可控硅资料及工作原理和测试方法

可控硅资料及工作原理和测试方法
可控硅资料及工作原理和测试方法

可控硅資料/及工作原理和測試方法BTA06-400BW 6A 400V 50mA TO-220AB BTA06-400C 6A 400V 25mA TO-220AB

BTA06-400CW 6A 400V 35mA TO-220AB BTA06-400TW 6A 400V 5mA TO-220AB BTA06-400E 6A 400V 5~10mA TO-220AB BTA06-400D 6A 400V 1~5mA TO-220AB BTA06-400SAP 6A 400V 5~10mA TO-220 BTA06-600B 6A 600V 35~50mA TO-220AB BTA06-600BW 6A 600V 50mA TO-220AB BTA06-600C 6A 600V 25mA TO-220AB

BTA06-600CW 6A 600V 35mA TO-220A BTA06-600SW 6A 600V 10mA TO-220AB BTA06-600TW 6A 600V 5mA TO-220AB BTA06-600E 6A 600V 5~10mA TO-220AB BTA06-600D 6A 600V 1~5mA TO-220AB BTA06-600SAP 6A 600V 5~10mA TO-220AB BTA06-700B 6A 700V 35~50mA TO-220AB BTA06-700BW 6A 700V 50mA TO-220AB

BTA06-700C 6A 700V 25mA TO-220AB BTA06-700CW 6A 700V 35mA TO-220AB BTA06-700SW 6A 700V 10mA TO-220AB BTA06-700TW 6A 700V 5mA TO-220AB BTA06-700E 6A 700V 5~10mA TO-220AB BTA06-700D 6A 700V 1~5mA TO-220AB BTA06-700SAP 6A 700V 5~10mA TO-220AB BTA06-800B 6A 800V 35~50mA TO-220AB BTA06-800BW 6A 800V 50mA TO-220AB BTA06-800C 6A 800V 25mA TO-220AB BTA06-800CW 6A 800V 35mA TO-220AB BTA06-800SW 6A 800V 10mA TO-220AB BTA06-800TW 6A 800V 5mA TO-220AB BTA06-800E 6A 800V 5~10mA TO-220AB BTA06-800D 6A 800V 1~5mA TO-220AB BTA06-800SAP 6A 800V 5~10mA TO-220AB BTB06-400B 6A 400V 35~50mA TO-220A BTB06-400BW 6A 400V 50mA TO-220AB BTB06-400C 6A 400V 25mA TO-220AB

BTB06-400SW 6A 400V 10mA TO-220AB BTB06-400TW 6A 400V 5mA TO-220AB BTB06-400E 6A 400V 5~10mA TO-220AB BTB06-400D 6A 400V 1~5mA TO-220AB BTB06-400SAP 6A 400V 5~10mA TO-220AB BTB06-600B 6A 600V 35~50mA TO-220A BTB06-600BW 6A 600V 50mA TO-220AB BTB06-600C 6A 600V 25mA TO-220AB BTB06-600CW 6A 600V 35mA TO-220AB BTB06-600SW 6A 600V 10mA TO-220AB BTB06-600TW 6A 600V 5mA TO-220AB BTB06-600E 6A 600V 5~10mA TO-220

BTB06-600D 6A 600V 1~5mA TO-220AB BTB06-600SAP 6A 600V 5~10mA TO-220AB BTB06-700B 6A 700V 35~50mA TO-220AB BTB06-700BW 6A 700V 50mA TO-220AB BTB06-700C 6A 700V 25mA TO-220AB BTB06-700CW 6A 700V 35mA TO-220AB

BTB06-700TW 6A 700V 5mA TO-220AB BTB06-700E 6A 700V 5~10mA TO-220AB BTB06-700D 6A 700V 1~5mA TO-220AB BTB06-700SAP 6A 700V 5~10mA TO-220AB BTB06-800B 6A 800V 35~50mA TO-220AB BTB06-800BW 6A 800V 50mA TO-220AB BTB06-800C 6A 800V 25mA TO-220AB BTB06-800CW 6A 800V 35mA TO-220AB BTB06-800SW 6A 800V 10mA TO-220AB BTB06-800TW 6A 800V 5mA TO-220AB BTB06-800E 6A 800V 5~10mA TO-220AB BTB06-800D 6A 800V 1~5mA TO-220AB BTB06-800SAP 6A 800V 5~10mA TO-220AB

