利用蚁群算法优化前向神经网络

利用蚁群算法优化前向神经网络
利用蚁群算法优化前向神经网络

利用蚁群算法优化前向神经网络

来源:深圳发票 https://www.360docs.net/doc/3c5855941.html,/

内容摘要:蚁群算法(ant colony algorithm,简称ACA)是一种最新提出的新型的寻优策略,本文尝试将蚁群算法用于三层前向神经网络的训练过程,建立了相应的优化模型,进行了实际的编程计算,并与加动量项的BP算法、演化算法以及模拟退火算法进行比较,结果表明该方法具有更好的全局收敛性,以及对初值的不敏感性等特点。关键词:期货经纪公司综合实力主成分分析聚类分析

人工神经网络(ANN)是大脑及其活动的一个理论化的数学模型,由大量的处理单元(神经元)互连而成的,是神经元联结形式的数学抽象,是一个大规模的非线性自适应模型。人工神经网络具有高速的运算能力,很强的自学习能力、自适应能力和非线性映射能力以及良好的容错性,因而它在模式识别、图像处理、信号及信息处理、系统优化和智能控制等许多领域得到了广泛的应用。

人工神经网络的学习算法可以分为:局部搜索算法,包括误差反传(BP)算法、牛顿法和共轭梯度法等;线性化算法;随机优化算法,包括遗传算法(GA)、演化算法(EA)、模拟退火算法(SA)等。

蚁群算法是一种基于模拟蚂蚁群行为的随机搜索优化算法。虽然单个蚂蚁的能力非常有限,但多个蚂蚁构成的群体具有找到蚁穴与食物之间最短路径的能力,这种能力是靠其在所经过的路径上留下的一种挥发性分泌物(pheromone)来实现的。蚂蚁个体间通过这种信息的交流寻求通向食物的最短路径。已有相关计算实例表明该算法具有良好的收敛速度,且在得到的最优解更接近理论的最优解。

本文尝试将蚁群算法引入到前向神经网络的优化训练中来,建立了基于该算法的前向神经网络训练模型,编制了基于C++语言的优化计算程序,并针对多个实例与多个算法进行了比较分析。

前向神经网络模型

前向人工神经网络具有数层相连的处理单元,连接可从一层中的每个神经元到下一层的所有神经元,且网络中不存在反馈环,是常用的一种人工神经网络模型。在本文中只考虑三层前向网络,且输出层为线性层,隐层神经元的非线性作用函数(激活函数)为双曲线正切函数:

其中输入层神经元把输入网络的数据不做任何处理直接作为该神经元的输出。设输入层神经元的输出为(x1,x2,Λ,xn),隐层神经元的输入为(s1,s2,Λ,sh),隐层神经元的输出为

(z1,z2,Λ,zh),输出层神经元的输出为(y1,y2,Λ,ym),则网络的输入-输出为:

其中{w ij}为输入层-隐层的连接权值,{w i0}隐层神经元的阈值,{v ki}为隐层-输出层的连接权值,{v k0}为输出层神经元的阈值。网络的输入-输出映射也可简写为:

1≤k≤m (5)

前向神经网络的训练样本集为

A={X i,T i i=1,2,A,n)}

(其中X i∈Rn,为第i组训练数据的输入,T i∈R m为与第i 组训练数据的输入对应的期望输出,T k i为输出层第k个神经元的期望输出),设第i组训练数据的输入的实际输出为Y i∈Rm,Y k i为输出层第k个神经元的实际输出,则基于该训练样本集的误差函数为

该函数是一个具有多个极小点的非线性函数,则对该前向神经网络的训练过程为调整各个神经元之间的连接权值和阀值{w ij},{w i0},{v ki},{v k0},直至误差函数E达到最小。

