超声波测距 实验报告

超声波测距 实验报告
超声波测距 实验报告

认识实习超声波测距报告汇总

Harbin University Of Science And Technology 认识实习报告 学院:自动化学院 专业:电子信息科学与技术 班级:电技12-3 姓名:蔡成灼 学号:1212020301 日期:2015.1.9

任务书 实习项目名称:超声波测距仪的研制 实习时间:2014.12.29 —2015.1.9 一、实习的目的和意义 认识实习是一个重要的基础实习环节,通过认识实习,学生可以了解电子产品的制作工艺和基本原理,掌握电子产品制作的基本操作技能和调试技能,培养学生用所学知识分析实际问题、解决实际问题的能力,为以后的实践性教学环节打下基础。 二、实习内容 本实习以《超声波测距仪的研制》项目为目标,培养学生对电子产品的制作工艺的认识和操作技能,以及电子产品的原理分析。 1、超声波测距原理学习; 2、电路原理图及PCB绘制; 3、电子元器件识别与焊接; 4、超声波测距仪软件设计; 5、超声波测距仪调试。 三、报告内容和格式 内容: 1、超声波测距的意义和应用; 2、超声波测距的原理(原理说明、原理图); 3、超声波测距仪的制作与调试; 4、实习体会 格式: 报告包括封面、任务书、目录、正文等部分,一级标题(章标题):黑体小二;二级标题(节标题):黑体小三;正文:宋体小四;目录:二级目录,宋体小四。行间距: 1.25倍。报告A4纸打印,左侧装订。

目录 1、实习目的 (2) 2、实习内容 2.1方案选择 (2) 2.2 整理思路 (2) 3、超声波测距原理 3.1超声波探头 (2) 3.2超声波测距原理 (3) 3.3 基于单片机超声波测距仪系统构成 (4) 4、超声波测距原理图分析 4.1 发射电路 (4) 4.2 接收电路 (5) 5、超声波测距的意义和应用 5.1超声波测距的意义 (6) 5.2 超声波测距的应用 (7) 6、元件装配及硬件调试 6.1元件装配 (7) 6.2 编程及调试 (8) 6.3 PCB板及成果展示 (12) 7、实习总结 7.1实习总结 (13) 7.2实习体会 (14)

超声波测距报告(带报警)

目录 一、超声波测距原理 二、超声波测距模块介绍 1.主控模块 2.电源模块 3.显示模块 4.超声波模块 5.扬声器模块 三、超声波测距功能介绍 四、超声波测距前景展望 五、心得 附:程序

超声波测距(可报警) 一、超声波测距原理 超声波发射器定期发送超声波,遇到被测物体时发生反射,反射波经超声波接收器接收并转化为电信号,只要测出发送和接收的时间差t,即可测出超声测距装置到被测物体之间的距离S: S=c*t/2 (式中c为超声波在空气中的传播速度,c=331.45*√(1+T/273.16)) 由此可见声速与温度的密切的关系。在应用中,如果温度变化不大或者对测量要求不太高(例如汽车泊车定位系统),则可认为声速是不变的,否则,必须进行温度补偿。 超声波传感器是超声测距核心部件,传感器按其工作介质可分气相、液相和固相传感器;按其发射波束宽度可分为宽波束和窄波束传感器;按其工作频率又可分为40kHz, 5OkHz等不同等级。超声波在空气传播过程中,由于空气吸收衰减和扩散损失,声强随着传播距离的增大而衰减,而超声波的衰减随频率增大而成指数增加。本设计选用气相、窄波束、40kHz的超声波传感器。 二、超声波测距模块介绍 该产品共有五个模块,其中主控模块、电源模块、显示模块、扬声器模块集成在开发板上,超声波模块是外接的。 1.主控模块 主要部分是51单片机。 51单片机是对目前所有兼容Intel 8031指令系统的单片机的统称。该系列单片机的始祖是Intel的8031单片机,后来随着Flash rom技术的发展,8031单片机取得了长足的进展,成为目前应用最广泛的8位单片机之一,其代表型号是ATLEM公司的AT89系列,它广泛应用于工业测控系统之中。目前很多公司都有51系列的兼容机型推出,在目前乃至今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。需要注意的是52系列的单片机一般不具备自编程能力。 主要功能: ·8位CPU·4kbytes 程序存储器(ROM) (52为8K)

