R, R 仆 R 。 由此可知,单臂、半桥、全桥电路的灵敏度依次增大。 所需单元及部件:直流稳压电源、差动放大器、双平衡梁、测微头、一片应变片、 F/V 表、主、副电源。 旋转初始位置:直流稳压电源打到 2V 档,F/V 表打到2V 档,差动放大增益最大。 实验步骤 了解所需单元、部件在试验仪上的所在位置,观察梁上的应变片, 应变片为棕色衬 底箔式结 构小方薄片。上下二片梁的外表面各贴二片受力应变片和一片补偿应变片, 测 微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。 将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。将差动放大 器的输 出端与F/V 表的输入插口 Vi 相连;开启主、副电源;调节差动放大器的增益到 最大位置,然后调整差动放大器的调零旋钮使 F/V 表显示为零,关闭主、副电源。 相等,电桥输出为零,在桥臂四个电阻 R1/R1、差动状态工作,则有

现代检测技术 实验四__K热电偶测温性能实验

检测技术实验报告 院(系):自动化专业:自动化姓名:学号: 同组人员: 评定成绩:评阅教师:

K热电偶测温性能实验 一、实验目的: 了解热电偶测温原理及方法和应用。 二、基本原理: 热电偶测量温度的基本原理是热电效应。将A和B二种不同的导体首尾相连组成闭合回路,如果二连接点温度(T,T0)不同,则在回路中就会产生热电动势,形成热电流,这就是热电效应。热电偶就是将A和B二种不同的金属材料一端焊接而成。A和B称为热电极,焊接的一端是接触热场的T端称为工作端或测量端,也称热端;未焊接的一端(接引线)处在温度T0称为自由端或参考端,也称冷端。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,如常用的K(镍铬-镍硅或镍铝)、E(镍铬-康铜)、T(铜-康铜)等等,并且有相应的分度(见附录)表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。 三、需用器件与单元: 主机箱、温度源、P t100热电阻(温度源温度控制传感器)、K热电偶(温度特性实验传感器)、温度传感器实验模板、应变传感器实验模板(代mV发生器)。 四、实验步骤: 热电偶使用说明:热电偶由A、B热电极材料及直径(偶丝直径)决定其测温范围,如K(镍铬-镍硅或镍铝)热电偶,偶丝直径3.2mm时测温范围0~1200℃,本实验用的K热电偶偶丝直径为0.5mm,测温范围0~800℃;E(镍铬-康铜),偶丝直径3.2mm时测温范围-200~+750℃,实验用的E热电偶偶丝直径为0.5mm,测温范围-200~+350℃。由于温度源温度<200℃,所以,所有热电偶实际测温范围<200℃。 从热电偶的测温原理可知,热电偶测量的是测量端与参考端之间的温度差,必须保证参考端温度为0℃时才能正确测量测量端的温度,否则存在着参考端所处环境温度值误差。 热电偶的分度表(见附录)是定义在热电偶的参考端(冷端)为0℃时热电偶输出的热电

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

检测技术实验报告

《检测技术实验》 实验报告 实验名称:第一次实验(一、三、五) 院(系):自动化专业:自动化 姓名:XXXXXX学号: XXXXXXXX 实验室:实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1 应变式传感器安装示意图 图2-2 应变传感器实验模板、接线示意图图2-3 单臂电桥工作原理

通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 E为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端Ui短接,输出端Uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。Rw4的位置确定后不能改动。关闭主控台电源。 3、将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单 臂直流电桥,见图1-2,接好电桥调零电位器Rw1,直流电源±4V(从主控台接入),电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,调节Rw1,使电压表显示为零。 4、在应变传感器托盘上放置一只砝码,调节Rw3,改变差动放大器的增益,使数显电 压表显示2mV,读取数显表数值,保持Rw3不变,依次增加砝码和读取相应的数显表值,直到200g砝码加完,计下实验结果,填入下表1-1,关闭电源。 五、实验数据处理: 利用matlab拟合出的曲线如下:

