混凝土重力坝设计说明书

混凝土重力坝设计说明书
混凝土重力坝设计说明书

本科毕业设计

题目 A江水利枢纽实体重力坝设计

学院工学院

专业水利水电工程专业

毕业届别

姓名

指导教师

职称

目录

摘要 (1)

关键字 (1)

ABSTRACT (2)

KEYWORDS (2)

第一章枢纽任务及枢纽基本资料 (3)

第一节、枢纽任务 (3)

(一)发电 (3)

(二)灌溉 (3)

(三)防洪 (3)

(四)渔业 (3)

(五)过木 (3)

第二节、A江水利枢纽基本资料说明 (4)

(一)自然地理 (4)

(二)工程地质 (6)

(三)筑坝材料 (7)

(四)库区经济 (7)

(五)其他 (8)

第二章建筑物形式的选择 (8)

第一节、枢纽的建筑物组成 (8)

第二节、工程等别和建筑物级别 (8)

第三节、建筑物形式的选择 (10)

(一)挡水建筑物形式的选择 (10)

(二)泄水建筑物形式的选择 (10)

(三)水电站建筑物形式的选择 (11)

(四)其他建筑物形式的选择 (11)

第三章各主要建筑物设计 (11)

第一节、挡水坝剖面设计 (11)

(一)基本剖面 (12)

(二)实用剖面 (12)

(三)坝顶高程 (13)

(四)坝顶宽度 (14)

(五)坡率确定 (14)

(六)坝底宽度 (14)

第二节、非溢流坝稳定分析 (15)

(一)荷载计算 (15)

(二) 力矩计算 (22)

(三)稳定分析 (27)

(四)、应力强度校核 (29)

第三节、强度指标 (30)

第四节应力计算及校核 (31)

第四章溢流坝剖面设计 (38)

第一节、泄水方式的选择 (38)

第二节、溢流坝体型设计 (38)

(一)拟定孔口流量 (38)

(二)中孔出流 (39)

(三)底孔出流 (39)

(四) 单宽流量的确定 (39)

(五)溢流坝段总长度的确定 (40)

(六)计算堰顶水头H0 (41)

(七)定型设计水头H H (41)

(八)校核 (42)

(九)闸门高度 (42)

第三节、溢流坝剖面设计 (42)

(一)顶部曲线段确定 (42)

(二)消能形式的选择 (43)

(三)反弧段的确定 (44)

(四)中间直线段 (45)

(五)反弧段圆心的确定 (46)

(六)鼻坎型式的选择 (46)

第四节溢流坝剖面的确定 (48)

第五节、溢流坝荷载计算 (48)

(一)自重 (48)

(二)静水压力及扬压力(结合非溢流坝荷载计算) (49)

第六节、稳定分析 (51)

(一)抗剪强度 (51)

(二)抗剪断强度 (52)

第五章重力坝细部构造设计 (53)

第一节、坝顶构造 (53)

(一)非溢流坝 (53)

(二)溢流重力坝 (53)

(三)导水墙布置 (55)

第二节、分缝与止水 (55)

(一)分缝 (55)

(二)止水 (55)

第三节、廊道系统 (56)

(一)基础廊道 (56)

(二)坝体廊道 (56)

第四节、坝体防渗与排水 (56)

(一)坝体防渗 (56)

(二)坝体排水 (56)

第六章重力坝地基处理 (56)

第一节、地基开挖 (57)

(一)开挖原则 (57)

(二)开挖设计 (57)

(三)坝基清理 (58)

第二节、帷幕与排水 (58)

(一)帷幕灌浆的目的 (58)

(二)坝基排水 (59)

第三节、地基的固结灌浆 (60)

第四节、断层的处理 (61)

参考文献 (62)

A江水利枢纽实体重力坝设计

摘要:A江水利枢纽是以防洪和发电为主,兼有灌溉和渔业等功能的综合利用大型水利工程。根据设计任务书和所学过的相关知识对A江水利枢纽实体重力坝进行设计、校核验算。设计的基本容包括,坝型选择,枢纽组成建筑物选择,工程等别和建筑物级别确定,非溢流坝剖面设计,溢流坝剖面设计,坝身泄水孔设计,电站坝段设计,细部结构设计及地基处理等。根据设计总要求,设计容偏重于坝型选择与主要建筑物的设计。

非溢流坝采用实体重力坝,坝顶高程为189.47 m,坝顶宽11 m,最大坝高为95m。分别利用抗剪强度公式和材料力学法对非溢流实体重力坝进行了抗滑稳定分析、应力计算,对坝基面坝踵和坝址的主应力和正应力强度进行了校核。泄水建筑物采用坝顶溢流的表孔和坝身深式泄水孔相结合的方式。其中,表孔采用WES堰、挑流消能,共设3个表孔,其泄流能力为5529.87 m3/s。深式泄水孔采用有压式。共设6个深孔,其主要用是作排沙、预泄洪水等。表孔单孔宽为15 m,堰顶高程为170.83 m;深孔进口高程为144.47 m,孔径为3 m。电站采用坝后式厂房,

关键字:A江综合水利枢纽; 实体重力坝;非溢流坝设计;溢流坝设计;

Abstract

A river flood control and power generation Hydro Project is based, both irrigation and fisheries utilization of large-scale water features. According to the design plan and have learned the knowledge of A River Water Control entity gravity design, checking checking. The basic design of the content, including, dam type selection, hub consisting of buildings choice, engineering and building levels do not determine, non-overflow section design, spillway profile design, dam body scuppers design, power plant dam design, detailed design and ground handling. According to the general requirements of the design, content design emphasis on dam type selection and design of the main building.