BTA08-400B 8A 400V 35~50mA TO-220AB BTA08-400BW 8A 400V 50mA TO-220AB BTA08-400C 8A 400V 25mA TO-220AB BTA08-400CW 8A 400V 35mA TO-220AB

BTA08-400TW 8A 400V 5mA TO-220AB BTA08-400E 8A 400V 5~10mA TO-220AB BTA08-400D 8A 400V 1~5mA TO-220AB BTA08-400SAP 8A 400V 5~10mA TO-220AB BTA08-600B 8A 600V 35~50mA TO-220AB BTA08-600BW 8A 600V 50mA TO-220AB BTA08-600C 8A 600V 25mA TO-220AB BTA08-600CW 8A 600V 35mA TO-220AB BTA08-600SW 8A 600V 10mA TO-220AB BTA08-600TW 8A 600V 5mA TO-220AB BTA08-600E 8A 600V 5~10mA TO-220AB BTA08-600D 8A 600V 1~5mA TO-220AB BTA08-600SAP 8A 600V 5~10mA TO-220AB BTA08-700B 8A 700V 35~50mA TO-220AB BTA08-700BW 8A 700V 50mA TO-220AB BTA08-700C 8A 700V 25mA TO-220AB BTA08-700CW 8A 700V 35mA TO-220AB BTA08-700SW 8A 700V 10mA TO-220AB

BTA08-700E 8A 700V 5~10mA TO-220AB BTA08-700D 8A 700V 1~5mA TO-220AB BTA08-700SAP 8A 700V 5~10mA TO-220AB BTA08-800B 8A 800V 35~50mA TO-220AB BTA08-800BW 8A 800V 50mA TO-220AB BTA08-800C 8A 800V 25mA TO-220AB

BTA08-800CW 8A 800V 35mA TO-220AB BTA08-800SW 8A 800V 10mA TO-220AB BTA08-800TW 8A 800V 5mA TO-220AB BTA08-800E 8A 800V 5~10mA TO-220AB BTA08-800D 8A 800V 1~5mA TO-220AB BTA08-800SAP 8A 800V 5~10mA TO-220A BTA08-1000B 8A 1000V 35~50mA TO-220AB BTA08-1000BW 8A 1000V 50mA TO-220AB BTA08-1000C 8A 1000V 25mA TO-220AB BTA08-1000CW 8A 1000V 35mA TO-220AB BTA08-1000SW 8A 1000V 10mA TO-220AB BTA08-1000TW 8A 1000V 5mA TO-220AB

BTA08-1000E 8A 1000V 5~10mA TO-220AB BTA08-1000D 8A 1000V 1~5mA TO-220AB BTA08-1000SAP 8A 1000V 5~10mA TO-220AB BTB08-400B 8A 400V 35~50mA TO-220AB BTB08-400BW 8A 400V 50mA TO-220AB BTB08-400C 8A 400V 25mA TO-220AB

BTB08-400CW 8A 400V 35mA TO-220AB BTB08-400SW 8A 400V 10mA TO-220AB

BTB08-400TW 8A 400V 5mA TO-220AB

BTB08-400E 8A 400V 5~10mA TO-220A

BTB08-400D 8A 400V 1~5mA TO-220AB

BTB08-400SAP 8A 400V 5~10mA TO-220AB BTB08-600B 8A 600V 35~50mA TO-220A BTB08-600BW 8A 600V 50mA TO-220AB BTB08-600C 8A 600V 25mA TO-220AB

BTB08-600CW 8A 600V 35mA TO-220AB BTB08-600SW 8A 600V 10mA TO-220AB

BTB08-600TW 8A 600V 5mA TO-220AB

BTB08-600E 8A 600V 5~10mA TO-220AB

BTB08-600D 8A 600V 1~5mA TO-220AB BTB08-600SAP 8A 600V 5~10mA TO-220AB BTA10-400B 10A 400V 35~50mA TO-220AB BTA12-400B 12A 400V 35~50mA TO-220AB BTA16-400B 16A 400V 35~50mA TO-220AB BTA20-400B 20A 400V 35~50mA TO-220AB BTA24-600B 25A 600V 35~50mA TO-220AB