基于单片机的超声波测距系统设计实验报告 - 重

指导教师评定成绩: 审定成绩: 自动化学院 计算机控制技术课程设计报告设计题目:基于单片机的超声波测距系统设计 单位(二级学院): 学生姓名: 专业: 班级: 学号: 指导教师: 负责项目: 设计时间:二〇一四年五月 自动化学院制

目录 一、设计题目 (1) 基于51单片机的超声波测距系统设计 (1) 设计要求 (1) 摘要 (2) 二、设计报告正文 (3) 2.1 超声波测距原理 (3) 2.2系统总体方案设计 (4) 2.3主要元件选型及其结构 (5) 2.4硬件实现及单元电路设计 (9) 2.5系统的软件设计 (13) 三、设计总结 (17) 四、参考文献 (17) 五、附录 (18) 附录一:总体电路图 (18) 附录二:系统源代码 (18)

一、设计题目 基于51单片机的超声波测距系统设计 设计要求 1、以51系列单片机为核心,控制超声波测距系统; 2、测量范围为:2cm~4m,测量精度:1cm; 3、通过键盘电路设置报警距离,测出的距离通过显示电路显示出来; 4、当所测距离小于报警距离时,声光报警装置报警加以提示; 5、设计出相应的电子电路和控制软件流程及源代码,并制作实物。

摘要 超声波具有传播距离远、能量耗散少、指向性强等特点,在实际应用中常利用这些特点进行距离测量。超声波测距具有非接触式、测量快速、计算简单、应用性强的特点,在汽车倒车雷达系统、液位测量等方面应用广泛。本次课设利用超声波传播中距离与时间的关系为基本原理,以STC89C52单片机为核心进行控制及数据处理,通过外围电源、显示、键盘、声光报警等电路实现系统供电、测距显示、报警值设置及报警提示的功能。软件部分采用了模块化的设计,由系统主程序及各功能部分的子程序组成。超声波回波信号输入单片机,经单片机综合分析处理后实现其预定功能。 关键词:STC89C52单片机; HC-SR04;超声波测距

声速的测量(超声)实验报告

声速的测量(超声) 一、实验目的: ①用共振干涉法求超声声速; ②用相位比较法求超声声速。 二、实验仪器: 超声声速测量仪、信号发生器、数字频率计、同轴电缆、示波器、游标卡尺、压电陶瓷超声换能器。 三、实验原理: ①声速的测量: 利用公式νλ,测量声波的频率ν和波长λ去求声速v。 ②声压驻波:已知两列频率、振幅和振动方向相同的平面简谐波,向相反的方向传播时,叠加的合成波就是驻波,在驻波场中质点振幅最大处为波腹,质点位移振幅近似为零处为波节,相邻波腹或波长的距离为半波长(λ/2)。 ③声波波长的测量:接收器S2输出的信息有两部分:1、驻波的信息,其振幅随S2的移动而变化,在共振时,S1、S2的距离为l:,,,此时振幅较大。2、类 似行波的信息,S1、S2用的相位差,也随着S2的移动而变化,每移动λ/2,相位差改变Π(即180°)。利用这两种信息均可测量声波波长λ。(1)共振干涉法;(2)相位比较法。 四、实验方法: ①用共振干涉法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,示波器上显示的是S2的交流信号按时间展开的图形,移动S2示波器上图形有时很大,有时很小。在S2移动范围内,仔细测多个出现极大值时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ②用相位比较法测声速: 示波器的X端用内部扫描,调内部扫描与S2的信息同步,移动S2示波器上的图形会从椭圆变换到一条直线,再从直线变换到一个反方向的椭圆,往复变换。在S2移动范围内,仔细测多个出现直线时S2的位置l1、l2、……、l n,用逐差法求出λ,再求声速v。 ③记录实验室的实温t。 ④用当前实温和公式求出声速,与以上两种方法求出的声速进行比较, 分析。 五、数据处理: 温度:34℃频率:37500Hz 共振干涉法(单位:mm): 218.98 213.58 209.20 204.56 199.62 194.92 190.64 185.72 180.62 176.52 相位比较法(单位:mm): 174.60 169.60 164.80 160.68 155.90 151.22 146.28 141.58 136.68 131.70 共振干涉法: λ