Non-overflow concrete gravity dam , crest elevation of 189.47 m, crest width of 11 m, maximum height is 95 m. Shear strength formula, respectively, and the use of mechanical methods of non-overflow concrete gravity dam stability analysis, stress calculations, the dam foundation and dam surface dams are the main stress and stress intensity was checked. Discharge structure of the table with top of the dam overflow dam deep holes and scuppers type combination. Among them, the surface hole with WES weir, pick energy dissipation, a total of 3 tables in, its discharge capacity is 5529.87 Cubic meters per second. Deep type scuppers with a pressure type. A total of two deep, its main use is for flushing, pre-flood water. Table hole hole width 15 m, crest elevation of 170.83 m; deep import elevation of 144.47 m, pore size of 3 m. By dam toe power plant.

Keywords: A river's comprehensive water conservancy hub; Entity gravity dam; Design of non-overflow dam; Design of overflow dam

混凝土重力坝施工导流工程施工设计方案

一、工程概况 本水库是该流域水利水电建设规划中的主体工程之一。坝址位于某乡上游3km处,控制流域面积317km2,坝址处多年平均流量11.1m3/s,年径流总量3.5×108m3。本工程是一座兼有防洪、灌溉、发电、水产养殖效益的综合开发的水利枢纽工程。 工程总库容为1.6×108m3,正常高水位130.0m,死水位112.0m,设计洪水位130.74m,校核洪水位132.4m,水库有效库容达1.0×108m3,为年调节性水库。 该工程拦河坝的坝型为砼重力坝,电站布置在河床右侧的非溢流坝段的后面,为坝后式布置,坝顶全长315m,坝顶高程135m,其中左非溢流坝坝段长度为100m,溢流坝段长度为48m,右非溢流坝段长度167m,溢流坝段布置在河床中部偏左岸,设有3孔6m×12m的弧形工作闸门,堰顶高程124m,坝底最大宽度为54m,消能方式为挑流消能,在坝后式厂房处,非溢流坝段的最大底度为46.6m,厂房最大宽度为13.7m,厂坝联结段为4m。 电站装机容量为2×3200KW。引水压力钢管设在非溢流坝段,进水口底板高程为95.0m,管径1.75m,采用单机供水的布置方式。水轮机安装高程85.0m,设计工作水头36.0m,最大工作水头45.0m,最小工作水头27.0m。 工程枢纽处地形及工程布置见图1。 二、基本资料 1.工程水文资料 该水库库容在1×108m3以上,主坝工程为二级建筑物,坝址设计洪水过程线,是根据上游3km处水文观测站实测某年最大一次洪水典型加以修正,以洪峰、洪量控制进行放大而得。现将各设计频率洪水过程线、施工设计洪水等水文资料列于表1~表5。 3 3 3

重力坝设计说明书

重力坝设计说明书 《水工建筑物》课程设计 姓名: 专业: 学号: 基本资料一、基本情况 本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m , 坝基为微、弱风化的花岗岩层,致密坚硬,强度高, 抗冲能力强。 3水库死水位51.0m,死库容亿m,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。二、气候特征 1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现

期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km; 2、最大冻土层深度为125m; 3、河流结冰期平均为150天左右,最大冰层1.05m。三、工程地质条件 1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m; (2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m 左右,微风化层厚3-6m;坝址处河床岩面高程约在38m左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。 2、天然建筑材料:粘土料、砂石料和石料在坝址上下游2-3km均可开采,储量足。粘土料各项指标均满足土坝防渗体土料质量技术要求。砂石料满足砼重力坝要求。 大坝设计 一、工程等级 3 3本水库死库容亿m,最大库容未知,估算约为5亿m左右。根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。二、坝型确定

某水库技施设计说明书

1综合说明 1.1绪言 店头水库位于武安市午汲镇店头村南,南洺河支流上,属海河流域子牙河系。距下游八一水库约2km,控制流域面积9.1km2,大坝右岸为二六七二工厂。原设计总库容66.1万m3,兴利库容45.2万m3(本次设计总库容60.61万m3,兴利库容21.86万m3),是一座以防洪、灌溉于一体的小(2)型水库。水库原设计洪水标准为30年一遇,校核洪水标准为200年一遇。 水库建成于1976年,水库大坝为均质土坝,坝长110m,最大坝高18.0m,坝顶宽7m,大坝上游坡面设干砌石护坡,边坡为1:3.5。背水面边坡为1:2.5,坝顶设浆砌石防浪墙,墙高75cm,厚40cm。溢洪道位于大坝左侧,单孔净宽为6.5m,共两孔,中墩厚0.8m。溢洪道原设计最大泄量为128m3/s。溢洪道中设有子槽,子槽宽2.5m,深1m,溢洪道上设钢筋混凝土交通桥。大坝的右侧建有放水洞,洞径为0.8m,最大泄量1.09m3/s。由于资金缺乏,1976年完成大坝填筑及溢洪道开挖,未对溢洪道进行衬砌。1979完成了溢洪道主要部位衬砌,重做坝后反滤排水体,对放水洞渗漏进行处理,1980汛期发现坝体两端有斜横裂缝,于1981年进行坝体灌浆,灌浆效果明显,本次地质勘探未发现坝体及坝基有渗漏现象。 雨季该水库能够拦蓄洪水,店头水库主要保护下游200口人及二六七二工厂的安全和200亩耕地不被淹没。目前,由于水库存在诸多工程