现代电子技术综合实验报告 熊万安

电子科技大学通信与信息工程学院实验报告 实验名称现代电子技术综合实验 姓名: 学号: 评分: 教师签字 电子科技大学教务处制

电子科技大学 实验报告 学生姓名:学号:指导教师:熊万安 实验地点:科A333 实验时间:2016.3.7-2016.3.17 一、实验室名称:电子技术综合实验室 二、实验项目名称:电子技术综合实验 三、实验学时:32 四、实验目的与任务: 1、熟悉系统设计与实现原理 2、掌握KEIL C51的基本使用方法 3、熟悉SMART SOPC实验箱的应用 4、连接电路,编程调试,实现各部分的功能 5、完成系统软件的编写与调试 五、实验器材 1、PC机一台 2、SMART SOPC实验箱一套 六、实验原理、步骤及内容 试验要求: 1. 数码管第1、2位显示“1-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;同时,每秒钟,蜂鸣器对应发出0.3秒的声音加0.7秒的暂停,对应第8秒到第1秒,声音分别为“多(高

音1)西(7)拉(6)索(5)发(4)米(3)莱(2)朵(中音1)”;数码管第5位显示“-”号,数码管第6、7、8位显示温度值,其中第6、7位显示温度的两位整数,第8位显示1位小数。按按键转到任务2。 2. 停止声音和温度。数码管第1、2位显示“2-”,第3、4位显示学号的最后2位,第5位显示“-”号,第6到第8位显示ADC电压三位数值,按按鍵Key后转到任务3,同时蜂鸣器发出中音2的声音0.3秒; 3. 数码管第1、2位显示“3-”,第3、4位显示秒表程序:从8.0秒到1.0秒不断循环倒计时变化;调节电压值,当其从0变为最大的过程中,8个发光二极管也从最暗(或熄灭)变为最亮,当电压值为最大时,秒表暂停;当电压值为最小时,秒表回到初始值8.0;当电压值是其他值时,数码管又回到第3、4位显示从8.0秒到1.0秒的循环倒计时秒表状态。按按鍵Key回到任务1,同时蜂鸣器发出中音5的声音0.3秒。

网络安全实验报告

网络安全实验报告 姓名:杨瑞春 班级:自动化86 学号:08045009

实验一:网络命令操作与网络协议分析 一.实验目的: 1.熟悉网络基本命令的操作与功能。 2.熟练使用网络协议分析软件ethereal分析应用协议。 二.实验步骤: 1. ping tracert netstat ipconfig telnet netcat Arp route nslookup Ssh 2.协议分析软件:ethereal的主要功能:设置流量过滤条件,分析网络数据包, 流重组功能,协议分析。 三.实验任务: 1.跟踪某一网站如google的路由路径 2.查看本机的MAC地址,ip地址 输入ipconfig /all 找见本地连接. Description . . .. . : SiS 900-Based PCI Fast Ethernet Adapte Physical Address.. . : 00-13-8F-07-3A-57 DHCP Enabled. . .. . : No IP Address. . . .. . : 192.168.1.5 Subnet Mask . . .. . : 255.255.255.0 Default Gateway .. . : 192.168.1.1 DNS Servers . . .. . : 61.128.128.67 192.168.1.1

Default Gateway .. . : 192.168.1.1 这项是网关.也就是路由器IP Physical Address.. . : 00-13-8F-07-3A-57 这项就是MAC地址了.

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号: 913110200229 姓名:杨薛磊 序号: 83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

化工产品分析检测技术实验报告_图文.