超声波测距总结报告

电子技术实验课程设计超声波测距系统 总结报告 自03 胡效赫 2010012351

一、课题内容及分析 首先根据课程所给的几个题目进行选择,由于自己最近在做电子设计大赛的平台设计,希望对超声波测距在定位方面应用有更详尽的了解,所以选择课题三——超声波测距作为课程设计,内容如下: 对课题进行分析:实验提供超声波传感器T40-16和R40-16,利用面包板和小规模芯片搭接电路,实现距离的测量及显示。大致思路即驱动发射端发出超声波,接收端收到返回的脉冲进行处理与计算得到测量距离并通过数码管和蜂鸣器显示。 二、方案比较与选择 由于超声波测距方案原理基本相同,只要能够检测出发射到接收的时间,并通过相应计算就可以得到所测距离。所以问题大致分为驱

动发射端、接收端检测、间隔时间计算与计算结果显示四部分。 具体的方案设计如下: 闸门脉冲源产生基准宽度为T 的闸门脉冲,该脉冲一方面控制计数电路的计数启动和并产生计数器清零脉冲,使计数器从零开始对标准脉冲源输出的时钟脉冲(频率为17KHz)计数。同时开启控制门,超声波振荡器输出的40kHz脉冲信号通过控制门,放大后送至超声波换能器,由发射探头转换成声波发射出去。该超声波经过一定的传播时间,达到目标并反射回来,被超声波换能器的接收探头接收变成电信号,经放大、滤波、电压比较和电平转换后,还原成方波。图中的脉冲前沿检测电路检测出第一个脉冲的前沿,输出控制信号关闭计数器,使计数器停止计数。则计数器的计数值反映了超声波从发射到接收所经历的时间(或距离)。

三、模块化设计及参数估算 1、闸门控制模块 ●设计思路 555振荡电路产生频率为2Hz的脉冲,作为闸门脉冲源。 RC微分电路将输出的2Hz脉冲进行微分运算产生脉冲信号,作为计数启动和计数清零的信号,分别控制D触发器的置高端和74LS90的清零端。 ●参数设计: 555振荡电路T = (R1+2*R2)*C*ln2。其中R1取4.7kΩ,R2接入10kΩ滑动变阻器,最后实测7.51kΩ,C取47uF。 RC微分电路R为1kΩ,C为4.7nF 2、超声波发生模块 ●设计思路 555振荡电路产生频率为40kHz的脉冲,作为驱动超声波发射端