隐患,长期带病运行,属于病险水库。为了消除大坝安全隐患,使水库发挥其效益,我院对店头水库进行除险加固的初步设计。 2011年8月27日,河北省水利厅在石家庄主持召开了《武安市店头水库除险加固工程初步设计报告》审查会。并于2012年3月9日以冀水规计[2012]61号文下达了《关于武安市店头水库除险加固工程初步设计报告的批复》。 本次具体工程项目如下: (1)降低溢洪道进口底高程,并对溢洪道进行扩挖。 (2)重建溢洪道交通桥。 (3)上游护坡拆除重建,重修坝顶防浪墙。 (4)修建上坝防汛路并采用泥结碎石路面。 (5)对放水洞进行封堵。 1.2工程任务及建筑物级别 店头水库防洪任务是通过水库拦蓄洪水,保证下游居民、农田的防洪安全。原店头水库总库容为66.1万m3,水库以防洪为主的小(2)型水库,水库设计洪水标准为30年一遇,校核洪水标准为200年一遇。根据《水利水电工程等级划分及洪水标准》(SL252-2000)的划分,店头水库属小(2)型水库,工程等别为Ⅴ等,主要建筑物级别为5级,次要建筑物级别为5级。

混凝土重力坝设计

XXXXXX 继续教育学院 毕业论文 题目 XXX水库 混凝土重力坝枢纽设计 专业水工 层次专升本 姓名 学号

前言 关键词:重力坝剖面稳定应力细部构造地基处理 本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。 整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。详见1号图SG-02下游立视图。 挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。 溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。 本枢纽溢流堰采用挑流方式消能,挑角取250。止水采用两道紫铜中间加沥青井的形式。坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。 以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。 本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。 编者 2008.9

重力坝设计计说明书

重力坝设计书 姓名:谢龙基 专业:水利水电建筑工程学号:1223111043

一基本资料 1.1工程概况 1、工程地理位置、工程任务和规模 燕云电站位于四川省阿坝藏族羌族自治州松潘境内的岷江河右岸一级支流热务沟梯级开发的第一级,该电站工程的主要任务是发电。 燕云电站为单一径流引水式电站,电站取水枢纽控制流域面积660.8km2。电站有效库容120万m3,电站设计引用流量16.99m3/s,设计工作水头127.51m,装机18.0MW(2×9.0MW)。根据《防洪标准》(GB50201-94)及《水电枢纽工程等级划分及设计安全标准(DL/T 5180—2003)》规定本工程为IV等小(1)型工程,主要水工建筑物为4级,次要水工建筑物和临时性水工建筑物为5级。坝体设计洪水标准为30年一遇,校核洪水标准为300年一遇。 2、对外交通规划及施工场地条件 燕云水电站位于松潘县燕云乡境内,首部枢纽、引水线路及厂址有松潘县至黑水县省级公路相通,并与国道213线相连,电站建设区距松潘县县城约109km,距成都约356km,对外交通较为方便。 鉴于各支洞无公路与主要交通公路相通,故需修建临时公路或施工便道,将各主要施工建筑物与对外交通相连。 工程区首部枢纽河段左岸有大片河滩地,施工布置较为方便;引

水隧洞各施工支洞及跨沟暗涵处施工均位于山坡或或沟内,施工场地较为狭窄,施工布置比较困难;厂区部位施工场地较为开阔,施工布置较为方便。 3、施工期间综合利用要求及通航 本工程以发电为主要目标,无航运、漂木等综合利用要求。施工期间无断流情况出现,对下游供水及厂、闸址间河道的生态环保用水均无影响。 4、供应条件 1)主要建筑材料供应 本电站施工对外交通运输以公路运输为主。工程区附近天然建材储量丰富,质量也满足本工程需要。 主要建筑材料钢材从成都采购,综合运距为356km,木材、油料、炸药由松潘县供应,综合运距为109km,水泥由拉法基水泥厂供应,综合运距为270km。 2)施工机械修配 工程施工机械设备与汽车修理可依托松潘县地方机械修理厂承担,工地只设机修站和汽车保养站。 3)施工供电和施工供水 本工程施工由当地地方电网供电。 热务沟及工程区内水质良好,施工生产、生活用水可抽取热务沟水或就近截取支沟水。 4)施工队伍及施工设备和物质采购

水利水电工程毕业设计英文翻译,混凝土重力坝

Concrete Gravity Dam The type of dam selected for a site depends principally on topographic, geologic,hydrologic, and climatic conditions. Where more than one type can be built, alternative economic estimates are prepared and selection is based on economica considerations.Safety and performance are primary requirements, but construction time and materials often affect economic comparisons. Dam Classification Dams are classified according to construction materials such as concrete or earth. Concrete dams are further classified as gravity, arch, buttress, or a combination of these. Earthfill dams are gravity dams built of either earth or rock materials, with particular provisions for spillways and seepage control. A concrete gravity dam depends on its own weight for structural stability. The dam may be straight or slightly curved, with the water load transmitted through the dam to the foundation material. Ordinarily, gravity dams have a base width of 0.7 to 0.9 the height of the dam. Solid rock provides the best foundation condition. However, many small concrete dams are built on previous or soft foundations and perform satisfactorily. A concrete gravity dam is well suited for use with an overflow spillway crest. Because of this advantage, it is often combined with an earthfill dam in wide flood plain sites.