前言 仪器分析是一种科学实验的手段,利用它可以获取所需要的信息,仪器分析实验的目的是通过实验教学,包括严格的基本操作训练,实验方案设计,实验数据处理,谱图解析,实验结果的表述及问题分析,掌握仪器的原理、结构、各主要部件的功能及操作技能,了解各种仪器分析技术在科学研究领域的应用,培养理论联系实际、利用掌握的知识解决问题的能力,培养良好的科学作风和独立从事科学实践能力。 在这门课程的学习中,我们了解了原子吸收光谱法、紫外可见分光光度法、红外光谱法、气相色谱法、高效液相色谱法、离子色谱法等仪器分析的方法。其中,我们重点学习了离子色谱法和原子吸收光谱法,并进行了实验操作,下面介绍一下原子吸收光谱法和离子色谱法测浓度。 二、原子吸收光谱法 1.原子吸收光谱法概述: 光谱仪器的产生原子吸收光谱作为一种实用的分析方法是从1955年开始的。这一年澳大利亚的瓦尔什(A.Walsh发表了他的著名论文“原子吸收光谱在化学分析中的应用”奠定了原子吸收光谱法的基础。50年代末和60年代初, Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。到了60年代中期,原子吸收光谱开始进入迅速发展的时期。电热原子吸收光谱仪器的产生1959年,苏联里沃夫发表了电热原子化技术的第一篇论文。电热原子吸收光谱法的绝对灵敏度可达到10-10g,使原子吸收光谱法向前发展了一步。原子吸收分析仪器的发展随着原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。

实验报告

?珠宝现代检测技术? 实验报告 姓名:邓林峰 班级:11宝石鉴定1班 学号:1120992 日期:2014-10-07

一、已知宝石红外光谱分析: 1天河石的红外光谱反射法分析:据图测试分析可得1130~1010cm-1强吸收区,由2~3个谱带组成。各谱带分别位于1130~1120、1027~1010、强度依次增大,900~400cm-1范围由较多的强度不大的吸收谱带构成一个复杂的弱吸收带,其中595、535cm-1出现中等吸收峰。

2碧玺的红外光谱反射法分析:据图测试分析可得1300cm-1左右有一个强吸收带谱带比较宽为BO3的振动;1200~950cm-1有3个强吸收风带为SiOSi、OsiO、OsiO的振动;820~550cm-1由3个中~弱的 吸收带组成为SiOSi振动。

3尖晶石的红外光谱反射法分析:据图测试分析可得大于750cm-1几本没有吸收峰带,725~500cm-1有2个明显的强吸收带,谱带较宽。 二、未知宝石红外光谱分析:

4据图测试分析可得:1200~900cm-1有2个强吸收带,强度递增;900~400cm-1有较多的强大不大的吸收谱带构成一个复杂的弱吸收带区,535cm出现中等吸收峰,该谱图测试跟长石类的钠长石、微斜长石极像,加上外铺助放大镜、天平、分光镜等工具判断该图是日光石的红外光谱图。 三、已知宝石紫外-可见光测试分析

5祖母绿紫外可见光谱分析:据图测试分析可得祖母绿在红区683nm、680nm、和637nm处有吸收线明显,662nm、646nm两个弱带,从 630nm~580nm有一微弱的普遍吸收,在蓝区477nm处有一弱谱线。

snort入侵检测实验报告

实验:入侵检测系统(Snort)的安装与配置 一、实验目的 学会WINDOWS下SNORT的安装与配置 二、实验环境 WinXP虚拟机 三、实验步骤与结果 一.在“我的电脑”中C盘中建立文件夹“zhangxiaohong” 二.安装WinPcap,运行WinPcap_4_1_2.zip,默认安装。 三.安装mysql,运行mysql-5.0.22-win32.zip,选择自定义安装选择安装路径 C:\zhangxiaohong\mysql 下,安装时注意:端口设置为3306(以后要用到),密码本实验设置成123 四.安装apache 1.运行apache_ 2.2.4-win32-x86-no_ssl.zip,安装到c:\zhangxiaohong\Apache 2.安装Apache,配置成功一个普通网站服务器 3.出现Apache HTTP Server 2.0.55的安装向导界面,点“Next”继续 4.确认同意软件安装使用许可条例,选择“I accept the terms in the license agreement”,点“Next”继续 5.将Apache安装到Windows上的使用须知,请阅读完毕后,按“Next”继续 6.选择安装类型,Typical为默认安装,Custom为用户自定义安装,我们这里选 择Custom,有更多可选项。按“Next”继续 7.出现选择安装选项界面,如图所示,左键点选“Apache HTTP Server 2.0.55”,

