牵引变电所接地防雷系统的设计

牵引变电所接地防雷系统的设计
牵引变电所接地防雷系统的设计

齐鲁工业大学

毕业设计

题目:牵引变电所接地防雷系统的设计

系别:

专业:

班级:

学生姓名:

指导教师:

完成日期:

摘要

牵引变电所是铁路供电系统的枢纽,它担负着电网供电的重要任务。雷电具有很强的危害性,因此应该重视牵引变电所的雷电的防护。

综合运用高电压技术、电力系统过电压、接地系统及供防雷接地的设计方法,对110kV牵引变电所进行防雷接地设计。引变电所雷击的配电技术等相关的专业知识,采用理论和实践相结合的方法,研究牵,基于常用的形式及防雷接地的几种措施,研究接地装置的类型和降阻方式

关键词雷电放电防雷保护装置防雷接地装置牵引变电所

目录

1 绪论 (3)

2 雷 (1)

2.1 雷电 (1)

2.1.1 雷电的发生机理 (1)

2.1.2雷电放电 (1)

2.1.3雷电放电的过程 (2)

2.1.4雷电放电的基本形式 (3)

2.1.5雷电放电的选择性 (5)

2.1.6我国雷电活动分布的规律 (5)

2.1.7雷电的危害 (6)

2.1.8雷电的防护措施 (7)

2.2雷电参数 (12)

2.2.1雷电放电的计数模型及等值电路 (12)

2.2.2雷电流 (14)

3 防雷保护装置 (18)

3.1避雷针 (18)

3.1.1避雷针保护原理及组成 (18)

3.1.2避雷针的保护范围 (19)

3.2避雷线 (21)

3.2.1避雷线保护范围 (21)

3.3变配电所装设避雷针和避雷线的有关规定 (23)

3.3.1避雷针的有关规定 (23)

3.3.2避雷线的有关规定 (24)

3.4避雷器 (24)

3.4.1避雷器的保护原理及要求 (24)

3.4.2避雷器的伏秒特性 (25)

3.4.3避雷器的分类 (25)

4 防雷接地装置 (30)

4.1接地装置的概述 (30)

4.1.1 接地装置组成 (30)

4.1.2接地电阻和流散电阻 (31)

4.1.3对地电压、接触电压和跨步电压 (32)

4.2接地装置的分类 (32)

4.2.1工作接地 (33)

4.2.2保护接地 (33)

4.2.3 防雷接地(如图4-5所示) (33)

4.3工程实用的接地装置 (34)

4.3.1输电线路的防雷接地 (34)

4.3.2发电厂和变电站的接地 (34)

4.4接地电阻的计算和降阻方法 (35)

4.4.1接地电阻的计算 (35)

4.4.2接地电阻的降阻方法 (35)

5 110kV牵引变电所防雷保护和接地设计 (37)

5.1过电压的基本概念及分类 (37)

5.1.1过电压的定义 (37)

5.1.2过电压的分类 (37)

5.2牵引变电所容易遭受雷击的地方 (39)

5.2.1直击雷的保护 (39)

5.2.2雷电侵入波保护 (39)

5.3牵引变电所输电线路的防雷保护 (40)

5.3.1输电线路的感应雷过电压 (40)

5.3.2输电线路的直击雷过电压和耐雷水平 (40)

5.3.3输电线路的雷击跳闸率 (40)

5.4牵引变电所的防雷保护 (41)

5.4.1牵引变电所直击雷过电压的防护 (41)

5.4.2牵引变电所侵入波过电压的防护 (42)

5.4.3牵引变电所内变压器的防护 (43)

5.5牵引变电所内部防雷接线图 (43)

5.6牵引变电所防雷接地装置主视图 (43)

结论 (44)

致谢 (45)

参考文献 (46)

附录 (47)

1 绪论

电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反映国家经济发展水平的重要标志。

变电所是电力系统重要组成部分,是联系发电厂和电力用户的中间环节,因此,它是防雷的重要保护部位。雷电具有很强的危害性,因此应该重视牵引变电所雷电的防护。如果变电所发生雷击事故,将造成大面积的停电,给社会生产和人民生活带来不便,影响了国民经济的发展。

变电所是电力系统防雷的重要保护对象,如果发生雷击事故,将造成大面积的停电,严重影响社会生产和人民生活。所以变电所的防雷措施必须十分可靠。本设计第一节主要讲了雷电的形成,雷电对变电所的危害,变电所遭受雷击的基本形式(1)雷电直接击中变电所设备上,这种雷击称为“直击雷”(2)雷电对变电所设备、线路或其他物体产生静电感应或电磁感应而引起的,这种雷击又称“感应雷”或“闪电感应”(3)架空线路遭受直接雷击或间接雷击而引起的过电压波,沿线路侵入变电所或其他建筑物,这种雷击又称为“雷电波侵入”或“闪电感应”。以及牵引变电所防雷击的一些措施例如:(1)3~10kV变电所的典型防雷在每路进线端和每段母线上,均装有阀型避雷器。如果进线是有一段引入电缆的架空线路,则在架空线路终端的电缆头处装设阀型避雷器或管型避雷器,其接地端与电缆头外壳相连后接地。避雷器的接地端应与变压器低压侧中性点及金属外壳等连接在一起接地。(2)35~110kV变电所防雷在变电所进线段1~2km的杆塔上架设避雷线。在木杆或木横担的钢筋混凝土杆线路进线段的首端,装设一组管型避雷器Fl变电所的进线隔离开关或断路器,在雷雨季节可能处于开路状态,而线路侧又带电时,则必须在靠近隔离开关或断路器QFl处装设一组管型避雷器F2变电所母线上,装设阀型(或氧化锌)避雷器F3。如为母线分段的两路进线时,则每路进线和每段母线均应按这种标准方案施设保护。

第二节主要讲了防雷保护装置如:避雷针、避雷线的保护原理及保护范围;避雷器的组成及典型的几种避雷器等。第三节主要讲了牵引变电所的防雷接地装置电力系统中各电气设备的接地按其不同的作用可分为工作接地、保护接地和防

雷接地。

(1)保护接地:将电气设备在正常情况下不带电的金属部分与大地连接。高压设备要求的保护接地电阻一般为(1~10)Ω。(2)防雷接地:专门传导雷电流的工作接地。防雷接地主要由过电压保护的需要决定,一般为4~30Ω。(3)工作接地:将电力系统的某一点与大地连接。这种接地可分为直接接地或经特殊装置接地。工作接地的接地电阻一般为(0.5~5)Ω。最后一节则讲了110kV牵引变电所防雷保护和接地设计。主要包括过电压的一些概念,以及牵引变电所过电压的防护等知识。(1)牵引变电所直击雷过电压的防护对于直击雷必须装设避雷针或避雷线对直击雷进行保护。牵引变电所的直击雷防护设计内容主要是选择避雷针的支数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置设计等。(2)牵引变电所侵入波过电压的防护其主要防护措施是在牵引变电所内装设阀型避雷器或氧化锌避雷器以限制入侵雷电波的幅值。

基于常用的防雷接地的设计方法,对110kv牵引变电所进行了详细的防雷接地设计。设计中,结合当地现状,综合考虑了气候、地形、环境等多种因素,给出了较好的防雷接地保护方案。通过对牵引变电所的防雷接地设计,全面剖析了电力系统中如何让提高牵引变电所的防雷水平,从而有效地降低牵引变电所的雷击事故,减少雷电对电网安全运行的影响。

2 雷

2.1 雷电

2.1.1 雷电的发生机理

雷电是一种自然现象。主要是天空中的饱和水蒸汽,由于上升气流的作用而使水滴分裂,水滴分裂过程的同时,微细水滴带有不同的电荷,使带正(或负)电荷的水滴上升,带电荷的小水滴漂浮在空中,就形成雷云。雷云中的电荷一般不是在云中均匀分布的,而是集中在几个带电的中心。雷云越集越多,也就是电荷越积越多,到达一定程度后,足以击穿与大地或地面上的建筑物与电气设备之间的空气时,就会发生强烈的放电,同时发出强烈的电光和巨响。随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对大地的火花放电。雷电放电包括雷云对大地,雷云对雷云和雷云内部的放电现象。大多数雷云放电都是在雷云与雷云之间进行的,只有少数是对地进行的。在防雷工程中,主要关心的是雷云对大地的放电。雷云对大地放电虽然只占少数,但它是造成雷害事故的主要因素。

2.1.2雷电放电

雷电放电是由带电荷的雷云引起的放电现象。一般认为雷云是在某种大气和大地条件下,由强大的潮湿的热气流不断上升进入稀薄的大气层冷凝的结果。强烈的上升气流穿过云层,水滴被撞分裂带电。轻微的水沫带负电,被风吹得较高,形成大块的带负电的雷云;大滴水珠带正电,凝聚成雨下降,或悬浮在云中,形成一些带正电的区域。雷云的底部大多数是带负电,它在地面上会感应出大量的正电荷。这样,在带有大量不同极性或不同数量电荷的雷云之间,或者雷云和大地之间就形成了强大的电场,其电位差可达几兆伏甚至几十兆伏。随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度时,就会发生雷云之间或雷云对地的放电。直接击向地面的放电通常是从负电荷中心的边缘开始,故90%左右是负极性的雷。大多数雷电放电发生在雷云之间,对地面上的设备和建筑没有什么直接影响。雷云对地的放电虽占少数,但危害是十分严重的,是造成雷电事故的主要因素。要避免产生雷电事故,就必须对雷电的放电过程、