《水工建筑物课程设计》-混凝土重力坝设计

《水工建筑物课程设计》 题目:混凝土重力坝设计 学习中心:江苏扬州市邗江区教师进修学校奥鹏学 习中心[11]VIP

1 项目基本资料 1.1 气候特征 根据当地气象局50年统计资料,多年平均最大风速14 m/s,重现期为50年的年最大风速23m/s,吹程:设计洪水位 2.6 km,校核洪水位3.0 km 。 最大冻土深度为1.25m。 河流结冰期平均为150天左右,最大冰厚1.05m。 1.2 工程地质与水文地质 1.2.1坝址地形地质条件 (1)左岸:覆盖层2~3m,全风化带厚3~5m,强风化加弱风化带厚3m,微风化厚4m。 (2)河床:岩面较平整。冲积沙砾层厚约0~1.5m,弱风化层厚1m左右,微风化层厚3~6m。坝址处河床岩面高程约在38m左右,整个河床皆为微、弱风化的花岗岩组成,致密坚硬,强度高,抗冲能力强。 (3)右岸:覆盖层3~5m,全风化带厚5~7m,强风化带厚1~3m,弱风化带厚1~3m,微风化厚1~4m。 1.2.2天然建筑材料 粘土料、砂石料和石料在坝址上下游2~3km均可开采,储量足,质量好。粘土料各项指标均满足土坝防渗体土料质量技术要求。砂石料满足砼重力坝要求。 1.2.3水库水位及规模 ①死水位:初步确定死库容0.30亿m3,死水位51m。 ②正常蓄水位:80.0m。 注:本次课程设计的荷载作用只需考虑坝体自重、静水压力、浪压力以及扬压力。 表一 本设计仅分析基本组合(2)及特殊组合(1)两种情况: 基本组合(2)为设计洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙

压力+浪压力。 特殊组合(1)为校核洪水位情况,其荷载组合为:自重+静水压力+扬压力+泥沙压力+浪压力。 1.3大坝设计概况 1.3.1工程等级 本水库死库容0.3亿m3,最大库容未知,估算约为5亿m3左右。根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。 1.3.2坝型确定 坝型选择与地形、地质、建筑材料和施工条件等因素有关。确定本水库大坝为混凝土重力坝。 1.3.3基本剖面的拟定 重力坝承受的主要荷载是水压和自重,控制剖面尺寸的主要指标是稳定和强度要求。由于作用于上游面的水压力呈三角形分部,所以重力坝的基本剖面是三角形,根据提供的资料,确定坝底宽度为43.29m(约为坝高的0.8倍),下游边坡m=0.8,上游面为铅直。

毕业设计守口堡混凝土实体重力坝设计说明书

第一篇守口堡混凝土实体重力坝设计说明书 第一章工程概况 第一节工程简况 守口堡水利枢纽工程位于南洋河支流黑水河上,坝址位于阳高县城西北二十华里守口堡村北500米处,坝址以上控制流域面积291平方公里,本水库是以防洪为主,结合灌溉等综合利用的中型水利工程。正常储水位1242.0米,总库容1020万立方米,其中兴利库容 740万立方米,死库容 496.2万立方米。 本工程为三等工程,大坝按Ⅲ级建筑物设计。设计洪水为100年一遇,校核洪水为500年一遇。设计洪水位为1245.938米,设计下泄流量为362.6m3/s,相应的下游水位为1200.5米,校核洪水位为1248.348米,校核下泄流量为1281.5m3/s,相应下游洪水位为1202.0米。 守口堡水利枢纽工程大坝由挡水坝、溢流坝、底孔坝段等建筑物组成。坝顶高程1248.2米,最大坝高60.2米,大坝为混泥土重力坝,坝顶总长350米。溢流坝顶高程为1242.0米,溢流前沿总长30米,共俩孔,每孔宽15米。挑流鼻坎高程为1205米,挑射角30。;泄流底孔地板高程为1203米,控制断面尺寸为4×4㎡,检修闸门采用平板门,工作闸门采用弧形门,进口采用压板式进口,挑流鼻坎高程为1204.0米,挑射角为30。。 宽缝重力坝的宽缝部分用废弃的风化石料填筑,以减少宽缝处混泥土面的温度变化幅度,避免产生裂缝;同时又节省模板,便于搭脚手架,施工安全。坝体混泥土防渗墙厚6~11米,下游在地面以下采用浆砌石墙,地面以上采用预制混泥土板作模板。 坝基为花岗片麻岩,基岩摩擦系数f=0.95。大坝按地震烈度七度设防。 基础处理主要是挖除风化层,对坝基采取灌浆等加固和防渗处理措施。 第二节工程建设的作用及意义 守口堡水利枢纽工程下游黄、黑水河两岸有土地7万亩,土质肥沃、地势平坦,其中耕地面积约为63万亩,另外其下游有京包铁路、同公路、部队营房、村庄及农田,故水库的首要任务是防洪,另外一重要任务是灌溉,通过水库调蓄,充分利用水源,灌溉农田53000亩,其中新增灌溉面积近4万亩;通过水库蓄清缓洪,可以延长灌溉时间,