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

PLC超声波测距实验报告082039140程稳

利用plc的高速计数模块进行超声波测距实验 ―――――微型控制计算机暑期设计实验报告 082039140程稳 利用51单片机来驱动超声波模块测距,是一件很容易的事,只需要结合定时中断和外部中断,利用12M或更高的晶振频率即可精确获取从发射到接收到超声波之间的时间,平均1ms对应 3.4cm的行程,本GE比赛设计需要物位测量的最大距离是30cm,即需要30*2/3.4=17.64ms,而GE PAC RX3i的PME软件梯形图程序得扫描周期2ms以上,就算是最快的定时节点也有1ms,所以若直接用PLC的普通离散量输入模块IC694MDL654输入节点来测量接收到超声波回波的时间的误差为1ms,误差距离3.4/2=1.7cm,结果自然不理想,更严重的问题在于PLC该模块无硬件中断响应功能,是不能测电平宽度的。总之PLC的IO口工作在低速模式下是难以胜任高速测量任务的,但可喜的是GE PLC 的高速计数模块HSC304能处理2MHZ的信号,但仍无硬件中断功能。于是想能否干脆把单片机测出的电平时间数据通过串口发送给PLC,我也试着这样连线测试,不过PLC串口的使用不像单片机这么简单,没有相关资料,PLC内部寄存器找不到PLC从单片机接收的数据。于是仍决定放弃此方案,回到高速计数模块。再认真阅读此模块配置信息和实验调试后,发现其可以测量出外部信号频率,于是想既然PLC无法直接测电平宽度,那干嘛不测量频率,有了频率自然有周期,有周期自然有电平宽度!

利用plc的高速计数模块检测超声波测距仪的信号接收端的频率,正常情况下应使用频率直接求得周期接而来计算时间,但由于实际测得这样根本很难实现,所以直接测频率,并利用示波器查看该频率的波形,并修改程序使得在所测距离变化的情况下,一周期内的低电平保持不变(高电平所持续的时间表示超声波从发出到接收到所经历的时间,低电平是延时,为了使得波形正常),然后测出频率及其所对应的距离。 以下是用虚拟示波器测出的超声波模块在不同距离测量回波接收脚电压波形:

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生 器输出的正弦电压信号接到发射超声 换能器上,超声发射换能器通过电声 转换,将电压信号变为超声波,以超 声波形式发射出去。接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:λf v =就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。 2.相位比较法 实验接线如下图所示。波是振动状态的传播,也可以说是位相的传播。在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。声波波源和接收点存在着位相差,而这位相差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的位相关系中得出,并可利用示波器的李萨如图形来观察。 位相差?和角频率ω、传 播时间t 之间有如下关系: t ?=ω? 同时有,t πω2=, v l t =,v T =λ(式中T 为周期) 代入上式得:λπ?l 2= 当 2λn l = (n=1,2,3,...)时,可得π?n =。 由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Ф=2π)。 实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。当相位差改变π时,相应距离l 的改变量即为半个波长。根据波长和频率即可求出波速。 3.超声波的发射与接收——压电陶瓷换能器

超声波测距报告

项目:超声波测距仪的设计 时间:2011/7/09-2011/7/21 一、超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。利用超声波的这种性能就可制成超声传感

器,或称为超声换能器,它是一种既可以把电能转化为机械能、又可以把机械能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能,向外发送超声波;反之,当换能器处在接收状态时,它可将声能(机械能)转换为电能。 1.1 超声波发生器 为了利用超研究和利用声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 1.2 压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 1.3 超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。 由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。如图1-1所示。 超声波发射障碍物

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

超声波测距实验报告

电子信息系统综合设计报告 超声波测距仪

目录 摘要 (3) 第一章绪论 (3) 1.1 设计要求 (3) 1.2 理论基础 (3) 1.3 系统概述 (4) 第二章方案论证 (4) 2.1 系统控制模块 (5) 2.2距离测量模块 (5) 2.3 温度测量模块 (5) 2.4 实时显示模块 (5) 2.5 蜂鸣报警模块 (6) 第三章硬件电路设计 (6) 3.1 超声波收发电路 (6) 3.2 温度测量电路 (7) 3.3 显示电路 (8) 3.4 蜂鸣器报警电路 (9) 第四章软件设计 (10) 第五章调试过程中遇到的问题及解决 (11) 5.1 画PCB及制作 (11) 5.2 焊接问题及解决 (11) 5.3 软件调试 (11) 实验总结 (13) 附件 (14) 元器件清单 (14) HC-SR04超声波测距模块说明书 (15) 电路原理图 (17) PCB图 (17) 程序 (18)