活动规律和雷电参数加以研究。

2.1.3雷电放电的过程

雷电放电过程可分为先导放电、主放电和余辉放电三个主要阶段。

(1)先导放电

雷云下部大部分带负电荷,故绝大多数的雷击是负极性的。雷云中的电荷一般是集中在几个带电中心。测量数据表明,雷云的上部带正电荷,下部带负电荷。直接击向地面的放电通常从负电荷中心的边缘开始。雷云带有大量电荷,由于静电感应作用,在雷云下方的地面或地面上的物体将感应聚集与雷云极性相反的电荷,雷云与大地间就形成了电场。当雷云附近的电场强度达到足以使空气游离的强度(约25~30kv/cm)时,就发展局部放电。

当某一段空气游离后,这段空气就由原来的绝缘状态变为导电性的通道,称为先导放电通道。若最大场强方向是对地的,放电就从云中带电中心向地面发展,形成下行雷。

先导通道是分级向下发展的,每级先导发展的速度相当高,但每发展到一定的长度(约25m~50m)就有一个(30~90)μs的间歇。所以它的平匀发展速

10m/s,出现的电流不大。先导度较慢(相对于主放电而言),约为(1~8)×5

放电的不连续性,称为分级先导,历时约0.005~0.01s。

在先导通道发展的初始阶段,其发展方向受到一些偶然因素的影响并不固定。但当它发展到距地面一定高度时(这个高度称为定向高度),先导通道会向地面上某个电场强度较强的方向发展,这说明先导通道的发展具有“定向性”,或者说雷击有“选择性”。

(2)主放电

当先导接近地面时,地面上一些高耸的突出物体周围电场强度达到空气游离所需的场强,会出现向上的迎面先导,当先导通道的头部与迎面先导上的异号感应电荷或与地面之间的距离很小时,剩余空气间隙中的电场强度达到极高的数值,造成空气间隙强烈地游离,最后形成高导电通道,将先导头部与大地短接,这就是主放电阶段的开始。

由于其电离程度比先导通道强烈的多,电荷密度很大,故通道具有很高的导电性。主放电的发展速度很高,约为(2×107 ~1.5×108)m/s,所以出现极大

的脉冲电流,并产生强烈的光和热使空气急剧膨胀震动,出现闪电和雷鸣。

主放电的过程极短,只有50~100μs,它是沿着负的下行先导通道,由下而上逆向发展,故又称“回击”,其速度高达2.0亿~1.5亿m/s。

(3)余辉放电

主放电完成后,云中的剩余电荷沿着主放电通道继续流向大地,形成余辉放

10~10A,持续时间较长(0.03~0.05s)。由于云中同时可电,电流不大,约为3

能存在几个带电中心,所以雷电放电往往是重复的,一般重复2~3次。

雷云中的电荷分布是不均匀的,往往形成多个电荷密集中心,所以第一个电荷中心完成上述放电过程后,可能引起第二个、第三个甚至多个的中心向第一个中心放电,并沿原先的通道到达大地,因此雷电可能是多重性的。第二次及以后的主放电电流一般较小,不超过30kA。如图2-1所示。

图2-1 雷电放电的发展过程

(a)放电过程示意图(b)放电电流波形

2.1.4雷电放电的基本形式

(1)云对地放电

雷云对大地放电虽然占少数,但它是造成雷害事故的主要因素。当云层对地较低、或地面有高耸的尖端突起物时,雷云对地之间就会形成较高的场强,当场

强达到一定的值时,雷云就会向地面发展向下的先导,当先导到达地面,或与大地迎面先导会合时,就开始主放电阶段。在主放电中雷云与大地之间所聚集的大量电荷通过狭小的电离通道发生猛烈的电荷中和,放出能量,产生强烈的声和光,即电闪、雷鸣。在雷击点,有巨大的电流流过。大多数雷电流的峰值有几十千安,也有少数达到上百千安。由于雷击是在极短的时间内释放较大的能量,因而会造成极大地破坏作用。

雷云对地的放电通常包含若干次重复的放电过程,每次放电一般都由先导放电、主放电和余光放电三个主要阶段组成。第一次从雷云向大地发展的先导不是连续向下发展的,而是逐级向下推进的,其平均发展速度较慢,相应的电流也较小(数十至数百安)。先导通道导电性能良好,因此带有与雷云同极性的多余电荷。雷云与先导在地面上感应出异号电荷。当先导接近地面时,会从地面较突出的部分发出向上的迎面先导。当迎面先导与下行先导相遇时便开始主放电过程,出现极大的电流(数十至数百千安),并伴随着雷鸣和闪光。主放电存在的时间极短,约50~100us,速度要比先导的发展速度快得多。主放电过程是逆着负先导的通道由下向上发展的,主放电到达云端时主放电过程就结束了,然后云中的残余电荷经过主放电通道继续流向大地,称为余光放电。余光放电对应的电流不大(约数百安),但持续的时间却较长(0.03~0.15s)。

(2)云对云放电

当带不同电荷的云团相遇时,就会发生云对云的放电,云对云的放电其实是最主要的雷电活动型式。云对云放电对人类活动的影响要比云对地放电小得多,不会产生直击雷,直接造成人身伤亡和建筑物损毁事故。但云对云放电会在线路和网络上产生感应雷过电压,过电压的大小视雷电活动强弱和放电雷云离地面的高低而定。

感应雷电压幅值与雷云对地放电时的电流大小、雷击点与线路间相对位置、雷击点周围环境(如土壤电阻率)、遭受感应雷击的线路的长度、线路埋设位置、设备接地装置的电阻等诸多因素有关系。

一般来讲,云对云放电越强烈,参与放电的云层离地面越低,所产生的感应雷过电压就愈高,反之则愈弱。感应雷的产生可由“静电感应”的效应产生,也可由“电磁感应”的效应产生,但大部分的情况是由这两种效应的综合作用而成。

(3)云内放电

当带电云团的内部,带异号电荷中心之间的电场强度达到空气间隙的击穿值时会发生云内放电,云内放电的强度一般都不会特高,属于最弱的一种雷电活动型式,对人类活动几乎没有什么影响,因而也很少受到人们的关注。

2.1.5雷电放电的选择性

在同一区域内雷击分布不均匀的现象称为“雷电放电的选择性”。雷击虽是小概率事件,但它的发生仍有一定的规律可循。雷电活动在一定的区域内,特别是云对地放电会受地形、地势和季风的影响有一定的规律,掌握这些规律对防雷具有重要意义。

(1)雷击与地形、地势的关系对于山区来说,雷电活动受地形、地势的影响较为明显,因为山区雷云的活动主要受季风的影响,而季风又受山势及地形的影响,比如两侧有高山、碍口,那么雷云就会随着季风的作用从山谷或碍口穿越,这时如果附近有突出物,就会引起雷云对地放电,位于这些地段的线路或设施要么合理避让,要么采取特别的防雷措施。

(2)雷击与地质的关系从现场资料分析可知:如果地面土壤分布不均匀,则在土壤电阻率特别小的地区,雷击的概率较大,这是由于静电感应的作用,在雷电先导放电阶段,地中的感应电流沿着电阻率较小的路径流通,使地面电阻率较小的区域被感应而积累了大量与雷云相反的电荷,而雷电自然就朝着电阻率较小的地区发展。这就是为什么山区地下有金属矿的地方遭雷击概率大,河流附近雷击概率大的原因。

(3)雷击与地面设施的关系当雷云运动到离地面较近的低空时,雷云与地面之间的电场受地面设施的影响而发生畸变,有时在突出的物体上由于电场强度增大,还会发生向上的迎面先导,雷电放电自然就容易在雷云与地面设施之间发生。这就是为什么高塔和高耸的建筑物容易遭受雷击的根本原因。

2.1.6我国雷电活动分布的规律

我们国家幅原辽阔,从位于亚热带的海南到位于寒带的莫河距离几千公里,从东边沿海地区西到云贵高原,降雨量和雷电活动相差很大,但总的来说则有如下规律:

(1)南方的雷电活动多于北方,从南到北逐渐减少,海南地区的雷电日高

达180多个,而西北新疆地区雷电日则少于20。

(2)沿海多于内地,在其他条件相同时,沿海地区的雷电活动明显高于内地。如浙江、福建沿海的雷电活动明显高于同一纬度的内陆地区。

(3)山区高于平原,位于同一地区的山区雷电活动明显高于平原地区。

(4)东部高于西部,特别是东北地区的雷电活动明显高于处于同一纬度的西北地区,这主要是受东北降雨量明显高于西北地区的原因,也就是说雷电活动和降雨量基本上是一致的。

(5)在同一地区会受地形、地势、地质和小气候的影响差异较大,因而在防雷措施上也要因地制宜,制订针对性的防雷措施。

2.1.7雷电的危害

雷电具有很大的破坏性,能够摧毁房屋,劈裂树木伤害人畜,损坏电气设备和电力线路。雷击放电所出现的各种效应有以下几种:

(1)电效应。在雷电放电时,能产生高达数万伏的冲击电压,足以烧毁电力系统的发电机、变压器、断路器等电气设备或将输电线路绝缘击穿而发生短路,导致可燃、易燃易爆物品着火和爆炸。

(2)热效应。当几十至几千安的强大雷电流通过导体时,在极短时间内转换出大量的热能。雷击点的发热能量为500~2000J,这一能量可熔化50~200mm3的钢,故在雷电通道中产生的高温,往往会酿成火灾。

(3)机械效应。由于雷电的热效应,还将使雷电通道中木材纤维缝隙和其它结构中间的缝隙里的空气剧烈膨胀,同时使水分及其它物质分解为气体。因而在被雷击物体内部出现强大的机械压力,致使被击物体遭受严重破坏或造成爆炸。