重力坝抗滑稳定计算书

重力坝抗滑稳定计算书-CAL-FENGHAI.-(YICAI)-Company One1

深圳市野生动物救护中心养公坑蓄水工程 技施设计 浆砌石重力坝抗滑稳定 计算书 国家电力公司中南勘测设计研究院 2004年12月

说 明 1.计算目的与要求 对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。 2.计算基本依据 1. 建筑体型结构尺寸见附图1; 2. 主要地质参数见资料单; 3. 材料容重: 浆砌块石:取3/0.23m kN s =γ; 水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ 3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。 3) 本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面 进行浅层与深层抗滑稳定分析以及坝基面应力分析。 2. 地基应力计算 按偏心受压公式计算应力: σmax =W M A G ∑∑+ σmin =W M A G ∑ ∑- 式中 ∑G —坝体本身的重力,kN ; A ——坝基的受力面积,m 2; ∑M —坝体各部分的重力对形心的弯距,;

W —作用在计算截面的抗弯截面系数; 3.抗滑稳定 坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。 计算公式为: K C = ∑∑H f G * 式中K c —结构的抗滑稳定安全系数; ∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。 4.计算结果总表 5.结论 经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。 6.主要参考书目 a )《浆砌石坝设计规范(SL25-91》; b )《水工建筑物荷载设计规范(DL5077—1997)》;

水利专业混凝土重力坝毕业论文中英文资料外文翻译文献

混凝土重力坝 中英文资料外文翻译文献 混凝土重力坝基础流体力学行为分析 摘要:一个在新的和现有的混凝土重力坝的滑动稳定性评价的关键要求是对孔隙压力和基础关节和剪切强度不连续分布的预测。本文列出评价建立在岩石节理上的混凝土重力坝流体力学行为的方法。该方法包括通过水库典型周期建立一个观察大坝行为的数据库,并用离散元法(DEM)数值模式模拟该行为。一旦模型进行验证,包括岩性主要参数的变化,地应力,和联合几何共同的特点都要纳入分析。斯威土地,Albigna 大坝坐落在花岗岩上,进行了一个典型的水库周期的特定地点的模拟,来评估岩基上的水流体系的性质和评价滑动面相对于其他大坝岩界面的发展的潜力。目前大坝基础内的各种不同几何的岩石的滑动因素,是用德国马克也评价模型与常规的分析方法的。裂纹扩展模式和相应扬压力和抗滑安全系数的估计沿坝岩接口与数字高程模型进行了比较得出,由目前在工程实践中使用的简化程序。结果发现,在岩石节理,估计裂缝发展后的基础隆起从目前所得到的设计准则过于保守以及导致的安全性过低,不符合观察到的行为因素。 关键词:流体力学,岩石节理,流量,水库设计。 简介:评估抗滑混凝土重力坝的安全要求的理解是,岩基和他们上面的结构是一个互动的系统,其行为是通过具体的材料和岩石基础的力学性能和液压控制。大约一个世纪前,Boozy大坝的失败提示工程师开始考虑由内部产生渗漏大坝坝基系统的扬压力的影响,并探讨如何尽量减少其影响。今天,随着现代计算资源和更多的先例,确定沿断面孔隙压力分布,以及评估相关的压力和评估安全系数仍然是最具挑战性的。我们认为,观察和监测以及映射对大型水坝的行为和充分的仪表可以是我们更好地理解在混凝土重力坝基础上的缝张开度,裂纹扩展,和孔隙压力的发展。 图.1流体力学行为:(一)机械;(二)液压。

重力坝毕业设计

第一章设计基本资料及任务 第一节设计基本资料 一、枢纽任务 本工程同时兼有防洪、发电、灌溉、渔业等综合利用。水电站装机容量为21.75万kW,装3台机组。正常蓄水位为110.5m,死水位为86.5m,三台机满载时的流量为405m3/s。采用坝后式厂房。工程建成后,可增加保灌面积90万亩,减轻洪水对下游城市和平原的威胁。在遇P=0.02%和P=0.1%频率的洪水时,经水库调节后,洪峰流量可由原来的18200m3/s、14100 m3/s分别削减为6800 m3/s和6350 m3/s;水库蓄水后形成大面积水域,为发展养殖业创造有利条件。 二、基本资料 1、规划数据 本重力坝坝高86.9m,坝全长368m,溢流坝位于大坝中段长度73米,非溢流坝分别接溢流坝两侧各147.5m,坝顶宽度8m,坝底宽度80.5m,坝底高程28m,坝顶高程114.9m,正常蓄水位110.5m,死水位86.5m。 坝址处的河床宽约120m,水深约1.5~4m。河谷近似梯形,两岸基本对称,岸坡取约35o。 2、工程地质 坝基岩性为花岗岩,风化较深,两岸达10m左右。新鲜花岗岩的饱和抗压强度为100~200MPa,风化花岗岩为50~80Mpa。坝址处无大的地质构造。 3、其他资料 - 1 -

(1)风向吹力:实测最大风速为24m/s,多年平均最大风速为20m/s,风向基本垂直坝轴线,吹程为4km。 (2)本坝址地震烈度为7度。 (3)坝址附近卵砾石、碎石及砂料供应充足,质量符合规范要求。 三、表格 表1比选数据 - 2 -