选择“This feature, and all subfeatures, will be installed on local hard drive.” 8.即“此部分,及下属子部分内容,全部安装在本地硬盘上”。点选 “Change...”,手动指定安装目录。 9.我这里选择安装在“C:\zhangxiaohong\Apache”,各位自行选取了,一般建议 不要安装在操作系统所在盘,免得操作系统坏了之后,还原操作把Apache配置文件 也清除了。选“OK”继续。 10.返回刚才的界面,选“Next”继续。 11.好了现在我们来测试一下按默认配置运行的网站界面,在IE地址栏打 “.0.1”,点“转到”,就可以看到如下页面,表示Apache服务器已安装成功。 12. 五.安装和配置PHP53、安装winpcap 1.解压php-5. 2.5-Win32到c:\zhangxiaohong\php 2.添加gd图形库支持 复制c:\zhangxiaohong\php\php5ts.dll和c: \zhangxiaohong\php\libmysql.dll文件到 C:\Windows\system32 复制c: \zhangxiaohong\php\php.ini-dist到C:\Windows文件夹并重命名为php.ini, 修改php.ini,分别去掉“extension=php_gd2.dll”和“extension=php_mysql.dll”前的分号, 3.并指定extension_dir="c:\zhangxiaohong\php\ext", 4.同时复制c:\zhangxiaohong\php\ext下的php_gd2.dll与php_mysql.dll到C:\Windows\system32 在C:\zhangxiaohong\apache\conf\httpd.conf中添加 LoadModule php5_module c:/zhangxiaohong/php/php5apache2.dll AddType application/x-httpd-php .php AddType application/x-httpd-php-source .phps AddType application/x-httpd-php .html AddType application/x-httpd-php .htm 5.重启Apache服务 在C:\zhangxiaohong\apache\htdocs目录下新建webinf.php(文件内容为:)并使用访问测试是否能够显示当前Apache服务器的信息,如果能够显示表明Apache和php工作基本正常 六.安装snort 1.运行Snort_2_9_0_5_Installer.exe 安装在C:\zhangxiaohong\Snort下即可, 运行C:\zhangxiaohong\Snort\bin\snort.exe或者在DOS中找到该位置, 如果安装Snort成功会出现一个可爱的小猪 2.并按照以下修改C:\zhangxiaohong\Snort\etc\snort.conf文件

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv) 作出V-X 曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V ,否则将可能烧毁霍尔元件。 六、思考题:

本实验中霍尔元件位移的线性度实际上反映的时什么量的变化 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。 实验二集成温度传感器的特性 一、实验目的: 了解常用的集成温度传感器基本原理、性能与应用。 二、基本原理: 集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。为克服温敏晶体管U b电压生产时的离散性、均采用了特殊的差分电路。集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。因此它具有不易受接触电阻、引

现代检测技术实验报告

实验一金属箔式应变片单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。 二、实验内容 将应变式传感器的其中一个应变片接入电桥作为一个桥臂,构成直流电桥,利用应变式传感器实现重量的测量。 三、实验所用仪表及设备 应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±4V电源、数字万用表。 四、实验步骤 1、根据图1-1,应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 图1-1 应变片传感器安装示意图 2、实验模板差动放大器调零,方法为: (1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。 3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。 4、在传感器托盘上放置1只砝码,读取数显表显示值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表1-1。