(4)静电感应。当金属物处于雷云和大地电场中时,金属物上会生出大量的电荷。雷云放电后,云和大地间的电场虽然消失,但金属物上所感应积聚的电荷却来不及逸散,因而产生很高的对地电压(即静电感应电压)。静电感应电压往往高达几万伏,可以击穿数十厘米的空气间隙,发生火花放电,因此,对于存放可燃性物品及易燃、易爆物品的仓库是很危险的。

(5)电磁感应。雷电具有很高的电压和很大的电流,同时又是在极短暂的时间内发生的。因此在它周围的空间里,将产生强大的交变磁场,不仅会使处在这一电磁场的导体感应出较大的电动势,并且还会在构成闭合回路的金属物中感应

电流,这时如果回路中有的地方接触电阻较大,就会局部发热或发生火花放电,这对于存放易燃、易爆物品的建筑物是非常危险的。

(6)雷电对电力系统的危害随着高层建筑的不断涌现和电力系统的不断发展,雷电灾害也日益成为人们日常生活中的重要危害之一,每年夏季,全国各电力系都会发生雷击自然灾害事故,造成电力系统中断,、建筑物被毁、危机人的生命和安全,雷击造成的经济损失近10亿元,已成为危害程度仅次于暴雨洪涝、气象地质灾害的第三大气象灾害。

(7)雷电对人的危害雷雨多发季节,雷电造成的灾害除经济损失外,还可造成人身伤害以致威胁到人的生命安全。人是导电体,若被雷电直接击中头部,并且通过躯体传到地面,可以使心脏和神经麻痹,心脏可能停止跳动,或者发生室颤,就是心跳极不规则,心脏不能有效地射血,被击者无脉搏、无血压;脑神经受损可直接抑制心跳和呼吸中枢,使人几分钟内死亡。雷电对人伤害的四种形式:

①直接雷击:在雷电现象发生时,闪电直接袭击到人体,因为人是一个很好的导体,高达几万到十几万安培的雷电电流,由人的头顶部一直通过人体到两脚,流入到大地。人因此而遭到雷击,受到雷电的击伤,严重的甚至死亡。

②接触电压:当雷电电流通过高大的物体,如高的建筑物、树木、金属构筑物等泄放下来时,强大的雷电电流,会在高大导体上产生高达几万到几十万伏的电压。人不小心触摸到这些物体时,受到这种触摸电压的袭击,发生触电事故。

旁侧闪击:当雷电击中一个物体时,强大的雷电电流,通过物体泄放到大地。

一般情况下,电流是最容易通过电阻小的通道穿流的。人体的电阻很小,如果人就在这雷击中的物体附近,雷电电流就会在人头顶高度附近,将空气击穿,再经过人体泄放下来。使人遭受袭击。

③跨步电压:当雷电从云中泄放到大地时,就会产生一个电位场。电位的分布是越靠近地面雷击点的地方电位越高;远离雷击点的电位就低。如果在雷击时,人的两脚站的地点电位不同,这种电位差在人的两脚间就产生电压,也就有电流通过人的下肢。两腿之间的距离越大,跨步电压也就越大。

2.1.8雷电的防护措施

(1)建筑物的防雷

根据GB50057-94规定,第一类防雷建筑物和第二类防雷建筑物中有爆炸危险的场所,应有防直击雷、防感应雷和防雷电波侵入的措施。

第二类防雷建筑物除有爆炸危险者外及第三类防雷建筑物,应有防直击雷和防雷电波侵入的措施。

建筑物屋顶的易受雷击部位,应装设避雷针或避雷带(网)进行直击雷防护。如图2-2所示

图2-2 建筑物受雷击部位

易受雷击的部位雷击率最高部位

–––不易受雷击的屋脊或房檐

图为建筑物易受雷击的部位:(a)平屋面(b)坡度不大于1/10的屋面(c)坡度大于1/10且小于1/2的屋面(d)坡度不小于1/2的屋面建筑物防雷工程是一个系

图2-3建筑物的综合防雷系统

统工程,必须将外部防雷措施和内部防雷措施作为整体综合考虑。如图2-3所示建筑物的综合防雷系统。

(2)架空线输电线路的防雷

110kV以上的架空线路一般沿全线装设避雷线。如图2-4所示。

图2-4 110kV输电线路防雷示意图

35kV架空线路一般只在进出变电所的一段线路上装设避雷线。

3~10kV架空线路的防雷措施

①利用三角形排列的顶线兼作防雷保护线。

②在全线绝缘比较薄弱的杆塔,装设管型避雷器或保护间隙。

③架空线路上的柱上断路器和负荷开关,应装设阀型避雷器保护。

④同级线路相互交叉或与较低电压线路、通信线路交叉时,交叉档两端的铁塔均应接地。

低压(380/220V)架空线路防雷措施

①多雷地区,当变压器采用Y/Yo或Y/Y接线时,宜在低压侧装设一组阀型避雷器或保护间隙。当变压器低压侧中性点不接地时,应在其中性点装设击穿保险器。

②对于重要用户,宜在低压线路进入室内前50米处安装一组低压避雷器,进入室内后再装一组低压避雷器。

③对于一般用户,可在低压进线第一支持物处装设一组低压避雷器或击穿保险器,亦可将接户线的绝缘子铁脚接地绝缘子铁脚接地(见图2-5所示)。

采用木横担、瓷横担或更高一级的绝缘子,以提高线路的防雷水平。

图2-5 低压接户线的绝缘子铁脚接地示意图

(3)变配电所的防雷

装设避雷针或避雷带(网)变配电所及其室外配电装置,应装设避雷针以防止直击雷。如无室外配电装置,可于变配电所屋顶装设避雷针或避雷带或避雷网。为了防止雷击时雷电流在接地装置上产生的高电位对被保护的配电装置

图2-6 防直击雷的接地装置对配电装置及其接地装置的安全距离

及其接地装置“反击闪络”危及配电装置及有关人员的安全,防直击雷的避雷针的接地装置与配电装置及其接地装置之间应有一定的安全距离。如图2-6所示防直击雷的接地装置的安全距离。

一支独立避雷针及其引下线与配电装置在空气中的水平间距

0S (m)应满足下列两式要求:

h 1.02.0sh 0+≥R S (2-1)

m S 50≥ (2-2)

sh R 为避雷针的冲击接地电阻(Ω);h 为避雷针检验点的高度(m ),独立避雷针的接地装置与变配电所主接地网在地下的水平间距:

sh 3.0R S E ≥ (2-3)

m S E 3≥ (2-4)

①3~10kV 变电所的典型防雷

在每路进线端和每段母线上,均装有阀型避雷器。如果进线是有一段引入电缆的架空线路,则在架空线路终端的电缆头处装设阀型避雷器或管型避雷器,其接地端与电缆头外壳相连后接地。避雷器的接地端应与变压器低压侧中性点及金属外壳等连接在一起接地,如图2-7所示3~10kV 变电所防雷。

图2-7 3~10kV 变电所架空线防雷图

②35~110kV变电所防雷

在变电所进线段1~2km的杆塔上架设避雷线。在木杆或木横担的钢筋混凝土杆线路进线段的首端,装设一组管型避雷器Fl变电所的进线隔离开关或断路器,在雷雨季节可能处于开路状态,而线路侧又带电时,则必须在靠近隔离开关或断路器QFl处装设一组管型避雷器F2变电所母线上,装设阀型(或氧化锌)避雷器F3。如为母线分段的两路进线时,则每路进线和每段母线均应按这种标准方案施设保护。

对35kV进线而容量不大的变电所,还可根据它的重要性简化防雷保护。例如,容量在1000kV A以下不重要负荷的变电所,可简化为如图所示的防雷接线方式。其中,FZ为阀型避雷器,JX为保护间隙。如图2-8所示:

图2-8 35~110kV变电所防雷示意图

2.2雷电参数

2.2.1雷电放电的计数模型及等值电路

对地放电的雷云绝大多数是负极性的,随着先导通道向地面发展,在附近地面上产生的正电荷也在增加。当先导通道距地面的间隙足够小时,剩余间隙被击穿,开始主放电过程。主放电产生的正电荷沿先导通道向上运动去中和通道中的负电荷,而产生的负电荷则沿雷击点流入大地,形成极大的主放电电流。

研究表明,先导通道具有分布参数的特征,其波阻抗用Z0表示,Z0是沿雷动的电压波与电流波的比值有关规程建议取300~400Ω。则雷击大地时的过程可用图2-9来描述。

即将先导放电的发展看作是一根均匀分布电荷的长导线自雷云向大地延伸,而将先导头部临近地面时气隙被击穿看做开关突然闭合。

设先导通道中电荷的线密度为δ,主放电速度为L u 若大地为理想导体(土

壤电阻率为0),则流经主放电通道的电流(即流入大地的电流)。其极性与雷云的极性相同。雷击地面时的等值电路如图2-9(c )所示

研究表明,先导通道具有分布参数的特征,即:

0Z —波阻抗

δ —先导通道中电荷的线密度;

L u —主放电速度

则可将先导放电的发展看作是一根均匀分布电荷的长导线自雷云向大地延

伸,而将先导头部接近地面时气隙被击穿看作是开关突然合闸。

当雷击于避雷针、线路杆塔、架空地线或导线等具有分布参数特性的物体时,雷击放电过程可用2-10图表示。

图2-9 雷击大地时的放电过程 图2-10 雷击物体时的雷电波

(a )先导放电(b)主放电 (a )雷电波的运动

(c )计算电流的等值电路 (b )计算z i 的等值电路

设被击物的波阻抗为z ,则流经被击物体的电流i Z 为:

Z

v i +=00L Z Z Z σ (2-5)

即流经被击物体的电流i Z 与被击物体的波阻抗Z 有关。Z 愈大,i Z 愈小,反之Z 越小则i Z 愈大。当Z=0时,流经被击物体的电流被定义为“雷电流”,用i 表示。