表2岩石物理力学性质 四、参考文献 1.混凝土重力坝设计规范水利电力部编 2.水工建筑物任德林河海大学出版社 3.水工设计手册泄水与过坝建筑物水利电力出版社 4.混凝土拱坝及重力坝坝体接缝设计与构造水电部黄委会编 第二节设计任务 一、枢纽布置 (1)拟定坝址位置 - 3 -

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

TL混凝土重力坝设计

网络教育学院 本科生毕业论文(设计) 题目: TL混凝土重力坝设计 学习中心:奥鹏远程教育 层次:专科起点本科 专业:水利水电工程

内容摘要 重力坝是一种古老而迄今应用很广的坝型,因主要依靠自重维持稳定而得名。重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石。在中国的坝工建设中,混凝土重力坝也占有较大的比重。 本次设计为TL混凝土重力坝设计,设计的准备工作主要包括基本资料的分析、坝型选择和枢纽布置。设计的主要内容首先是进行坝体的设计,进行坝型选择,设计采用混凝土重力坝方案,设计内容包括挡水坝段的设计,溢流坝段的设计,底孔坝段的设计等。然后是细节构造与坝基处理,有坝基清理、坝基加固、坝基防渗及坝基排水设计、断层处理等。 关键词:水利工程;混凝土重力坝;剖面设计;荷载计算;应力分析 目录

引言1 1 设计资料2 1.1 某重力坝基本资料2 1.1.1 流域概况2 1.1.2 地形地质2 1.1.3 建筑材料2 1.1.4 水文条件2 1.1.5 气象条件3 1.2 某重力坝工程综合说明3 2 坝型及坝址选择5 2.1 坝型选择5 2.2 坝址选择5 3 挡水建筑物设计7 3.1 非溢流坝剖面设计7 3.1.1 坝顶高程的拟定7 3.1.2 坝顶宽度的拟定9 3.1.3 坝坡的拟定9 3.1.4 上、下游起坡点位置的确定9 3.2 荷载计算及组合9 3.2.1 自重10 3.2.2 静水压力10 3.2.3 扬压力10 3.2.4 泥沙压力11 3.2.5 浪压力11 3.2.6 荷载组合12 3.2.7.荷载计算成果14 3.3 抗滑稳定分析20 3.4 应力分析21

土石坝设计计算说明书

土石坝设计计算说明书 专业:水利水电建筑工程 指导老师:李培 班级:水工1303班 姓名:王国烽 学号:1310143 成绩评定: 2015年10月

目录 一、基本材料 (2) 1.1水文气象资料 (2) 1.2地质资料 (2) 1.3地形资料 (2) 1.4工程等级 (2) 1.5建筑材料情况 (2) 二、枢纽布置 (3) 三、坝型选择 (4) 四、坝体剖面设计 (5) 4.1坝顶高程计算 (6) 4.1.1 正常蓄水位 (6) 4.1.2 设计洪水位 (7) 4.1.3 校核洪水位 (8) 4.2坝顶宽度 (9) 4.3坝坡 (9) 五、坝体构造设计 (10) 5.1坝顶 (10) 5.2上游护坡 (10) 5.3下游护坡 (10) 5.4防渗体 (10) 5.5排水体 (11) 5.6排水沟 (11)

一、基本资料 1.1水文气象资料 吹程1km,多年平均最大风速20m/s,流域总面积2971km2。上游地形复杂,沟谷深邃,植被良好,森林分布面广,为湖北主要林区之一。 1.2地质资料 河床砂卵砾石最大的厚度达23m。两岸基岩裸露,支局不存在有1~8m厚的残坡积物。在峡谷出口处的左岸山坡,存在优厚1~30m,方量约150万m3 的坍滑堆积物,目前处于稳定状态。 1.3地形资料 坝址位于古洞口峡谷段,河谷狭窄,呈近似“V”型,河面宽60~90m。 1.4工程等级 本工程校核洪水位以下总库容1.38亿m3,正常蓄水位325m,相应库容1.16亿m3,装机容量3.6万kw,设计洪水位328.31m,校核洪水位330.66m,河床平均高程240m。混凝土面板堆石坝最大坝高120m。根据《水利水电枢纽工程等级划分及设计安全标准》DL5180—2003的规定,本工程为二等大(2)型工程。1.5建筑材料情况 坝址附近天然建筑材料储量丰富。砂砾料下游勘探储量318.5万m3,石料总储量21.86万m3,各类天然建筑材料的储量和质量基本都能满足要求。