BTA25-600B 25A 600V 35~50mA TO-220AB BTA25-600BW 25A 600V 50mA TO-220AB BTA26-600B 25A 600V 35~50mA TO-220AB BTA40-600B 40A 600V 35~50mA BTW67 BTA40-600BW 40A 600V 50mA BTW67 BTA41-600B 40A 600V 35~50mA BTW67 BTA41-600BW 40A 600V 50mA BTW67 HBT131A 1A 600V 3~7mA TO-92

HBT131CA 1A 600V 3~5mA TO-92

HBT131GA 1A 800V 3~5mA TO-92

HBT134CI 4A 600V 5~10mA TO-251

HBT134DI 4A 600V 5~10mA TO-251 HBT134GI 4A 800V 5~10mA TO-251 HBT134HI 4A 600V 5~10mA TO-251 HBT134NE 4A 600V 10~25mA SOT-82 HBT134I 4A 600V 10~25mA TO-251

HBT134CNE 4A 600V 5~10mA SOT-82 HBT134DNE 4A 600V 5~10mA SOT-82 HBT134GNE 4A 800V 5~10mA SOT-82 HBT134HNE 4A 800V 5~10mA SOT-82 HBT136AE 4A 600V 10mA TO-220AB HBT204I 4A 600V 10mA TO-251

HBT204E 4A 600V 15mA TO-220AB

HBT136AE 4A 600V 10~25mA TO-220AB HBT136AHE 4A 600V 5~10mA TO-220AB HBT136BE 6A 600V 10~25mA TO-220AB HBT137E 8A 600V 10~25mA TO-220AB HBT137DE 8A 600V 25mA TO-220AB HBT138E 8A 600V 10~25mA TO-220AB HBT152 20A 800V 32mA TO-220AB

HBT169 0.8A 400V 200uA TO-92

HBT169M 0.8A 400V 200uA SOT-8

可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。

可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只

单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则

为控制极(G)。1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为

T1极,余下是T2极。

2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。

对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。

对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不

息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

可控硅的工作原理

一、可控硅的工作原理 可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。 图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。

如何用万用表测试单向可控硅

如何用万用表测试单向可控硅 2008-05-10 02:45 可控硅又叫晶体闸流管,在强电和弱电领域都有极为广泛的应用。其中在弱电领域中应用的可控硅功率比较小,外形像三极管,是电子爱好者常遇到的元件之一。 正确测试可控硅是电子爱好者必须具备的基本技能。如何来测试可控硅呢? 由于万用表是电子爱好者必配工具,这里介绍如何用万用表来测试单向可控硅。 单向可控硅的测试包括两个方面:一是极性的判定;二是触发特性的测试。 一、可控硅极性的判定 单向可控硅是由三个PN结的半导体材料构成,其基本结构、符号及等效电路如图1所示。 可控硅有三个电极:阳极(A)、阴极(K)和控制极(G)。从等效电路上看,阳极(A)与控制极(G)之间是两个反极性串联的PN结,控制极(G)与阴极(K)之间是一个PN结。 根据PN结的单向导电特性,将指针式万用表选择适当的电阻档,测试极间正反向电阻(相同两极,将表笔交换测出的两个电阻值),对于正常的可控硅,G、K之间的正反向电阻相差很大;G、K分别与A之间的正反向电阻相差很小,其阻值都很大。这种测试结果是唯一的,根据这种唯一性就可判定出可控硅的极性。用万用表R×1K档测量可控硅极间的正反向电阻,选出正反向电阻相差很大的两个极,其中在所测阻值较小的那次测量中,黑表笔所接为控制极(G),红表笔所接的为阴极(K),剩下的一极就为阳极(A)。 通过判定可控硅的极性同时也可定性判定出可控硅的好坏。如果在测试中任何两极间的正反向电阻都相差很小,其阻值都很大,说明G、K之间存在开路故障;如果有两极间的正反向电阻都很小,并且趋近于零,则可控硅内部存在极间短路故障。 二、单向可控硅触发特性测试 单向可控硅与二极管的相同之处在于都具有单向导电性,不同之处是可控硅的导通还要受控制极电压控制。 也就是说使可控硅导通必须具备两个条件:阳极(A)与阴极(K)之间应加正向电压,控制极(G)与阴极(K)之间也应加正向电压。当可控硅导通以后,控制极就失去作用。单向可控硅的导通过程可用图2所示的等效电路来说明:PNP管的发射极相当可控硅的阳极(A),NPN管的发射极相当可控硅的阴极(K),PNP管的集电极与NPN管的基极相联后相当于可控硅的控制极(G)。 当在A、K之间加上允许的正向电压时,两只管子均不导通,此时当在G、K之间加上正向电压便形成控制电流流入V2的基极,如此循环直至两管完全导通。当导通后,即使 Ig=O,由于V2有基极电流,且远大于Ig,因此两管仍然导通。要使导通的可控硅截止,必须把A、K正向电压降低到一定值,或反向,或断开。 根据可控硅的导电特性,可用万用表的电阻档进行测试。对小功率可控硅可按图3(a)所示联接电路,在可控硅A、G之间联接一只轻触开关(以便于操作),用万用表的R×1Ω档,