由前述可知i = σU L ,则上式可改写为:

z

z z 00Z +=i i (2-6) 其等值电路图如图2-11所示:

图2-11 计算流经被击物体电流的等值电路

(a )电压源等值电路(b )电流源等值电路

但实际上被击物的波阻抗不可能为零,当其值小于30Ω时,通过被击物体

的电流与其为零时相差不多(0Z Z ≤),故雷电流一般指被击物体波阻抗或接地电阻小于30Ω时流经被击物的电流。

从实际效果来看,可以将雷击物体看作是一个数值为i/2的电流波沿波阻抗为Z 0的通道向被击物体传播的过程。

2.2.2雷电流

雷电流是一个幅值很大、陡度很高的冲击电流,因为雷电波流经被击物体时的电流与被击物体的波阻抗Z 有关,因此,我们把流经被击物体的波阻抗为零时的电流被定义为“雷电流”,用i 来表示。从前面根据雷电放电的等值电路,可知流经被击物体的波阻抗为Z 时的电流i Z 与雷电流i 的关系为:

z

z z 00Z +=i i (2-7) 目前,我国规程建议雷电通道的波阻抗为300~400Ω。雷电流i 为一非周期的冲击波,它与气象、自然等条件有关,是一个随机变量。下面我们介绍它的幅值、极性、波头、陡度、波长及其计算波形。

(1)雷电流的幅值

防雷接地施工组织设计方案

脱硫系统接地专项施工方案 一、编制依据: (一)、施工图纸:大唐吉木萨尔五彩湾北一发电有限公司2×660MW超超临界机组烟气脱硫工程 (1)《室外接地体平面布置图》(YQH1667S-D0801-02) (2)《室外暗装断接卡子做法》(YQH1667S-D0801-03)(二)主要规程、规范 (1)《建筑工程施工质量验收统一标准》(GB50300-2001) (2)《建筑电气工程施工质量验收规范》(GB50303-2002) (3)《建筑物防雷设施安装》(99D501-1,9999(03)D501-1) (4)《利用建筑物金属做防雷及接地装置安装》(03D501-3) (5)《电气装置安装工程接地装置施工及验收规范》(DL/T475-2006)(6)《电力建设安全工作规范(火力发电厂)》(DL5009-2002) (7)《电气装置安装工程母线装置施工及验收规范》 (GB50149-2010) (8)《电气装置安装工程电气设备交接试验标准》 (GB50169-92) 二、工程概况: 大唐准东五彩湾北一电厂位于新疆昌吉市吉木萨尔县五彩湾工业园

内,距五彩湾镇约30km。大唐准东五彩湾北一电厂(2*660MW)超超临界机组烟气脱硫工程包括SO吸收系统、烟气系统、制浆系统、脱水系统、水工系统、事2故浆液系统、工艺水系统、湿式电除尘器系统。配电系统包括工作接地、防雷接地、弱电系统接地包括重复接地及共用接地装置。 三、施工组织机构及劳动力组织 1、组织机构图 大唐吉木萨尔五彩湾北一发电有限公司2×660MW超超临界机组烟气脱硫工程防雷接地施工组织机构图

水电班班长:肖洪海 施工作业班组 、劳动力组织2 作业人员表:

牵引变电所基础知识

第一章牵引变电一次设备 一、概述 1、什么叫牵引供电系统?牵引供电系统由哪几部分组成? 2、牵引供电系统的供电方式有哪几种? 3、什么叫牵引网? 4、牵引变电所的作用是什么? 5、牵引变电一次设备包括什么? 6、牵引变电所有哪几个电压等级? 7、牵引变电所对接触网的供电方式有哪几种? 8、牵引变电所一次接线方式有哪几种? 9、各级电压的配电装置相别排列是如何规定的? 二、变压器 10、牵引变压器的作用是什么? 11、变压器的工作原理是怎样的? 12、牵引变压器由哪些主要部件组成?各部件的作用是什么? 13、什么是变压器的额定容量(Pe)、额定电压(Ue)、额定电流(Ie)、变比k ? 14、变压器并列运行的条件是什么?当不符合并列条件时会引起什么后果? 15、巡视变压器时,除一般项目和要求外,还应有哪些内容? 16、主变压器有哪些特殊检查项目? 17、新安装或大修后的主变压器投运前应进行哪些检查? 18、出现哪些情况,可不向调度汇报,先将主变压器立即切除? 19、哪些故障可能使变压器重瓦斯保护动作? 20、哪些故障的出现可能导致主变压器差动保护动作? 22、主变压器轻瓦斯保护动作有哪些原因? 23、主变压器过热保护动作有哪些原因? 24、主变压器温度计所指温度是变压器什么部位的温度,多少度时 发出“主变过热”信号?冷却风扇启动、停止各在多少度? 25、变压器声音不正常可能是什么原因? 26、运行中的变压器补油应注意哪些事项? 27、自用变压器高压侧熔断器熔断有哪些原因? 28、自用变压器低压侧熔断器熔断有哪些原因? 29、DWJ无载分接开关的结构及工作原理是什么? 30、怎样调节变压器的无载分接开关? 31、全密封隔膜式储油柜有何优点? 32、隔膜储油柜式变压器发生假油面的原因及处理方法是什么? 33、磁针式油位表有何优点?

防雷接地设计规范标准

第一章总则 第1.0.1条为使建筑物(含构筑物,下同)防雷设计因地制宜地采取防雷指施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,做到安全可靠、技术先进、经济合理,制定本规. 第1.0. 2条本规适用于新建建筑物的防雷设计. 本规不适用于天线塔、共用天线电视接收系统、油罐、化工户外装置的防雷设计. 第1.0.3条建筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律以及被保护物的特点等的基础上,详细研究防雷装置的形式及其布置. 第 1.0.4条建筑物防雷设计除应执行本规的规定外,尚应符合国家现行有关标准和规的规定. 第二章建筑物的防雷分类 第2.0.1条建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类. 策2.0.2条遇下列情况之一时,应划为第一类防雷建筑物: 一、凡制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者. 二、具有0区或10区爆炸危险环境的建筑物. 三、具有1区爆炸危险环境的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者. 第2.0.3条遇下列情况之一时,应划为第二类防雷建筑物: 一、国家级重点文物保护的建筑物. 二、国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站、国宾馆、国家级档案馆、大型城市的重要给水水泵房等特别重要的建筑物. 三、国家级计算中心、国际通讯枢纽等对国民经济有重要意义且装有大量电子没备的建筑物. 四、制造、使用或贮存爆炸物质的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和 人身伤亡者. 五、具有1区爆炸危险环境的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者. 六、具有2区或11区爆炸危险环境的建筑物. 七、工业企业有爆炸危险的露天钢质封闭气罐. 八、预计雷击次数大于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物. 九、预计雷击次数大于0.3次/a的住宅、办公楼等一般性民用建筑物. 注,预计雷击次数应按本规附录一计算; 第2.0.4条遇下列情况之一时,应划为第三类防雷建筑物 一、省级重点文物保护的建筑物及省级档案馆. 二、预计雷击次数大于或等于0.012次/a,且小于或等于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物. 三、预计雷击次数大于或等于0.06次/a,且小于或等于0.3次/a的住宅、办公楼等一般性民用建筑物. 四、预计雷击次数大于或等于0.06次/a的一般性工业建筑物. 五、根据雷击后对工业生产的影响及产生的后果,并结合当地气象、地形、地质及周围环境

防雷接地系统施工方案

防雷接地系统安装专项施工方案 分部分项工程名称:建筑电气——防雷接地系统安装 一、设计意图 本工程按二类防雷建筑物设计防雷装置。防雷与工频共用一个接地体,要求接地电阻检测值不大于1Ω。利用基础桩基主筋、地梁与底板钢筋网作接地体,接地体必须饱和焊接形成可靠的电报通路。 所有基础地梁应保证两根≥φ12主钢筋电气连续贯通,并与桩承台台面环形接地体采用φ10圆钢搭接连通,焊口单面焊焊缝长120mm,双面焊缝长60mm,保证电气连续贯通。利用立柱内二根≥φ16对角主筋(剪力墙内至少两根φ12立筋)作为防雷引下线。引下线采用两根φ10圆钢分别和基础接地系统搭接连通,焊口单面焊焊缝长。采用40*4热镀锌扁钢,暗敷在部分基础地梁内将水平接地体,垂直接地体连续贯通组成联合接地系统。 接地系统引出,采用200*200*90钢盒暗埋于墙(或100*100*60钢盒暗埋于柱)内,钢盒内预留80*50*5端子板,并用40*4热镀锌扁铁与接地系统可靠焊通。接地系统测试点采用63*63*5角钢预埋于立柱内(与柱外侧平),预埋角钢同引下线可靠焊通,下口距室外地坪500mm。 将建筑物内的各种竖向金属管道、金属构架每层(每层预留63*63*5角钢与结构主钢筋焊通)与防雷系统连通。所有进出大厦的金属管道皆与就近接地系统连通,做总等电位连接。 屋面避雷带采用25*4镀锌扁钢女儿墙压顶上明装,采用支撑卡与女儿墙压顶固定,卡间水平间距1.0米;接闪器与防雷引下线间用25*4热镀锌扁钢焊接贯通。将各层的金属门窗框架、阳台、金属栏杆、面积较大的金属装饰物以及金属结构物等就近与防雷引下线或楼层均压环搭接连通。玻璃幕墙的金属支撑架从一层开始每层就近与防雷引下线、楼层均压环连接。 本建筑的防雷接地装置与电气设备的保护接地、工作接地共用接地系统,其接地电阻不大于1Ω。 二、施工要素及施工工艺流程 具备完整的设计文件并充分领悟文件意图;施工操作人员及检测人员必须持证上岗;接地电阻