(2014春版)《现代检测技术》实验指导书

《现代检测技术》实验指导书 李学聪冯燕编 广东工业大学自动化学院 二0一四年二月

实验一 热电偶测温及校验 一、 实验目的 1.了解热电偶的结构及测温工作原理; 2.掌握热电偶校验的基本方法; 3.学习如何定期检验热电偶误差,判断是否及格。 二、 实验内容和要求 观察热电偶,了解温控电加热器工作原理; 通过对K 型热电偶的测温和校验,了解热电偶的结构及测温工作原理;掌握热电偶的校验的基本方法;学习如何定期检验热电偶误差,判断是否合格。 三、 实验主要仪器设备和材料 1. CSY2001B 型传感器系统综合实验台(下称主机) 1台 2. 温度传感器实验模块 1块 3. 热电偶 镍铬 ― 镍硅热电偶(K,作被校热电偶) 1支 镍铬 ― 锰白铜热电偶(E,作控温及标准热电偶) 1支 4. 2 1 3位数字万用表 1只 四、 实验方法、步骤及结果测试 1.观察热电偶,了解温控电加热器工作原理。 ①拿起热电偶并握紧黑柄,然后旋开热电偶的金属保护套,缓慢抽出,观察热电偶的外形。观察完后,将其旋紧并注意不可以让热电偶和金属保护套接触。 ②温控器:作为热源的温度指示、控制、定温之用。温度调节方式为时间比 例式,绿灯亮时表示继电器吸合电炉加热,红灯亮时加热炉断电。 2.仪器连线(如图1所示) ① 首先将综合实验台的电源开关置“关”, 然后将电源插头(实验桌前面)和加热炉电源插座插入综合实验台面板上的“220V 加热电源出”处; ② 将热电偶工作端插进温度传感器实验模块上的加热炉炉膛内, E 和K 分度热电偶的冷端按极性(注意区分“+”和“—”)分别接在“温控”和“测试”端。 3.开启电源 将综合实验台和加热炉的电源开关打“开”。 4.设定温度和测量数据将功能开关置“设定”,调节旋钮设定温度为50℃, 然后将开关拨至“测量”位置;当炉温达到设定值时, 等待3―5分钟炉温恒定后,分别测量“温控”和“测试”的电压(开关保持在“温控”状态),交互测量四次,把输出的热电势记录于表2中。 5. 继续将炉温提高到70℃、90℃、110℃、130℃和150℃,将热电偶输出的热电势记录于表2。

传感器实验报告详解

五邑大学 《传感器与电测技术》 实验报告 实验时间:2016年11月16日-17日实验班级:班 实验报告总份数: 4 份 实验教师:

信息工程学院(系) 611 实验室 __交通工程_____专业 班 学号 姓名_______协作者______________ 成绩:

实验一熟悉IAR 集成开发环境下C程序的编写 一.实验目的 1、了解IAR 集成开发环境的安装。 2、掌握在IAR 环境下程序的编辑、编译以及调试的方法。 二.实验设备 1、装有IAR 开发环境的PC 机一台 2、物联网开发设计平台所配备的基础实验套件一套 3、下载器一个 三.实验要求 1、熟悉IAR 开发环境 2、在IAR 开发环境下编写、编译、调试一个例程 3、实验现象节点扩展板上的发光二极管 D9 被点亮 三、问题与讨论 根据提供的电路原理图等资料,修改程序,点亮另一个LED 灯D8。(分析原理,并注释。) 先定义IO口,再初始化,最后点亮

一、实验目的与要求 1、理解光照度传感器的工作原理 2、掌握驱动光照度传感器的方法 二、实验设备 1、装有IAR 开发工具的PC 机一台 2、下载器一个 3、物联网开发设计平台一套 三、实验要求 1、编程要求:编写光照度传感器的驱动程序 2、实现功能:检测室内的光照度 3、实验现象:将检测到的数据通过串口调试助手显示,用手遮住传感器,观察数据变化。 四、实验讨论 讨论:光敏电阻的工作原理?光敏电阻是否为线性测量元件,为什么?常用于什么测量场合? 1.它的工作原理是基于光电效应。在半导体光敏材料两端装上电极引线,将其 封装在带有透明窗的管壳里就构成光敏电阻。为了增加灵敏度,两电极常做成梳状。半导体的导电能力取决于半导体导带内载流子数目的多少。当光敏电阻受到光照时,价带中的电子吸收光子能量后跃迁到导带,成为自由电子,同时产生空穴,电子—空穴对的出现使电阻率变小。光照愈强,光生电子—空穴对就越多,阻值就愈低。当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增大而增大。入射光消失,电子-空穴对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减小 2.不是线性测量元件,可以说光敏电阻在照度固定时是线性的。光敏电阻的阻 值随光照的增强而减少,但这个关系不是线性的。 3.常用作开关式光电转换器