可控硅工作原理

可控硅工作原理 一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。 在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。它只有导通和关断两种状态。 可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。 可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。 可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。 可控硅从外形上分类主要有:螺栓形、平板形和平底形。 1、可控硅元件的结构 不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。见图1。它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。 2、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1、可控硅结构示意图和符号图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

第九章 使用万用表检测晶闸管

第九章使用万用表检测晶闸管本章主要介绍数字万用表的检测晶闸管,通过图形带你认识万用表来检测晶闸管。 9.1晶闸管的特点与分类 9.1.1晶闸管的特点 晶闸管(Thyristor)是晶体闸流管的简称,又称做可控硅。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制。被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 9.1.2晶闸管的分类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。如图9.1所示。 图9-1 双向晶闸管 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。 其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。如图9.2所示。 图9-2 金属封装晶闸管(螺旋形)

(四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。如图9.3所示。 图9-3 大功率晶闸管 (五)按关断速度分类 晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。如图9.4所示。 图9-4 高频(快速)晶闸管 9.2 单向晶闸管的检测 9.2.1检测单向晶闸管的操作方法 方法一 (1)将数字万用表置于电阻20kΩ挡,红表笔接阳极A,黑表笔接阴极K,把控制极G悬空,此时晶闸管截止,万用表显示溢出符号“1”,如图9.5所示。 图9-5欧姆档 (2)然后在红表笔与阳极A保持接触的同时,用它的笔尖接触一下控制极G(将A极与G 极短接一下),给晶闸管加上正触发电压,晶闸管立即导通,显示值减小到几百欧至几千欧,若显示值不变,说明晶闸管已损坏。 方法二

可控硅好坏如何测量修订稿

可控硅好坏如何测量 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、可控硅的特性 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极 A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G 和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极 A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 二、可控硅的管脚判别 晶闸管管脚的判别可用下述方法:先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。再将万用表置于

(整理)用万用表检测双向可控硅

精品文档 精品文档用万用表检测双向可控硅 双向可控硅是一种使用较广泛的硅晶体闸流管。利用双向可控硅可以实现交流无触点控制,具有无火花、动作快、寿命长、可靠性高等优点,较多的使用在电机调速、调光、调温、调压及各种电器过载自动保护电路中。 双向可控硅由五层半导体材料、三个电极构成,三个电极分别为第一阳极(又称主电极)T1、第二阳极(又称主端子)T2和门极G,其特点是触发后可双向导通。目前双向可控硅的型号、规格繁多,其外型及引脚排列随生产厂家的不同而不同,一般情况下不易直接判断出其管脚及好坏,我们可用万用表对双向可控硅进行简单检测。 一、 二、电极的确定 首先,把万用表置于R×10Ω档,测双向可控硅能相互导通的两个电极,这两个电极对第三个电极都不导通,则第三个电极为第一阳极T1。 其次,把万用表置于R×1Ω档,测余下两个电极的正反向电阻,取其中电阻小的一次,黑表笔所接的是第二阳极T2,红表笔所接的是门极G。 三、触发性能的检测 双向可控硅有四种触发方式,即T1+G+、T1+G-、T1-G+、T1-G-,其中T1-G+触发方式灵敏度较低,所需门极触发功率较大,实际使用时只选其余三种组合。而T1+G+、T1-G-触发形式的可靠性较高,较常使用,检测触发性能时可只检测这两种形式。 用万用表检测双向可控硅的触发性能,可按下列步骤进行: 把万用表置于R×1Ω档,先检查T1+G+形式的触发能力。用万用表黑表棒与T1极接触,红表棒与T2极接触,万用表指针应停在无穷大处。保持黑表棒与T1极接触、红表棒与T2极接触,用万用表黑表棒同时接触门极,则指针应有较大幅度的偏转;再松开黑表棒与门极的接触,指针读数不变,说明T1+G+触发性能良好。然后检查T1-G-形式的触发能力:黑表棒与T2极接触,红表棒与T1极接触,万用表指针应停在无穷大处。保持黑表棒与T2极接触、红表棒与T1极接触,用红表棒接触门极,指针应有较大幅度的偏转,再松开红表棒与门极的接触,指针读数不变,说明T1-G-触发性能良好。 由于万用表R×1Ω档的电池只有1.5V,对于维持电流较大的大功率双向可控硅不能可靠的触发、维持,可在万用表的外部串入1~2节干电池后再用上述方法检测。 四、单向、双向可控硅的判别 有的单向可控硅阳极与阴极正反向也都相互导通,初学者判断时可能误判断为双向可控硅,而检测它的T1-G-触发性能不好导致误判断。那么,如何区别单向、双向可控硅呢? 把万用表打到R×10Ω档,测出相互导通的两个电极。然后测量这两个电极的正反向电阻。若正向、反向电阻差不多,则为双向可控硅(见附图1);若正向、反向电阻差别较大,则为单向可控硅(见附图2)。