移动通信基站防雷与接地设计规范YD

移动通信基站防雷与接地设计规范YD5068-98 1 总则 1.0.1 为防止移动通信基站遭受雷击,确保移动通信基站内设备的安全和正常工作,确保构筑物、站内工作人员的安全,特制定本规范。 1.0.2 本规范适用于新建移动通信基站的防雷与接地设计。对于改建、扩建移动通信基站的防雷与接地设计,已建基站的防雷与接地技术发行亦可参照执行。设在综合通信楼内移动通信基站的防雷与接地设计应按YDJ26-89《通信局(站)接地设计暂行技术规定》与本规范一并执行。 对于利用商品房(居民住、高用办公楼等)作机房的通信基站,亦应参照本规范执行,其地网应根据现场环境条件的呆能进行布设,但机房的工作接地、保护接地、建筑防雷接应共用一个地网。 1.0.3 移动通信基站的防雷与接地设计应本着综合治理、全方位系统防护的原则,统筹设计、统筹施工,以确保工程质量,切实做到安全可靠。 1.0.4 移动通信基站的防雷与接地工程设计中采用有理论依据、经实践证明行之有效、并经部级主管部门鉴定合格的产品。 2 术语 2.0.1 环形接地装置 围绕移动通信基站房四周,接规定浓度埋设于地下的封闭环形接地体(含垂直接地体)。 2.0.2 接地体 埋入地下并直接与大地接触的导体。 2.0.3 接地汇集线 引出机房、电力室等各种接地线的公共接地母线 2.0.4 接地引入线 接地汇集线与接地体之间的连接线。 2.0.5 接地线 通信设备与接地汇集线之间的连接。 2.0.6 接地系统 接地线、接地汇集线、接地引入线以及接地体的总称。

3 移动通信基站的离雷与接地 3.1 供电系统的防雷与接地 3.1.1 移动通信基站的交流供电系统应采用三相互线制供电方式。 3.1.2 移动通信基站宜设置专用电力变压器,电力线宜采用具有金属护套或绝缘护套电缆钢管埋地引入移动通信基站,电力电缆金属护套或钢管两端应就近可靠接地。 3.1.3 当电力变压器高在站外时,对于地处年雷暴日大于20天、大地电阻率大于100Ω·m的暴露地区的架空高压电力线路,宜在其上方架设避雷线,其长度不宜小于500m。电力线应避雷线的25°角保护范围内,避雷线(除终端杆处)应每杆作一次接地。 为确保安全,宜在避雷线终端杆的前一杆上,增装一组氧化锌避雷器。 若已建站的架空高压电力线路防雷改造采用避雷线有困难时,可在架空高压电力线路终端杆、终端杆前第一、第三或第二、第四杆上各增设一组氧化锌避雷器,同时在第三杆或和四杆增设一组高大保险丝。 避雷线与避雷器的接地体宜设计成辐射形或环形。 3.1.4 当电力变压器设在站内时,其高大电力线应采用电力电缆从地下进站,电缆长度不宜小于200m,电力电缆与架空电力线连接处三根相线应加装氧化锌避雷器,电缆两端金属外护层应就近接地。 3.1.5 移动通信箕站交流电力变压器高压侧的三根相线,应分别就近对地加装氧化锌避雷器,电力变压器低压侧三根相线应分别地加装无间隙氧化锌避雷器,变压器的机壳、低压侧的交流零线,以及与变压器相连的电力电缆的金属外护运载,应就近接地。出入基站的所有电力线均应在出口处加装避雷器。 3.1.6 入移动通信基站的低压电力电缆宜从地下引入机房,其长度不宜小于50m(当变压器高压侧已采用电力电缆时,低压电力电缆长度不限)。电力电缆在时入机房交流屏处应加装避雷器,从屏内引出的零线不作重复接地。 3.1.7 动通信基站供电设备的正常不带电的金属部分、避雷器的接地端,均应作保护接地,严禁作接零保护。 3.1.8 动通信基站直流工作地,应从室内接地汇集线上就近引接,接地线截面积应满足最大负荷的要求,一般为35~95㎜2,材料为我股铜线。 3.1.9 移动通信基站电源设备应满足相关标准、规范中关于耐雷电冲击指标的规定,交流屏、整流器(或高频开关电源)应设有分级防护装置。 3.1.10 电源避雷器和天馈线避雷器的耐雷电冲击指标等参数应符合相关标准、规范的规定。 3.2 铁塔的防雷与接地 3.2.1 移动通信基站铁塔应有完善的防直击雷及二次感应雷的防雷装置。

防雷与接地系统的设计(论文)

毕业综合作业 移动基站防雷与接地系统的设计 选题类型:论文 学生姓名:叶华锋 学号: 20100203235 系部:通信工程系 专业:移动通信技术 班级: 102 指导老师:钱水明 浙江·绍兴 提交时间:2013年4月

摘要 本文论述了移动基站防雷接地系统经常出现的问题,结合平时的实地考察,切实地提出根据实际情况设计移动通信基站防雷接地系统的设计思想。 由于移动通信基站的天线设置大多安装在建筑物的房顶上,还有一部分安装在铁塔上,相对周围环境而言,形成十分突出的目标,从而导致雷击概率增多。通信设备损坏,耗费了大量人力财力。怎样才能有效地预防雷害,确保移动通信基站设备和工作人员的安全呢?必须根据每个基站的实际情况设计移动通信基站的防雷接地系统,实施基站针对性防雷。 关键词:防雷;接地;反击电压;分级防雷

目录 第一章移动基站防雷与接地系统简介 (1) 1.1 防雷与接地系统 (1) 第二章移动基站雷害的主要原因 (2) 2.1 雷击的主要原因 (2) 2.2 反击电压 (3) 2.3 移动基站防雷措施 (5) 第三章移动基站防雷与接地系统的整改案例 (8) 5.1 案例1——大陈基站存在的问题及改造方案 (8) 5.2 案例2——大港头基站存在的问题及改造方案 (9) 5.3 案例分析3——皇家地基站存在的问题及改造方案 (12) 5.4 案例分析4——长坑基站存在的问题及改造方案 (15) 5.5 案例分析5——石铺基站存在的问题及改造方案 (18) 总结 (22) 致谢 (23) 参考文献 (24)

第一章移动基站防雷与接地系统简介 1.1 防雷与接地原理 1.2 基站防雷与接地系统 1.防雷与接地系统的组成 (1)雷电接受装置:直接或间接接受雷电的金属杆(接闪器),如避雷针、避雷带(网)、架空地线及避雷器等; (2)接地线(引下线):雷电接受装置与接地装置连接用的金属导体。它的作用是把雷电接受装置上的雷电流传递到接地装置上,接地线一般采用圆钢或扁钢组成; (3)接地体:包括接地装置和装置周围的土壤或混凝土,作用是把雷击电流有效地泄入大地,现在常用的接地装置有水平接地极、垂直接地极、延长接地极和基础接地极。

【精品】牵引变电所接地防雷系统的设计

齐鲁工业大学 毕业设计 题目:牵引变电所接地防雷系统的设计 系别: 专业: 班级: 学生姓名: 指导教师: 完成日期:

摘要 牵引变电所是铁路供电系统的枢纽,它担负着电网供电的重要任务。雷电具有很强的危害性,因此应该重视牵引变电所的雷电的防护。 综合运用高电压技术、电力系统过电压、接地系统及供防雷接地的设计方法,对110kV牵引变电所进行防雷接地设计.引变电所雷击的配电技术等相关的专业知识,采用理论和实践相结合的方法,研究牵,基于常用的形式及防雷接地的几种措施,研究接地装置的类型和降阻方式 关键词雷电放电防雷保护装置防雷接地装置牵引变电所

目录 1绪论.............................................. 错误!未指定书签。2雷................................................ 错误!未指定书签。 2。1雷电........................................ 错误!未指定书签。 2。1。1雷电的发生机理....................... 错误!未指定书签。 2.1。2雷电放电.............................. 错误!未指定书签。 2。1.3雷电放电的过程........................ 错误!未指定书签。 2.1。4雷电放电的基本形式.................... 错误!未指定书签。 2.1.5雷电放电的选择性....................... 错误!未指定书签。 2.1.6我国雷电活动分布的规律................. 错误!未指定书签。 2.1.7雷电的危害............................. 错误!未指定书签。 2.1.8雷电的防护措施......................... 错误!未指定书签。 2.2雷电参数..................................... 错误!未指定书签。

防雷接地设计说明(20200723202658)

雷接地设计说明 一、设计依据: 1、建筑概况。 2、本工程采用的主要标准及法规。 3、系统设计根据整个建筑物面积及高度(按最不利建筑物),及广东省佛山市的年平均雷暴日,计算的预计雷击次数为(见防雷计算参数表)依据《《建筑物防雷设计规范》》 (GB50057-2010),本工程按二类防雷建筑物设防。利用钢筋混凝土结构的钢筋焊接成笼,构成等电位法拉第笼,在屋面装设由接闪网(带)和接闪杆混合组成的接闪器;利用建筑物外廓剪力墙内相邻两条或立柱对角两条主钢筋作为防雷引下线;接地装置采用基础地梁及桩的钢筋焊接成闭合的接地网格,形成均衡电位的自然接地装置。强弱电系统及防雷共用接地装置,接地电阻要求不大于1 欧姆。强弱电分开接地干线。本工程电子信息系统雷电防护等级为D 级。 4、防雷计算参数。 二、防直击雷措施:1、 在天面女儿墙(檐口、屋角、屋脊等)内敷设接闪带,在整个屋面组成不大于10m*10m 或12m*8m 的网格;并在高出天面建筑物的阳角处装接闪杆,所有接闪杆与接闪带相互焊接连通。(1 )、接 闪带:采用直径10mm热镀锌圆钢明装,与所有引下线焊接连通,接闪带转角要圆滑,焊接不得用对焊,虚焊,要采用搭接焊,搭接长度不小于钢筋的6D,焊接要饱满。采用双面焊。如施工有难度采用单面焊,应不少于12D。明装接闪带规格:采 用直径10mm热镀锌圆钢。接闪带支持卡采用25*4mm的热镀锌扁钢,支高,支架间距,转