摘要 该系统是一个以单片机技术为核心,实现实时测量并显示距离的超声波测距系统。系统主要由超声波收发模块、温度补偿电路、LED显示电路、CPU处理电路、蜂鸣器报警电路等5部分组成。系统测量距离的原理是先通过单片机发出40KHz 方波串,然后检测超声波接收端是否接收到遇到障碍物反射的回波,同时测温装置检测环境温度。单片机利用收到回波所用的时间和温度补偿得到的声速计算出距离,显示当前距离与温度,按照不同阈值进行蜂鸣报警。由于超声波检测具有迅速、方便、计算简单、易于做到实时控制的特点,并且在测量精度方面能达到工业实用的要求,因此在生产生活中得到广泛的应用,例如超声波探伤、液位测量、汽车倒车雷达等。 关键词:超声波测距温度测量单片机 LED数码管显示蜂鸣报警 第一章绪论 1.1设计要求 设计一个超声波测距仪,实现以下功能: (1)测量距离要求不低于2米; (2)测量精度±1cm; (3)超限蜂鸣器或语音报警。 1.2理论基础 一、超声波传感器基础知识 超声波传感器是利用晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的特性,实现对各种参量的测量。 超声波的传播速度与介质的密度和弹性特性有关,与环境条件也有关: 在气体中,超声波的传播速度与气体种类、压力及温度有关,在空气中传播速度为C=331.5+0.607t/0C (m/s) 式中,t为环境温度,单位为0C. 二、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振来工作的。它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 三、超声波测距原理 由于超声波指向性强,能量消耗缓慢,在空气中传播的距离较远,因而超声波

超声波测距实验报告

目录 1、课题设计的目的和意义 (3) 2、课题要求 (3) 2.1、基本功能要求 (3) 2.2、提高要求 (4) 3、重要器件功能介绍 (4) 3.1、CX20106A红外线发射接收专用芯片 (4) 3.2、AT89C51系列单片机的功能特点 (5) 3.3、ISD1700优质语音录放电路 (6) 4、超声波测距原理 (8) 4.1、超声波测距原理图 (8) 4.2、超声波测距的基本原理 (9) 5、硬件系统设计 (10) 5.1、超声波发射单元 (10) 5.2、超声波接收单元 (11)

5.3、显示单元 (11) 5.4、语音单元 (12) 5.5、硬件设计中遇到的难题: (12) 6、系统软件设计 (14) 7、调试与分析 (15) 7.1调试 (15) 7.2误差分析 (15) 8、总结 (16) 9、附件 (17) 9.1、总电路 (17) 9.2、主要程序 (18) 10、参考文献 (22)

1课题设计的目的及意义 随着科学技术的快速发展,超声波在测距仪中的应用越来越广,但就目前技术水平而言,人们可以利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波测距作为一种新型的非常重要有用的工具在各方面都有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求。如声纳的发展趋势:研究具体的高定位精度的被动测距声纳,以满足军事和渔业等的发展需求,实现远程的被动探测和识别。毋庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。 超声波测距在某些场合有着显著的优点,因为这种方法是利用计算超声波在被测物体和超声波探头之间的传输来测量距离的,因此它是一种非接触式的测量,所以他就能够在某些场合或环境比较恶劣的环境下使用。比如测有毒或者有腐蚀性化学物质的液面高度或者高速公路上快速行驶汽车之间的距离。 随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最注重发展到具有创造力。在新的时代,测距仪将发挥更大的作用。 2课题要求 以单片机AT89C51为中心控制单元,配以超声波发射、接收装置,实现超声波发射及接收其遇到障碍物发生反射形成的回波信号,并根据超声波在介质中的传播速度及超声波从发射到接收到回波的时间,计算出发射点距障碍物的距离,设计出一套基于单片机的脉冲反射式超声波测距系统,利用单片机进行操作控制,用数码管作输出显示,设计发射、接收、检测、显示硬件电路和测距系统软件。