双向可控硅原理与应用整理

双向可控硅MAC97A6的电路应用 家电维修2010-08-22 00:08:15 阅读2916 评论2 字号:大中小订阅 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改 装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.360docs.net/doc/3c5006500.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状态下,风型指示管VD4(黄色)熄灭,在阵风状态下,VD4闪光;当按动定时时间选择键SB2,定时指示管VD5-VD8依次对应点亮或熄灭,即每按动一次SB2,可选择其中一种定时时间,共有0.5、l、2、4小时和不定时5种工作方式供选择。当定时时间一到,IC内部的定时电路停止工作,相应的定时指示管熄灭同时IC的11-13脚也无控制信号输出,双向晶闸管VS1-VS3截止,从而导致风扇自动停止运转;在风扇不定时工作时,欲停止风扇转动,只要按动一下复位开关SB1,所有指示灯熄灭,电源被切断,风扇停转;如欲启动风扇,照上述方法操作即可。元器件选择与制作图中除降压电容C1用优质的CBB-400V聚苯电容;泄放保护电阻R1用1W金属膜电阻或线绕电阻外,其余元器件均为普通型。电阻为1/8W;电解电容的耐压值取10V-16V,C1取值范围为0.47u-lu之间;稳压管VD9为5V-6V/1W,可选用ZCW104(旧型号为ZCW21B)硅稳压管;VS1-VS3为1A/400V小型塑封双向晶闸管,可选用MAC94A4型或MAC97A6型;L为电抗器,可以自制,亦可采用原调速器中的电抗器;SB1-SB4为轻触型按键开关(也叫微动或点动开关),有条件的可采用导电橡胶组合按键开关。电路焊接无误,一般不用调试就能工作。改装方法该电路对所有普通风扇都能进行改装。将焊接好的电路板装进合适的塑料肥皂盒或原调速器盒中,将原分线器开关拆除不用,留出空余位置便于安装印制板电路。一般风扇用电抗器均采取5挡。不妨利用其中①、③、⑤挡,将强风(第1挡)、中风(第2挡)弱风(第3挡)分别接到电抗器的各挡中。若有的调速器中无电抗器,风扇电机则是采取抽头方式改变风速的,同样将三种风速分别接至分线器的三极引线中。在改装中特别要注意安全,印制板上220V交流电源接线端及所有导电部位应与调整器盒的金属件严格隔离。改装完毕,可用测电笔碰触调速器有否漏电。否则应进一步采取绝缘措施。通电试验时,用万用表DC10V档测C2两端电压应为5V-6V之间,若不正常,应重点检查整流稳压电路,然后再分别按动SB1-SB4开关,观察各路指示管VD1-VD8应按对应的选择功能发光或熄灭,风扇也应同步工作于不同状态。