角处,接闪带支撑必须牢固可靠不得破坏建筑物防潮层。当建筑物高度超过45m 时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂直 线上或其外 2)、接闪杆:采用直径12mm 热镀锌圆钢(接闪端做成半球状,其弯曲半径为 10mm),高出建筑物400mm。 2、突出屋面的金属设备、管道及建筑金属构件(如钢爬梯、放散管、风管、透气管 等)用直径12mm热镀锌圆钢,就近与接闪带焊接连通。 3、在屋面接闪器保护范围之外的非金属物体装设接闪器,并和屋面接闪带焊接连 通。4、为防雷 电流反击,在低压电源引入的配电箱(柜)处装设过电压保护器;在变压器高、低压侧各相上装避雷器。5、当利用阳台 金属栏杆做接闪器时,栏杆的截面及壁厚均符合。 三、防侧雷击的措施:建筑物从第15层起每一层,将作为引下线的周边立柱对角两条主筋或剪力墙主筋与周边梁的两条主筋焊接,而且两条钢筋应焊接成环形电气通路,作为水平接闪带。每层外墙上的栏杆,厅阳台落地窗及厨房阳台平推门、幕墙骨架等金属构件的搭接板,均应与作为水平接闪带的周边梁筋引出预埋件(预埋件间距不大于18米),用直径10mm热镀锌圆钢或25*4热镀锌扁钢焊接不少于两点(若为合金门窗或合金骨架,可用经接头搪锡的25*4热镀锌扁钢用螺栓紧固,每一窗框焊接不小于两点)。本建筑物高于45m 的建筑物,各表面上的尖物、墙角、边缘、设备以及突出的物业,按屋顶上的保护措施处理。 四、放闪电电涌侵入措施: 1 、进出建筑物的各类电缆铠装层,在入口处与接地装置做等电位连接,做法见标准图集《《建筑物防雷设施安装》》。 2、直接埋地的各类金属管道在进出本建筑物处就近接地装置做等电位连接,做发见标准图集

防雷接地体设计

防雷接地体设计 Prepared on 24 November 2020

不同基础类型的防雷接地体设计1 筏板或箱形基础 为利于保证施工图质量和便于全国同行间进行交流,《民用建筑工程电气施工图设计深度图样》04DX003为国内民用建筑工程建筑电气施工图的编制提供了示范画法,第13、41页和第68页对利用此种类型基础内钢筋网作接地体作了示范性设计说明。13页接地体施工设计说明:接地极为建筑物基础底梁上的上下两层钢筋中的两根主筋通长焊接形成的基础接地网。41页接地体作法:接地极为基础底板轴线上的上下两层主筋中的两根通长焊接形成的基础接地网。第68页接地体作法:利用建筑物基础作接地体,将基础底板上下两层主筋沿建筑物外圈焊接成环行,并将主轴线上的基础梁及结构地板上下两层主筋相互焊接成网作接地体。以上三种接地体作法都对该类型基础体具体利用基础中哪些钢筋,如何连接作了明确具体的说明。其共同点是利用了基础内上下两层钢筋中的两根主筋,即使基础中单根主筋直径达不到10mm,两根主筋通长及相互焊接既满足了《建筑物防雷设计规范》GB50057-94第3.3.5条第四款或条第一款要求,又提高了连接的可靠性。其作法应该成为建筑电气设计人员进行接地体设计效仿的样板,不应弃之不顾。设计中具体利用的钢筋基础名称应与该工程结构设计相统一,以方便施工。 2 独立基础 对于独立基础,则应根据具体情况区别对待。这种情况取决于柱网间距,当柱网间距在6m以内时,基础底部一般为3~4 的方形或矩形独立基础或承台,两基础之间只有2~3m,为起到均压作用和方便金属管线的连接,用40*4的镀锌扁钢将独立基础内钢筋焊接连通,并施行总等电位联结。有时,即使柱网间距较大,如建筑的首层地面中附设有许多金属管线,仍可利用基础作为接地装置,将金属管线路与基础内钢筋连接成一

建筑电气系统的接地与防雷

安全管理编号:LX-FS-A48731 建筑电气系统的接地与防雷 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

建筑电气系统的接地与防雷 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 随着社会经济的快速发展,科技的不断进步,出现了大量的智能建筑,这对建筑的电气设计提出了更高的要求,其中接地系统的设计是尤为重要的一个环节,对于建筑的弱电系统经常出现故障造成严重的后果,根据有关部门的调查显示,其中超过25%的事故是由于雷电以及其它的电磁干扰引起的,保护电气设备的安全,不要受到雷电以及浪涌电压的影响成为电气接地系统设计的一个重要课题。电力系统的使用安全关系到建筑的正常使用,以及使用的安全性和可靠性,对于建筑内的设备和人员安全也是一个保证,为了更好的设计接地系统,就要清楚建筑中接地系统

通信基站防雷接地设计方案

通信基站防雷接地设计 方案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

通信基站综合防雷接地方案 编制依据 工程涉及的产品规范与标准;工程施工涉及的规范、标准及验收规范、标准等须完全满足所有中华人民共和国的规范、标准,包括(但不限于此): 《通信局(站)防雷与接地工程设计规范》YD5098-2005 《通信局(站)防雷与接地工程设计规范》GB50689-2011 《通信局(站)防雷与接地工程验收规范》YD/T5175-2009 《建筑物防雷设计规范》(GB50057-2010) 《建筑物电子信息系统防雷技术规范》(GB50343-2012) 《交流电气装置的接地》(DL/T621-1997) 《电气装置安装工程接地装置施工及验收规范》(GB50169-2006) 《交流电气装置的过电压保护和绝缘配合》(DL/T 620-1997) 1联合接地 在整个防雷系统中接地系统是一个基本前提,只有具备了良好的接地系统,防雷设备才能真正发挥作用。所以,接地系统的建设是所有防雷工作的基础。 1.1接地的目的 1)接地是为了防止电磁干扰起屏蔽作用; 2)接地是为了泄放过电压以保护设备和人身安全; 3)接地是为了起着工作回路的作用; 4)接地是为了给通信设备提供零电位参考点。 5)在受到雷击时以供大电流泄放入地,以保护设备和人身安全。 1.2地网的组成 根据移动通信基站防雷与接地设计规范YD5068中规定: 1)移动通信基站应按均压、等电位的原理,将工作地、保护地和防雷地组成一个联合接地网。站内各类接地线应从接地汇集线或接地网上分别引入。

防雷接地设计方案(定稿).pdf

××××××机房 防 雷 设 计 方 案 第一章概述

雷击是年复一年的严重自然灾害之一。随着我国现代化建设的不断提高,通信及数据设备越来越多,规模越来越大。一方面大型电子计算机网络,程控交换机组等系统设备耐过电流,耐雷电压的水平越来越低,另一方面由于信号来源路径增多,系统较以前更容易遭受雷电波的侵入,致使雷电灾害频频发生。据统计,雷电对电子设备的损坏占设备损坏因素的比例高达33%,防雷电及过电压已成为具有时代特点的一项迫切要求。 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达 数十万安培。高度200m的雷电闪击电流100KA时,雷电闪电产生的闪电电磁 脉冲电磁辐射半径在2km内,对电力、电子线路产生的感应电流约为800A/米,电磁波变化磁场强度为0.03-0.3高斯,仅0.03高斯能量就会损坏微机及自动控制 的芯片、传感器探头和磁盘存储数据;雷电脉冲电压达到2000伏(8~20us)时,目前现有半导体,集成电路的晶片是无法抗御的,因此非常有必要安装相应的防 雷保护设备。雷击所造成的破坏性后果体现于下列四种层次:1)建筑物毁坏及引起火灾;2)设备损坏,人员伤亡;3)设备或元器件寿命降低;4)传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而 暂时瘫痪或整个系统停顿。目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷,用避雷针防止直接雷击实践证明是经济和有效的。但是,随着现代电子技术的不断发展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电压却是破坏大量电子设备的罪魁祸首。对于雷雨多发地区,计算机房必须设计、安装防雷系统装置进行保护。 第二章方案设计说明 2-1、雷电的全面防护: 系统防雷是一项综合性工程,其目的主要如下: 1、解决不同系统之间因电磁兼容问题产生的浪涌电压、干扰电压,传输抑 制等问题,提高传输质量; 2、实现供电系统、供电设备防感应雷击,防雷电波入侵,消除短路故障电 流和开关电磁脉冲(SEMP)的危害; 3、实现供配电系统、低压配电系统、UPS电源、微机网络及通信设备的接 地安全,接地装置的等电位联接;

变电站接地设计及防雷技术正式样本

文件编号:TP-AR-L6587 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 变电站接地设计及防雷 技术正式样本

变电站接地设计及防雷技术正式样 本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 引言 变电站接地系统的合理与否是直接关系到人身和 设备安全的重要问题。随着电力系统规模的不断扩 大,接地系统的设计越来越复杂。变电站接地包含工 作接地、保护接地、雷电保护接地。工作接地即为电 力系统电气装置中,为运行需要所设的接地;保护接 地即为电气装置的金属外壳、配电装置的构架和线路 杆塔等,由于绝缘损坏有可能带电,为防止其危及人 身和设备的安全而设的接地;雷电保护接地即为为雷 电保护装置向大地泄放雷电流而设的接地。变电站接