混凝土重力坝设计说明书

本科毕业设计 题目 A江水利枢纽实体重力坝设计 学院工学院 专业水利水电工程专业 毕业届别 姓名 指导教师 职称 目录

摘要 (1) 关键字 (1) ABSTRACT (2) KEYWORDS (2) 第一章枢纽任务及枢纽基本资料 (3) 第一节、枢纽任务 (3) (一)发电 (3) (二)灌溉 (3) (三)防洪 (3) (四)渔业 (3) (五)过木 (3) 第二节、A江水利枢纽基本资料说明 (4) (一)自然地理 (4) (二)工程地质 (6) (三)筑坝材料 (7) (四)库区经济 (7) (五)其他 (8) 第二章建筑物形式的选择 (8) 第一节、枢纽的建筑物组成 (8) 第二节、工程等别和建筑物级别 (8) 第三节、建筑物形式的选择 (10) (一)挡水建筑物形式的选择 (10) (二)泄水建筑物形式的选择 (10) (三)水电站建筑物形式的选择 (11) (四)其他建筑物形式的选择 (11) 第三章各主要建筑物设计 (11) 第一节、挡水坝剖面设计 (11) (一)基本剖面 (12) (二)实用剖面 (12) (三)坝顶高程 (13) (四)坝顶宽度 (14) (五)坡率确定 (14) (六)坝底宽度 (14) 第二节、非溢流坝稳定分析 (15) (一)荷载计算 (15) (二) 力矩计算 (22) (三)稳定分析 (27) (四)、应力强度校核 (29) 第三节、强度指标 (30) 第四节应力计算及校核 (31) 第四章溢流坝剖面设计 (38)

第一节、泄水方式的选择 (38) 第二节、溢流坝体型设计 (38) (一)拟定孔口流量 (38) (二)中孔出流 (39) (三)底孔出流 (39) (四) 单宽流量的确定 (39) (五)溢流坝段总长度的确定 (40) (六)计算堰顶水头H0 (41) (七)定型设计水头H H (41) (八)校核 (42) (九)闸门高度 (42) 第三节、溢流坝剖面设计 (42) (一)顶部曲线段确定 (42) (二)消能形式的选择 (43) (三)反弧段的确定 (44) (四)中间直线段 (45) (五)反弧段圆心的确定 (46) (六)鼻坎型式的选择 (46) 第四节溢流坝剖面的确定 (48) 第五节、溢流坝荷载计算 (48) (一)自重 (48) (二)静水压力及扬压力(结合非溢流坝荷载计算) (49) 第六节、稳定分析 (51) (一)抗剪强度 (51) (二)抗剪断强度 (52) 第五章重力坝细部构造设计 (53) 第一节、坝顶构造 (53) (一)非溢流坝 (53) (二)溢流重力坝 (53) (三)导水墙布置 (55) 第二节、分缝与止水 (55) (一)分缝 (55) (二)止水 (55) 第三节、廊道系统 (56) (一)基础廊道 (56) (二)坝体廊道 (56) 第四节、坝体防渗与排水 (56) (一)坝体防渗 (56) (二)坝体排水 (56) 第六章重力坝地基处理 (56) 第一节、地基开挖 (57) (一)开挖原则 (57) (二)开挖设计 (57)

水库混凝土重力坝设计书

水库混凝土重力坝设计书 第1章基本资料 一、枢纽工程概况: P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。控制流域面积3.37万km2,总库容为14.39亿m3。 P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。 根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。 二、气象: P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。 表一多年平均气温、水温表单位:℃ 本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。

流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六: 表二多年月平均降水天数及降水量表单位:mm 三、水文分析: 1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。年分配很不均匀,主要集中汛期七、八月份。丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。 2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。 表三 表四

清水河重力坝设计说明书

清水河重力坝设计说明书 (总24页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第一章清水河某电站的工程条件 1.1.气象、水文 清水河流域属亚热带高原气候区,由于大气环流和流域地形影响,气候类型较为复杂,垂直变化十分明显,多年平均气温为14.1C。 流域内降水较多,但年内及地区分配极不均匀,年降雨量为1130mm,4~10月占全年降水量的86.5%。支流独木河上游为多雨区,多年平均降雨量超过1200mm。每年5~8月为暴雨集中的季节,降雨量占全年的60%。 坝址集雨面积为4328km2,多年平均流量76m3/s,多年平均来水量23.97亿m3,径流系数0.48。 流域洪水特性与暴雨特性和流域自然地理条件密切相关。洪水过程一般从5月份开始,到10月份结束,汛期洪水较为频繁,年最大洪峰多出现在6~7月。设计洪水标准(P=1%时),洪峰流量为5240m3/s,相应3天为洪量6.0亿m3。校核洪水标准(P=0.1%)时,洪峰流量为7430m3/s,相应3天洪量为8.4亿m3。 坝址多年平均年输沙量52.8万t,主要集中在汛期,占全年输沙量的 92.8%,其中5~7月来沙量占全年的73.8%。 1.2.工程地质 电站地处云贵高原的黔中地区,区域内碳酸盐岩广布,属中低山岩溶山地地貌,地层自寒武系至三迭系均布分布。区域地处黔北台隆、遵义断拱南部,属扬子准台地中稳定的III级构造单元,自中更新世以来,区域内无断裂活动迹象,构造环境稳定,地震基本烈度为6度。 水库河段均属峡谷型水库。库区构造以南北向为主,北东向和北西向断裂也很发育。南明河近坝6km库段大部分为横向谷,上游库段为走向谷,左岸为顺向坡;独木河库段大部为走向谷,右岸为顺向坡。 水库两岸山体雄厚,其间分布有多层隔水层和相对隔水层,不存在向邻谷渗漏问题。 水库库岸多为坚硬的灰岩、白云岩组成,一般稳定性较好。局部以软岩为

水利枢纽工程重力坝设计说明书及计算书(word,共121页)