可控硅资料及工作原理和测试方法

可控硅資料/及工作原理和測試方法BTA06-400BW 6A 400V 50mA TO-220AB BTA06-400C 6A 400V 25mA TO-220AB BTA06-400CW 6A 400V 35mA TO-220AB BTA06-400TW 6A 400V 5mA TO-220AB BTA06-400E 6A 400V 5~10mA TO-220AB BTA06-400D 6A 400V 1~5mA TO-220AB BTA06-400SAP 6A 400V 5~10mA TO-220 BTA06-600B 6A 600V 35~50mA TO-220AB BTA06-600BW 6A 600V 50mA TO-220AB BTA06-600C 6A 600V 25mA TO-220AB BTA06-600CW 6A 600V 35mA TO-220A BTA06-600SW 6A 600V 10mA TO-220AB BTA06-600TW 6A 600V 5mA TO-220AB BTA06-600E 6A 600V 5~10mA TO-220AB BTA06-600D 6A 600V 1~5mA TO-220AB BTA06-600SAP 6A 600V 5~10mA TO-220AB BTA06-700B 6A 700V 35~50mA TO-220AB BTA06-700BW 6A 700V 50mA TO-220AB

BTA06-700C 6A 700V 25mA TO-220AB BTA06-700CW 6A 700V 35mA TO-220AB BTA06-700SW 6A 700V 10mA TO-220AB BTA06-700TW 6A 700V 5mA TO-220AB BTA06-700E 6A 700V 5~10mA TO-220AB BTA06-700D 6A 700V 1~5mA TO-220AB BTA06-700SAP 6A 700V 5~10mA TO-220AB BTA06-800B 6A 800V 35~50mA TO-220AB BTA06-800BW 6A 800V 50mA TO-220AB BTA06-800C 6A 800V 25mA TO-220AB BTA06-800CW 6A 800V 35mA TO-220AB BTA06-800SW 6A 800V 10mA TO-220AB BTA06-800TW 6A 800V 5mA TO-220AB BTA06-800E 6A 800V 5~10mA TO-220AB BTA06-800D 6A 800V 1~5mA TO-220AB BTA06-800SAP 6A 800V 5~10mA TO-220AB BTB06-400B 6A 400V 35~50mA TO-220A BTB06-400BW 6A 400V 50mA TO-220AB BTB06-400C 6A 400V 25mA TO-220AB

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

用万用表检测单向可控硅

用万用表检测单向可控硅 江苏省泗阳县李口中学沈正中 可控硅又叫晶体闸管、晶体闸流管,在电子电路中有着广泛的应用,外形像三极管,如图1所示。 使用可控硅前必需要 进行测试,如何用万用表来 测试单向可控硅,单向可控 硅的检测包括两个方面:一 是极性判定;二是触发特性 检测。 1、可控硅极性的判定 单向可控硅是由三个PN结的半导体材料构成,其基本结构、符号及等效电路如图2所示。 可控硅有三个电极:阳极A、 阴极K和控制极G。从等效电路上 看,阳极A与控制极G之间是两 个反极性串联的PN结,控制极G 与阴极K之间是一个PN结。根据 PN结的单向导电特性,将指针式万用表选择适当的电阻档,测试极间正反向电阻(相同两极,将表笔交换测出的两个电阻值),对于正常的可控硅,G、K之间的正反向电阻相差很大;G、K分别与A之间的正反向电阻相差很小,其阻值都很大。这种测试结果是唯一的,根据这种唯一性就可判定出可控硅的极性。用万用表R×1K档测量可

控硅极间的正反向电阻,选出正反向电阻相差很大的两个极,其中在所测阻值较小的那次测量中,黑表笔所接为控制极G,红表笔所接的为阴极K,剩下的一极就为阳极A。通过判定可控硅的极性同时也可定性判定出可控硅的好坏。如果在测试中任何两极间的正反向电阻都相差很小,其阻值都很大,说明G、K之间存在开路故障;如果有两极间的正反向电阻都很小,并且趋近于零,则可控硅内部存在极间短路故障。 2、单向可控硅触发特性测试 单向可控硅与二极管的相同之处在于都具有单向导电性,不同之处是可控硅的导通还要受控制极电压控制。也就是说使可控硅导通必须具备两个条件:阳极A与阴极K之间应加正向电压,控制极G与阴极K之间也应加正向电压。当可控硅导通以后,控制极就失去作用。单向可控硅的导通过程可用图3所 示的等效电路来说明:PNP管的发射极 相当可控硅的阳极A,NPN管的发射极 相当可控硅的阴极K,PNP管的集电极 与NPN管的基极相联后相当于可控硅的 控制极G。当在A、K之间加上允许的 正向电压时,两只管子均不导通,此时 当在G、K之间加上正向电压便形成控 制电流流入V2的基极,如此循环直至两管完全导通。当导通后,即使Ig=O,由于V2有基极电流,且远大于Ig,因此两管仍然导通。要使导通的可控硅截止,必须把A、K正向电压降低到一定值,或反向,或断开。