地网安全除了对接地阻抗有要求外,还对地网的结构、使用寿命、跨步电位差、接触电位差、转移电位危害等提出了较高的要求。 1 变电站接地设计的必要性 接地是避雷技术最重要的环节,不管是直击雷,感应雷或其它形式的雷,都将通过接地装置导入大地。因此,没有合理而良好的接地装置,就不能有效地防雷。从避雷的角度讲,把接闪器与大地做良好的电气连接的装置称为接地装置。接地装置的作用是把雷电对接闪器闪击的电荷尽快地泄放到大地,使其与大地的异种电荷中和。 变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。如果接地电阻较大,在发生电力

通信基站防雷接地设计方案

通信基站综合防雷接地方案 编制依据 工程涉及的产品规范与标准;工程施工涉及的规范、标准及验收规范、标准等须完全满足所有中华人民共和国的规范、标准,包括(但不限于此): 《通信局(站)防雷与接地工程设计规范》YD5098-2005 《通信局(站)防雷与接地工程设计规范》GB50689-2011 《通信局(站)防雷与接地工程验收规范》YD/T5175-2009 《建筑物防雷设计规范》(GB50057-2010) 《建筑物电子信息系统防雷技术规范》(GB50343-2012) 《交流电气装置的接地》(DL/T621-1997) 《电气装置安装工程接地装置施工及验收规范》(GB50169-2006) 《交流电气装置的过电压保护和绝缘配合》(DL/T 620-1997) 1联合接地 在整个防雷系统中接地系统是一个基本前提,只有具备了良好的接地系统,防雷设备才能真正发挥作用。所以,接地系统的建设是所有防雷工作的基础。 1.1接地的目的 1)接地是为了防止电磁干扰起屏蔽作用; 2)接地是为了泄放过电压以保护设备和人身安全; 3)接地是为了起着工作回路的作用; 4)接地是为了给通信设备提供零电位参考点。 5)在受到雷击时以供大电流泄放入地,以保护设备和人身安全。 1.2地网的组成 根据移动通信基站防雷与接地设计规范YD5068中规定: 1)移动通信基站应按均压、等电位的原理,将工作地、保护地和防雷地组成一个联合接地网。站内各类接地线应从接地汇集线或接地网上分别引入。 2)移动通信基站地网由机房地网、铁塔地网和变压器地网组成,地网的组成如图1所示。基站地网应充分利用机房建筑物的基础(含地桩)、铁塔基础内的主钢筋和地下其他金属设施作为接地体的一部分。当铁塔设在机房房顶,电力变压器设在机房楼内时,其地网可合用机房地网。 图1移动通信基站地网示意图 3)机房地网组成:机房地网应沿机房建筑物散水点外设环形接地装置,同时还应利用机房建筑物基础横竖梁内两根以上主钢筋共同组成机房地网。当机房建筑物基础有地桩时,应将地桩内两根以上主钢筋与机房地网焊接连通。当机房设有防静电地板时,应在地板下围绕机房敷设闭合环形接地线,作为地板金属支架的接地引线排,其材料为铜导线,截面积应不小于50mm2,并从接地汇集线上引出不少于二根截面积为50~75mm2的铜质接地线与引线排的南、北或东、西侧连通。 4)对于利用商品房作机房的移动通信基站,应尽量找出建筑防雷接地网或其他专用地网,并就近再设一组地网,三者相互在地下焊接连通,有困难时也可在地面上可见部分焊接成一体作为机房地网。找不到原有地网时,应因地制宜就近设一组地网作为机房工作地、保护地和铁塔防雷地。

机房防雷接地系统设计方案

机房防雷接地系统方案 一、前言 随着通信技术、计算机网络技术的飞速发展,计算机和网络越来越深入人们生活和工作中,同时也预示着数字化、信息化时代的来临。这些微电子网络设备的普遍应用,使得防雷的问题显得越来越重要。由于微电子设备具有高密度、高速度、低电压、和低功耗等特性,这就使其对各种诸如雷电过电压、电力系统操作过电压、静电放电、电磁辐射等电磁干扰非常敏感。如果防护措施不力,随时随地可能遭受重大损失。值得我们关注的是雷电不仅仅破坏系统设备,更为重要的是使系统的通讯中断、工作停顿、声誉受损,其间接损失无法估量。 二、方案设计依据: 1.GB50174-93《电子计算机机房设计规范》 2.GB50057-94《建筑物防雷设计规范》 3.GB50054-95《低压配电设计规范》 4.GA173-1998《计算机信息系统防雷保安器》 5.GB3482-3483-83《电子设备雷击试验》 6.IE1312-1∶1995《雷电电磁脉冲的防护通则》 7.ITU.TS.K20∶1990《电信交换设备耐过电压和过电流能力》 8.ITU.TS.K21∶1998《用户终端耐过电压和过电流能力》 三、防雷设计思路 由于网络集成系统防护点多、面广,因此,为了保护建筑物和建筑物内各向电子网络设备不受雷电损害或使雷击损害降低到最低程度,应从整体防雷的角度来进行防

雷方案的设计。现在都采取综合防雷,综合防雷设计方案应包括两个方面:直击雷的防护和感应雷的防护,缺少任何一方面都是不完整的,有缺陷的和有潜在危险的。(1)、直击雷的防护 如果无直击雷防护,按IEC1312的估算几乎所有雷电流都流经进出建筑物的导体型线路(如电源线、信号线等)侵入设备,这样的损害就非常之严重,因此做好直接雷击防护是做感应雷击防护的前提;直击雷防护按照国标GB50057《建筑物防雷设计规范》设计和施工,主要使用避雷针、网、线、带及良好的接地系统,其目的是保护建筑外部不受雷击的破坏,给建筑物内的人或设备提供一个相对安全的环境。 (2)、电源系统的防护 统计数据资料表明,微电子网络系统80%以上的雷害事故都是因为与系统相连的电源线路上感应的雷电冲击过电压造成的。因此,做好电源线的防护是整体防雷中不容忽视的一环。 (3)、信号系统的防护 尽管在电源和通信线路等外接引入线路上安装了防雷保护装置,由于雷击发生在网络线(如双绞线)感应到过电压,仍然会影响网络的正常运行,甚至彻底破坏网络系统。雷击时产生巨大的瞬变磁场,在1公里范围内的金属线路,如网络金属连线等都会感应到极强的感应雷击;另外,当电源线或通信线路传输过来雷击电压时,或建筑物的地线系统在泻放雷击时,所产生强大的瞬变电流,对于网络传输线路来说,所感应的过电压已经足以一次性破坏网络。即使不是特别高的过电压,不能够一次性破坏设备,但是每一次的过电压冲击都加速了网络设备的老化,影响数据的

防雷保护和接地设计

防雷保护和接地设计 7.1 直击雷保护 7.1.1 保护对象 屋外配电装置,包括组合导线、母线廊道。 7.1.2保护措施 ①110KV配电装置装设避雷针或装设独立避雷针;②主变压器装设独立避雷针;③屋外组合导线装设独立避雷针。 7.1.3 避雷针装设应注意的问题 应妥善采用独立避雷针和构架避雷针,其联合保护范围应覆盖全所保护对象。根据《电力设备过电压保护技术规程》SDJ —76规定:独立避雷针(线)宜设独 7 立的接地装置,避雷针及其接地装置与道路或出入口等的距离不宜小于3m。110KV及以上的配电装置,一般将避雷针装在其构架或房顶上;6KV及以上的配电装置,允许将避雷针装在其构架或房顶上;35KV及以下高压配电装置,构架或房顶上不宜装设避雷针。装在构架上的避雷针应与接地网连接,并应在其附近装设集中接地装置。避雷针与主接地网的地下连接点至变压器接地线与主接地网的地下连接点,沿接地体的长度不得小于15m。在主变压器的门型构架上,不应装设避雷针、避雷线。 110KV及以上配电装置,可将线路的避雷线引接到出线门型架上;35KV配电装置可将线路的避雷线引接到出线门型架上,但应集中接地装置。 我国规程规定: (1)110KV及以上的配电装置,一般将避雷针在构架上。但是在土壤电阻率ρ﹥Ω? 1000m的地区,仍宜装设独立避雷针,以免发生反击; (2)35KV及以下的配电装置应采用独立避雷针来保护; (3)10KV的配电装置,在ρ﹥Ω? 500m的地区宜采用独立避雷针,在ρ﹤500m的地区容许采用构架避雷针。 Ω? 变电站的直击雷防护设计内容主要是选择避雷针的指数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置的设计等。 7.2 雷电侵入波保护 7.2.1 保护措施 避雷器结合进线段保护。装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器