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

超声波测距试验心得

超声波测距试验心得 /* ............................ IO口可以由高电平接地拉成低电平, 但是不能由低电平接Vcc拉成高电平.............................*/ #include #include float distance; Sbit led=P2^7; sbit echo=P1^0; sbit trig=P3^4; /* 软件延时函数,延时时间(t*10)us */ void delay10us(unsigned char t) { do { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_();

} while (--t); } void main() { EA=1;//开总中断 EX0=1;//开外部中断0 TMOD=0xf1;//采用定时器0的定时模式的工作方式1 /*.............................................. 这里有一个疑问就是,必须采用定时器的定时模式才能 将TH0和TL0里的数值读出来,而采用计数模式(将0xf1改成0xf5) 就不行 ...............................................*/ IT0=1;//外部中断为负跳变触发方式 TH0=0;//定时器高8位和低8位都赋值为0 TL0=0; while(1) { trig=1;//单片机给trig引脚一个20微秒的触发信号 delay10us(2); trig=0; if(distance<0.1)//如果障碍物距离小于10cm,则亮第一位LED led=0; else led=1; delay10us(6);//延时60微秒 } } /* ..................................................... 中断服务程序,外部中断的中断服务程序的执行时间可以很长, 没有时间的限制,不像定时器中断,中断服务程序执行时间有 一定要求,即在下一次中断请求到来之前本次中断必须执行完毕。.......................................................*/ void wb0() interrupt 0 { TR0=1;//启动定时器,TH0和TL0开始计数 while(echo);//当返回脉冲信号(echo上的高电平脉冲)结束时关闭定时器TR0=0; distance=(TH0*256+TL0)*1.08507/1000000*340/2;//计算障碍物距离 //distance=(定时器高8位*256+低8位)*一个机器周期*声速/2 TH0=TL0=0;//清零TH0和TL0,准备下一次测距 }

超声波测距报告含程序汇总

《单片机原理及应用》 单片机课程设计报告超声波测距报告

目录 第1 章课程设计概述 (2) 1.1 课程设计选题及原理 (2) 1.2课程设计选题调研 (2) 1.2.1 选题目的与意义 (2) 1.2.2 国内外研究综述 (3) 第2 章方案设计 (4) 2.1 主要任务 (4) 2.2 设计框图 (4) 2.3 设计所需元器件及简介 (4) 2.4 设计程序流程简图 (5) 2.5 编程语言的选择 第3 章电路及部分代码设计 (6) 3.1 Stc12c5a60s2最小系统 (6) 3.2 超声波测距模块 (7) 3.3 数码管显示模块 (8) 3.4 蜂鸣器报警模块 (9) 3.5 总仿真结果及实物测量结果 (10) 第4 章课程设计心得体会和总结 (11) 4.1 心得体会 (11) 4.2 总结 (11) 附1 课程设计仿真图………………………………………………………… 附2 课程设计实物图………………………………………………………… 附3 课程设计程序设计代码……………………………………………………………

第1 章课程设计概述 1.1 课程设计选题及原理 课程设计题目 超声波测距仪 设计原理 通过超声波发射装置发出超声波,根据接收器接到超声波时的时间差就可以知道距离了。这与雷达测距原理相似。超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。 最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物面的距离s,即:s=340t/2。 由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应通过温度补偿的方法对测量结果加以数值校正。声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的基本原理。 1.2课程设计选题调研 1.2.1 选题目的与意义 超声波是指频率在20KHz以上的声波,它属于机械波的范畴,可用于非接触测量,具有不受光、电磁波以及粉尘等外界因素的干扰的优点,利用计算超声波在发送端和接收端之间的传输时间和声速来测量距离,对被测目标无损害。而且超声波传播速度在很大范围内与频率无关。超声波的这些独特优点越来越受到人们的重视。 目前对于超声波精确测距的需求也越来越大,比如油库和水箱液面的精确测量和控制,汽车辅助泊位系统的应用,物体内气孔大小的检测和机械内部损伤的检测等。在机械制造,电子冶金,航海,宇航,石油化工,等工业领域也有广泛地应用。此外,在材料科学,医学,生物科学等领域中也占具重要地位。