青河雷口水利枢纽工程设计 学生: *** 指导老师:*** 三峡大学水利与环境学院 摘要:重力坝设计是电站工程设计的主要组成部分,其方案合理与否,将对工程安全及投资产生极大的影响。本文主要根据所提供的地质、地形等基础资料,对枢纽建筑物进行坝轴线、坝型的选择,通过分析、比较,选择合理的枢纽布置方案,最后选定设计方案为混凝土实体重力坝,并分多种荷载组合情况进行稳定验算和应力分析,从而得到既安全又经济的最优剖面。方案中重力坝设计共分两部分,即非溢流坝段和溢流坝段。此外,为避免水流对坝体的冲刷作用,本方案还考虑设置溢流坝两侧导流墙,通过计算确定其高度及厚度等参数。 Abstract: The design of Dam is the main component in the design of power station engineering, which will have a tremendous impact on the security and investment of projects,wheather its programme reasonable or not. According to the giving geological,terrain and other basic informations,this paper choose axis and style of hub buildings and through the analysis,comparison to choose the concrete gravity dam as a reasonable hub layout programme.And meanwhile it makes checking stability and stress analysis in a variety of situations,so that it gets a safety and economic profile.The design of dam is divided into two parts in the programmes, that is non-overflow dam section and overflowing dam section. In addition, in order to avoid the dam is erosioned by the impact of water, the programme also consider installing spillway diversion on both sides of the wall and through calculating to determined its height ,thickness and other parameters。 关键字:混凝土重力坝枢纽布置坝型选择大坝设计稳定及应力计算 Key words:concrete gravity dam layout of project selection of dam type dam

毕业设计重力坝开题报告

水利枢纽工程重力坝设计 学生: 指导老师: 1工程概况 1.1流域概况 辽河是某地区较大的河流之一。发源于X县,自东向西流,在C县附近于B河汇合,于I市西入海。全长418公里,流域面积13880平方公里。其中山区占总数的66%,丘陵占4%,平原占30%,流域面积内有耕地430万亩,人口约400万人,是该地主要的产粮区之一,并且是极重要的重工业基地,交通发达,铁路、公路运输方便。 辽河多年平均径流量40多亿立方米,是本地区水利资源最丰富的河流,辽河干、支流上都没有控制性工程,每年有几十亿立方米的水白白流向大海。 该水库位于该地区L县境内,为辽河的控制性工程,水库控制面积为6175平方公里,占流域面积的44.5%,选定S水库为开发辽河的第一期工程是适宜的。水库任务以防洪、灌溉为主,并改善农田除涝条件,扩大灌溉面积,供给灌溉及工业用水发电。 1.2工程地质 在水库回水内部范围渗漏区(长6.4公里)由寒武纪奥陶系的灰岩、泥灰岩、页岩、砂岩等组成。根据勘测结果,渗漏量不大。不致影响水库蓄水,坝址区河谷为侵蚀堆积,0~3060米,右岸山坡两岸山顶高米~500米,250米左右,河床高程300坝址处河谷底宽000 2040~,左岸山坡坡度较缓,约15,逐渐变陡。地貌形态较为单一,坝址区为前震旦系大弧山统变质岩。岩性单一,层理不明,它是含团块黑云母变粒岩,石英变粒岩,粗度细,致密。 坝址区断裂构造的发育时期,相互切割关系及变化规律比较复杂。节理裂隙也很发育。F8,F10是较大断层,断层面在坝基内最大的出露宽度不超过50厘米,一般在30厘米左右,根据压水试验断层属于不透水的。 覆盖层厚度,右岸厚度不大,一般1-2米为碎石块及砂琅土组成。河床部分砂卵石厚2~1米。左岸山坡为坡积土其中夹有石英岩滚石厚7.9米,最大厚度4米到3度一般为 米,弱风化岩3~5米。

重力坝毕业设计

目录 摘要: (1) 前言 (2) 第一部分设计说明书 (3) 1基本资料 (3) 1.1自然条件及工程 (3) 1.2坝址与地形情况 (3) 1.3工程枢纽任务与效益 (4) 2枢纽布置 (5) 2.1枢纽组成建筑物及其等级 (5) 2.2坝线、坝型选择 (5) 2.3枢纽布置 (8) 3洪水调节 (10) 3.1基本资料 (10) 3.2洪水调节基本原则 (13) 3.3调洪演算 (14) 3.4调洪计算结果 (17) 4非溢流坝剖面设计 (18) 4.1设计原则 (18) 4.2剖面拟订要素 (19) 4.3抗滑稳定分析与计算 (21) 4.4应力计算 (22) 5溢流坝段设计 (24) 5.1泄水建筑物方案比较 (24) 5.2工程布置 (25)

5.3溢流坝剖面设计 (25) 5.4消能设计与计算 (28) 6细部构造设计 (32) 6.1坝顶构造 (32) 6.2廊道系统 (33) 6.3坝体分缝 (34) 6.4坝体止水与排水 (35) 6.5基础处理 (36) 6.6混凝土重力坝的分区 (38) 第二部分计算说明书 (39) 1洪水调节 (39) 1.1调洪演算 (39) 1.2调洪计算结果及分析 (55) 2非溢流坝段计算 (57) 2.1非溢流坝段经济剖面尺寸拟定 (57) 2.2抗滑稳定分析 (60) 2.3 应力分析计算 (65) 3消能防冲设计 (68) 3.1消力池的水力计算 (68) 3.2辅助消能工设计 (71) 致谢....................................................... 错误!未定义书签。参考文献. (73)

相关文档
最新文档