一般检查实验报告

竭诚为您提供优质文档/双击可除 一般检查实验报告 篇一:检测技术实验报告 《检测技术实验》 实验名称:院(系):姓名:实验室:同组人员:评定成绩: 实验报告 第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万 用表、导线等。 三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应 变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,

式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。 图2-1应变式传感器安装示意图 图2-2应变传感器实验模板、接线示意图 图2-3单臂电桥工作原理 通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为 四、实验内容与步骤 1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R 2、R 3、 R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。 2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入 端ui短接,输出端uo2接数显电压表(选择2V档),

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

传感器与检测技术实验报告

“传感器与检测技术”实验报告 学号:913110200229 姓名:杨薛磊 序号:83

实验一电阻应变式传感器实验 (一)应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流 1位数显万用表(自备)。 稳压电源、电压表;应变式传感器实验模板、托盘、砝码; 4 2 四、实验步骤: 应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。 1、将托盘安装到传感器上,如图1—4所示。 图1—4 传感器托盘安装示意图

传感器检测技术实验报告

《传感器与检测技术》 实验报告 姓名:学号: 院系:仪器科学与工程学院专业:测控技术与仪器实验室:机械楼5楼同组人员: 评定成绩:审阅教师:

传感器第一次实验 实验一 金属箔式应变片——单臂电桥性能实验 一、实验目的 了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。 二、基本原理 电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=?为电阻丝长度相对变化。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1. 根据接线示意图安装接线。 2. 放大器输出调零。 3. 电桥调零。 4. 应变片单臂电桥实验。

由matlab 拟合结果得到,其相关系数为0.9998,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确。 系统灵敏度S = ΔU ΔW =0.0535V/Kg (即直线斜率),非线性误差= Δm yFS = 0.08 10.7 ×100%= 0.75% 五、思考题 单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。 答:(1)负(受压)应变片;因为应变片受压,所以应该选则(2)负(受压)应变片。 实验三 金属箔式应变片——全桥性能实验 一、实验目的 了解全桥测量电路的优点 二、基本原理 全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ?=?=?=?时,其桥路输出电压 3o U EK ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。 三、实验器材 主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。 四、实验步骤 1.根据接线示意图安装接线。 050 100150200 x y

测试技术与传感器实验报告..