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

单向可控硅的原理及测试

单向可控硅的原理及测试 可控硅的意思:可控的硅整流器,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图1: A K G P N P N K G G K G A 图1 可控硅器件等效及测量电路 单向可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用。 单向可控硅的导通需要两个条件: 1)、A 、K 之间加正向电压; 2)、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。 若欲使可控硅关断,也有两个关断条件: 1)、使正向导通电流值小于其工作维持电流值; 2)、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而保持于截止状态。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

怎样用万用表测量可控硅的各电极

怎样用万用表测量可控硅的各电极 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。

怎样用万用表测量可控硅

用万用表测量可控硅 可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。 1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是 T 2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

双向可控硅原理与应用

[转载] 双向可控硅原理与应用 普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 构造原理 尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实 际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率 双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所 示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、 2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶 闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。 双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三 个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G 以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳 极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正 时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。 检测方法 下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。 1. 判定T2极由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻 都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几 十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都 不通,就肯定是T2极。,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通, 据此亦可确定T2极 2. 区分G极和T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加 上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将 红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。 3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后, 在T2一T1方向上也能维持导通状态,因此具有双向触 发性质。由此证明上述假定正确。否则是假定与实际不符, 需再作出假定,重复以上测量。显见,在识别G、T1, 的过程中,也就检查了双向晶闸管的触发能力。如果按哪 种假定去测量,都不能使双向晶闸管触发导通,证明管于 巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A 及3A以上的管子,应选RXl档,否则难以维持导通状态。 典型应用 双向晶闸管可广泛用于工业、交通、家用电器等领域,实 现交流调压、电机调速、交流开关、路灯自动开启与关闭、 温度控制、台灯调光、舞台调光等多种功能,它还被用于 固态继电器(SSR)和固态接触器电路中。图5是由双向晶 闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过 干簧管的电流很小,时间仅几微秒,所以开关的寿命很长. 图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。

用万用表测试可控硅

用万用表测试可控硅 小功率可控硅,由于所需的触发电流较小,故可以只用万用表来测试。 一、单向可控硅的测试 1.极性的判别 用万用表的R×100欧姆档,分别测量各管脚间的正反向电阻。如果测得其中两管脚的电阻较大(约为80KΩ),而对换表笔再测这两个管脚的电阻值又较小(约为2KΩ),这时,黑表笔所接的一极为控制极G,红表笔所接的一极为阴极K,余者为阳极A。 2.质量的判别 用万用表的R×10欧姆档,黑表笔接A极,红表笔接K极。用黑表笔在保持和A极相接的情况下和G极接触,这样就给G极加上一触发电压。这时由万用表可以看到,可控硅的阻值明显变小,说明可控硅可能由于触发而处于通态。仍保持黑表笔和A极相接,断开和G极的接触,如果可控硅仍处于通态,则说明可控硅是好的,否则,一般是可控硅损坏。 二、可控硅的测试 由于双向可控硅相当于两个单向可控硅的反极性并联而成,又G极靠近T1极,由于工艺方面的原因,G极和T1极间的正向电阻都很小,一般为100Ω左右。另外,双向可控硅具有四种触发状态,只要满足任何一种触发状态,双向可控硅便可触发导通。 极性的判别: 用万用表的R×1K或R×100欧姆档,分别测量各管脚间的正反向电阻,如果测得其中两管脚的电阻很小(约为100Ω左右),即为T1极和G极,余者为T2极。 T1极和G极的区分:

任选其中一极为T1,将万用表调至R×1欧姆档,不用分表笔的正负,分别将两表笔接至T2极和T1极(假设)。用和T2相接的表笔在保持和T2相接的情况下,和G(假设)相接。这时会看到可控硅阻值明显变小,说明双向可控硅可能因触发而导通,再大保持该表笔和T2相接的情况下和G极(假设)断开,如果双向可控硅仍处于通态,则对换两表笔,重复上述步骤,如果仍能使可控硅处于通态,则假设是正确的。否则假设是错误的。这样就应该对换假设的两极再重复上述的步骤。

相关文档
最新文档