超声波测距仪设计实验报告

超声波测距仪设计实验报告 课题设计目的及意义 随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前 景的技术及产业领域。展望未来,超声波测距仪作为种新型的非常重要有用的工具在各方面 都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实 施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被 动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大 力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化 智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪 将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌 一新的测距仪将发挥更大的作用。 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统 也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城 市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建 筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市 给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的 自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核 心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得 非常重要了。这就是我设计超声波测距仪的意义。 实验原理 超声波在液体、固体中衰减小、穿透力强、对某些固体、穿透深度能达到几十米的范围;另外,超声波方向性好,能够定向传播。因此,可以作为物体探查和进行测量的可靠手段。 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波 在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍 物的距离(s),即:s=340t/2。 整体电路设计 整体电路的控制核心为单片机STC89C52。超声波发射和接收电路中都对相应信号进行 整形及放大,以保证测量结果尽可能精确。超声波探头接OUT口实现超声波的发射和接收。 整体结构图包括超声波发射电路,超声波接收电路,单片机电路,显示电路和语音提示电路等 几部分模块组成。而超声波发射与接收电路还要加入放大电路。在发射后把信号放大,接收 前也要把还再次放大。 整体电路结构图如图4-1。

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

超声波测距报告

单片机原理及应用 课程设计报告 题目二十七:超声波测距系统设计 学生姓名 专业 学号 同组同学 指导教师 学院 二〇一六年七月 2015-2016学年第二学期成绩:

一、设计要求 1.搭建单片机的最小系统;(基本项) 2.选用超声波模块,设计模块与单片机的接口;(基本项) 3.采用LCD显示器显示测量结果;(基本项) 4.编写相应的程序;(基本项) 5.提高测量精度的方法。(创新项) 二、设计题目介绍及分析 使用MCS-51 系列单片机作为控制器,选用超声波模块,组建测距系统并显示结果。 三、设计方案论证 通过循环来时时的对目标进行测距。

四、具体硬件设计说明 蜂鸣器:通过PNP三极管驱动。接到P3^2引脚。 按键:有键按下时IO口变为低电平。开始按键连接到P3^1,P3^2的按键控制中断。 超声波模块:选用HC-SR04。提供一个10uS以上脉冲触发信号,该模块内部将发出8个40kHz周期电平并检测回波。一旦检测到有回波信号则输出回响信号。回响信

号的脉冲宽度与所测的距离成正比。由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。 超声波TRIG连接到P1^0,ECHO连接到P1^1。 LCD的E,RW,RS引脚分别接到单片机P2^7,P2^5,P2^6,P0口作为数据输出、 五、软件设计说明

发出超声波信号时开启定时器0,通过定时器计算回波信号持续时间进而计算出距 离。 /********************************************************************* ********** * 单片机课程设计 * 题号: 27题,超声波测距 * 组员:马铭阳,程岩,孔维士 * 学号?30222204 130222206 130222207 * 日期:2016年6月30日 * 说明 KEY_START按下,程序执行,KEY1按下显示题号,持续10秒 ********************************************************************** *********/ #include #include #include sbit Trig = P1^0; //超声波发送 sbit Echo = P1^1; //超声波接收 sbit key_start=P3^1; //开始按键 sbit key1=P3^2; //中断按键 sbit buzzer=P1^5; //蜂鸣器按键 unsigned char code TABLE[] = " DISTANCE: "; unsigned char code ASCII[] = {'0','1','2','3','4','5','6','7','8','9','.','-','C','M',' '}; unsigned char code CLASS[] = " NO.27 "; static unsigned char DisNum = 0; //????? unsigned int time=0; unsigned int i=0; unsigned int key_flag=0; long S=0; bit flag =0; //成功标志位 unsigned char disbuff[4] ={ 0,0,0,0,};

相关文档
最新文档