测试技术与传感器 实验报告 班级: 学号: 姓名: 任课老师: 年月日

实验一:静压力传感器标定系统 一、实验原理: 压力传感器输入—输出之间的工作特性,总是存在着非线性、滞后和不重复性,对于线性传感器(如压力传感器)而言,就希望找出一条直线使它落在传感器每次测量时实际呈现的标准曲线内,并相对各条曲线上的最大偏离值与该直线的偏差为最小,来作为标定工作直线。标定工作线可以用直线方程=+表示。 y k x b 对压力传感器进行静态标定,就是通过实验建立压力传感器输入量与输出量 =+使它落之间的关系,得到实际工作曲线,然后,找出一条直线y kx b 在实际工作曲线内,由于方程中的x和y是传感器经测量得到的实验数据,因此一般采用平均斜率法或最小二乘法求取拟合直线。本实验通过最小二乘法求取拟合直线,并通过标定曲线得到其精度。即常用静态特性:工作特性直线、满量程输出、非线性度、迟滞误差和重复性。 二、准备实验: 1)调节活塞式压力计底座四个调节旋钮,使整个活塞式压力计呈水平状态如图6所示; 2)松开活塞筒缩紧手柄,将活塞系统从前方绕水平轴转动,使飞轮在水平转轴上方且活塞在垂直位置锁紧,调整活塞系统底座下部滚花螺母,使活塞筒上的水平仪气泡居于中间位置,如图6,并紧固调水平处的滚花螺母; 图6 调节好,已水平 3)被标定三个压力传感器接在截止阀上(参见下图7),打开截止阀、进气调速阀、进油阀,关闭进气阀和排气阀,将微调器的调节阀门旋出15mm左右位置; 4)打开空气压缩机,待空气压缩机压力达到0.4MPa时,关闭压气机。因为对于最大量程为0.25MPa的活塞式压力计,压力必须小于等于0.4MPa。 5)打开采集控制柜开关,检查串口连接情况。双击桌面的“压力传感器静态标定”软件,进入测试系统,如图7所示。

《现代测试技术及应用》实验指导书 1

西华大学实验报告(理工类) 开课学院及实验室:电气信息学院 测控技术综合实验室 实验时间 :2015年 5月 25 日 一、实验目的 1. 了解频率测量的基本原理。 2. 了解电子计数器测频/测周的基本功能。 3. 熟悉SJ-8002B 电子测量实验系统的基本操作。 二、实验原理 1. 测频原理 所谓“频率”,就是周期性信号在单位时间变化的次数。电子计数器是严格按照f =N /T 的定义进行测频,其对应的测频原理方框图和工作时间波形如图1-1 所示。从图中可以看出测量过程:输入待测信号经过脉冲形成电路形成计数的窄脉冲,时基信号发生器产生计数闸门信号,待测信号通过闸门进入计数器计数,即可得到其频率。若闸门开启时间为T 、待测信号频率为f x ,在闸门时间T内计数器计数值为N ,则待测频率为 f x = N /T (1-1) 若假设闸门时间为1s ,计数器的值为1000,则待测信号频率应为1000Hz 或1.000kHz ,此时,测频分辨力为1Hz 。 图1-1 测频原理框图和时间波形 2. 测周原理 由于周期和频率互为倒数,因此在测频的原理中对换一下待测信号和时基信号的输入通道就能完成周期的测量。其原理如图1-2所示。 图1-2 测周原理图

待测信号T x 通过脉冲形成电路取出一个周期方波信号加到门控电路,若时基信号(亦称为时标信号)周期为T o ,电子计数器读数为N ,则待测信号周期的表达式为 X O T N T =? (1-2) 例如:f x = 50Hz ,则主门打开1/50Hz (= 20ms )。若选择时基频率为f o = 10MHz ,时基T o =0.1μs ,计数器计得的脉冲个数为O X T T N = = 200000 个,如以ms 为单位,则计数器可读 得20.0000(ms) ,此时,测周分辨力为0.1μs 。 三、实验设备、仪器及材料 1. 计算机 1台 2. SJ-8002B 电子测量实验箱 1台 3. Q9连接线 1根 四、实验步骤(按照实际操作过程) 1. 实验准备 (1)按照图1-3所示的方法连线,S602接“no”端。 计算机 图1-3 实验连接框图 说明:被测输入信号有两种接法,一种是如图1-3所示的①,由外接信号发生器连接实验箱测频输入f x 的BNC 插座;一种是如图1-3所示的②,由实验箱上的信号源Aout1(或Aout2)连接实验箱测频输入 f x 的BNC 接头。 (2)先打开实验箱电源,电源指示灯“亮”。然后在PC 机上运行主界面程序,如图1-4所示。 图1-4 主程序界面 (3) 从主界面进入“电子测量实验室”,其界面如图1-5所示,最后选择实验二,软件则自动打开了电子计数器测频和测周的界面,实验运行电子计数器程序进行测量。

相关文档
最新文档