防雷与接地系统设计专篇

防雷与接地系统设计专篇 1.设计依据: 《建筑物防雷设计规范》GB50057-94(2000年版); 《建筑物电子信息系统防雷技术规范》GB50343-2004。 2.雷电防护分级: 建筑物的防雷分类:第二类防雷建筑物; 建筑物电子信息系统的雷电防护分级:B级。 3.建筑物防雷: 建筑物防雷采用法拉第笼式防雷体系。 1.1 接闪器采用环状避雷带(直径12镀锌圆钢)、避雷针(SKYLANCE避雷针)相结合方式,并在屋面装设不大于10m×10m或12m×8m的网格防直击雷;屋顶上所有凸起的金属构筑物或管道等,均与避雷带连接;无金属外壳或保护网罩的设备(如航空障碍灯、信号灯、标志灯等)置于避雷针或避雷网的保护之下;大型设备(如卫星接收天线、开路电视信号接收天线等)将其金属支架与两个不同方向的避雷带相连接。 1.2 为防侧击雷和构成等电位,建筑物每层楼板、圈梁、柱内的水平或竖向钢筋,以及外墙上的所有金属构件均连成一体,建筑物高度45m以上每三层楼板的外侧各敷一圈40 mm ×4mm的镀锌扁钢作为均压环,并与建筑物外侧柱内作为避雷引下线的钢筋相连,同时将建筑物内的各种竖向金属管上端及下端接地。 1.3 利用建筑物外侧柱内钢筋(2根不小于直径16主筋)作为防雷装置的引下线;引下线间距不大于18m。引下线由地下外墙引出,避开上层滞水接至建筑群周圈外侧地下环状水平综合接地极(如接地电阻已满足3.1条要求时,可不打室外接地装置),地上选择几处距地面上0.50m做暗装接地电阻测试板,作为引下线的结构柱与基础地板及相邻的桩基内的钢筋应良好导通。利用底板基础梁内主筋作成不大于10x10的接地网。 4.电气设备防雷: 2.1 变配电室高压开关柜进线处均装设避雷器,低压开关柜进线处装设浪涌保护器,接地保护线引至室内均压环,所涉及的金属构件也可靠接地。 2.2 建筑群所有埋地进户线入口处,将电气进户线缆的外金属护套及进户的金属穿墙套管、设备专业进出户金属管直接与墙体内接地网主筋或接地干线40*4扁钢连成一体。 2.3所有由建筑物直击雷非防护区(LPZ0A)或直击雷防护区(LPZ0B)进入第一防护区(LPZl)的强、弱电导体均设一级浪涌保护器。浪涌保护器连接导线应平直,其长度不宜大于0.5m。浪涌保护器应有过电流保护装置,并宜有劣化显示功能。 2.4电子信息系统设备机房的信号线缆(天馈线路、通信设备、计算机网络系统、安全防范系统、火灾报警控制系统、建筑设备监控系统、有线电视系统)内芯线相应端口,应安装适配的信号线路浪涌保护器,浪涌保护器的接地端及电缆内芯的空线对应接地。 2.5城市有线电视光缆、同轴电缆的上部、下部及进机房入口前应将金属屏蔽层就近接地,接地线接至LEB箱。 2.6消防控制室与本地区或城市“119”报警指挥中心之间联网的进出线路端口应装设适配的信号浪涌保护器。 5.接地及安全保护: 3.1 建筑群所有电气设备交流工作接地、直流工作接地、安全保护接地及建筑物防雷的接地,采用共用接地装置,测试后的综合接地电阻应<0.5Ω,达不到要求时增补接地极。 3.2建筑群采用总等电位联结。共用接地装置与总等电位接地端子连接,通过接地干线引至楼层等电位接地端子板,由此引至设备机房的局部等电位接地板。接地干线在电气竖井内

建筑电气防雷接地系统的设计

建筑电气防雷接地系统的设计 发表时间:2018-08-29T09:13:04.690Z 来源:《建筑模拟》2018年第14期作者:张伦 [导读] 建筑电气系统的构建设计需要切实把握好对于防雷接地系统的有效布置,能够促使防雷接地系统表现出较强的实际应用效果,尽量避免可能形成的明显雷电侵蚀威胁。 成都基准方中建筑设计有限公司西安分公司陕西西安 713800 摘要:建筑电气系统的构建设计需要切实把握好对于防雷接地系统的有效布置,能够促使防雷接地系统表现出较强的实际应用效果,尽量避免可能形成的明显雷电侵蚀威胁。文章就首先从建筑电气防雷接地系统的室外设计以及室内设计两个方面进行了简要论述,然后又具体探讨了在防雷接地系统设计中需要关注的主要内容。 关键词:建筑电气;防雷接地系统;设计 随着当前我国建筑电气系统的不断发展,相应复杂性越来越高,这也就必然需要重点围绕着相应建筑电气系统的各个构成部分进行细化分析,促使其能够表现出更强的实际应用效益,尤其是能够较好实现对于外界干扰因素的防护。建筑电气防雷接地系统的应用极为必要,需要切实围绕着相应建筑电气防雷接地系统的设计工作进行详细探究,确保其能够形成较强的防雷安全效益,最大程度上规避可能形成的明显安全隐患威胁。 1 建筑电气防雷接地系统外部设计 在建筑电气防雷接地系统设计中,建筑物外部设计是比较关键的一个组成部分,其能够较好形成理想的整体电气系统防雷效果,需要结合具体部件的安装进行严格把关,其中较为关键的设计要点内容如下。 (1)接闪器的设计。对于建筑电气防雷接地在户外的设计,需要首先把握好对于接闪器的有效选择和设计安装,能够确保接闪器能够具备理想的接受雷电效果,避免雷电对于建筑电气系统形成的明显威胁,恰当选择合理的金属导体进行处理。具体到接闪器的设计方式上来看,主要涉及到了避雷网、金属屋以及避雷针等,需要结合具体建筑物的整体外形需求进行布置,促使其能够具备较强的实际应用效益,并且能够具备协调性。 (2)引下线。对于建筑电气防雷接地系统在户外的设计处理,针对引下线进行有效布置同样也是比较重要的一环,其需要确保引下线能够具备理想的雷电引导效果,形成流畅的电流通路,避免可能带来的较大不良威胁隐患。结合这种引下线的有效设计,其同样也需要首先保障引下线的质量,确保其导电性能较为突出;此外,还需要针对引下线的布置方式进行优化,能够促使引下线采取暗装方式在相关柱体或者是剪力墙中进行布置,整体性较强[1]。 (3)接地装置。在建筑电气防雷接地系统设计处理中,较好实现对于接地装置的有效应用同样也是比较关键的一环,需要切实围绕着接地装置的布置位置以及连接方式进行详细探索。结合具体接地装置的应用,其涉及到了接地线和接地体的有效应用,需要确保相应接地装置能够具备较强的实际效益,有助于实现对于雷电导入地下的处理。在接地装置的设计应用中,当前主要借助于周圈式接地方式,能够更好提升接地安全效果,避免雷电电流存在影响到建筑电气稳定性。 2 建筑电气防雷接地系统内部设计 在建筑电气防雷接地系统设计中,还需要重点把握好对于户内相关防雷接地系统的有效布置,能够促使其表现出较强的实际效益,降低雷电可能带来的各个方面隐患威胁。在室内进行建筑电气防雷接地系统设计需要把握好以下几点。 (1)等电位联结。对于建筑电气防雷接地系统的内部设计,需要切实做好等电位连接处理,促使其能够具备较为理想的运行稳定性,相应金属构架、金属装置以及电气装置等,都能够形成较强的有序连接,如此也就能够确保其处于同一电位,有效实现对于防雷体系的完善和优化。在这种等电位联结处理中,还需要加强对于电涌保护器的有效应用,该装置能够较好实现建筑电气防雷接地系统的全面防护,促使其各个组成部分能够具备理想等电位联结效果。对于这种等电位联结工作的处理,还需要切实把握好具体连线操作,能够促使相应等电位联结较为适宜可靠,尤其是对于接地干线以及等电位箱引出的线路,更是需要进行合理设计,促使其能够形成较强的等电位联结效果[2]。 (2)合理屏蔽。在建筑电气防雷接地系统的内部设计中,还需要切实把握好合理屏蔽工作的设计,能够促使所有的微电子设备得到较好防护,避免其在雷电影响下出现受损问题。基于此,需要针对微电子设备所处房间进行详细屏蔽,促使其能够体现出更强的整体干扰防控效果,避免可能带来的较大雷击隐患。结合屏蔽网以及仪器金属外壳的连接应用需要准确合理,确保其能够在户外避雷装置接闪时具备理想稳定效益,提升自身防雷击水平。此外,相应屏蔽装置的应用还需要切实把握好对于电磁脉冲的有效应用,能够促使相应电磁脉冲被全面防护,避免对于微电子设备形成干扰威胁。 3 建筑电气防雷接地系统注意事项 具体到现阶段建筑电气防雷接地系统的具体设计应用中,必然还需要重点把握好新要求和新重点,确保防雷接地效果得到较好保障,其中较为关键的要点如下。 (1)注重感应雷的防护。在以往建筑电气防雷接地系统的设计应用中,最为核心的目的就是避免直接雷的威胁,促使直击雷的机械破坏得到较好防控,但是随着当前建筑电气系统中微电子设备的增多,还应该重点加强对于感应雷的有效防护。这也就必然导致相应防雷接地系统更加应该关注于各个细节,能够实现对于感应电压的有效规避控制,避免各个智能家居设备或者是计算机等受到影响和威胁[3]。 (2)注重系统性。对于建筑电气防雷接地系统的有效设计处理,还需要切实把握好对于系统性的关注,能够促使相应防雷接地系统能够具备更强的全面防护效果,对于各个具体组成部分进行细化,避免其形成以往防雷接地中的孤立结构。基于此,在具体防雷接地系统设计中需要重点把握其系统性,除了要结合不同区域进行不同防雷处理外,还需要关注相互之间的关联性,提升整体防雷效果。 (3)注重等电位联结。在建筑电气防雷接地系统的设计布置中,重点加强对于等电位联结的处理必不可少,尤其是在高层建筑中,更是需要确保其各个楼层均能够表现出较强的联结效果,避免可能对于建筑物形成的不良干扰[4]。 结语 综上所述,对于建筑电气防雷接地系统的有效设计布置,其难度在当前越来越大,如此也就更加需要切实围绕着相应防雷接地系统进

相关文档
最新文档