误差反向传播算法(BP算法)是一种梯度下降算法,具有概念清楚、计算简单的特点,但是它收敛缓慢,且极易陷入局部极小,且对于较大的搜索空间,多峰值和不可微函数也不能搜索到全局极小。为此人们提出了很多改进的学习算法,其中最简单且容易实现的是加入动量项的变学习率BP算法,这种算法一般都比较有效,但是收敛速度还是比较慢,仍是局部搜索算法,从本质上仍然摆脱不了陷入局部极小的可能。为了摆脱局部极小,人们已经尝试将可用于非线性优化的遗传算法、演化算法以及模拟退火算法等进行前向人工神经网络的训练。

蚁群算法

蚁群算法简介

蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。其选择一条路径的概率与该路径上分泌物的强度成正比。因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。蚂蚁的个体间

通过这种信息的交流寻求通向食物的最短路径。蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。这种优化过程的本质在于:

选择机制:分泌物越多的路径,被选择的概率越大。

更新机制:路径上面的分泌物会随蚂蚁的经过而增长,而且同时也随时间的推移逐渐挥发消失。

协调机制:蚂蚁间实际上是通过分泌物来互相通信、协同工作的。

蚁群算法正是充分利用了选择、更新和协调的优化机制,即通过个体之间的信息交流与相互协作最终找到最优解,使它具有很强的发现较优解的能力。

蚁群算法具体实现

蚁群算法求解连续空间上的优化问题以求解非线形规划问题为例。考虑如下的非线性规划问题:minF(x1,x2,Λ,x n),使得,a i1x1+a i2x2+Λ+ainxn≥bi,i=1,2,Λ,r。这里F为任一非线形函数,约束条件构成Rn上的一个凸包。可以使用不等式变换的方法求得包含这个凸包的最小的n维立方体。设该立方体为

设系统中有m只蚂蚁,我们将解的n个分量看成n个顶点,第i个顶点代表第i个分量,在第i个顶点到第i+1个顶点之间有ki条连线,代表第i个分量的取值可能在ki个不同的子区间。我们记其中第j条连线上在t时刻的信息量为τij(t)。每只蚂蚁要从第1个顶点出发,按照一定的策略选择某一条连线到达第2个顶点,再从第2个顶点出发,…,在到达第n个顶点后,在k n条连线中选取某一条连线到达终点。每个蚂蚁所走过的路径代表一个解的初始方案,它指出解的每一个分量所在的

子区间。用pijk(t)表示在t时刻蚂蚁k由城市i转移到城市j 的概率,则(式(7))

为了确定解的具体值,可在各个子区间已有的取值中保存若干个适应度较好的解的相应分量作为候选组,为了加快收敛速度,参考具有变异特征的蚁群算法提出的具有变异特征的蚁群算法,使用遗传操作在候选组中确定新解的相应分量的值。首先可随机在候选组中选择两个值,然后对他们实行交叉变换、变异变换,以得到新值作为解的相应分量。该候选组中的值在动态的更新,一旦有一个更好的解的分量在该子区间中,就用这个值替换其中的较差者。

在m只蚂蚁得到m个解后,要对它们进行评估,本人使用Lagrange函数作为评估解的优劣的适应度函数,否则要对每个解进行合法性检查并去除其中的不合法解。然后要根据适应度函数值更新各条边上的信息量。要根据下式对各路径上的信息量作更新:

Δτij k表示蚂蚁k在本次循环中在城市i和j之间留下的信息量。

重复这样的迭代过程,直至满足停止条件。

候选组里的遗传操作若候选组里的候选值的个数g i=0,即候选组里没有候选值,此时则产生一个

[l i+(j-1)×length,min(u i,l i+j×length]间的随即数作为解

分量的值w ij,v ij,跳过选择、交叉、变异等遗传操作。

若g i=1,即候选组里只有一个候选值w ik,v ik,则跳过交

叉、选择等操作,直接对这个候选值w ik,v ik进行变异操作。

若g i=2,即候选组里有两个候选值,则跳过选择操作,直接对这两个候选值进行交叉、变异等操作。

否则,选择两个分量后进行交叉、变异操作。

在选择操作中,根据候选组里各候选值的适应度的大小,用“赌轮”的方法选取两个值。设第j个值所在解的适应度为f j,则它被选中的概率为

在交叉操作中,设所选择的两个值为w ij(1),v ij(1)和

w ij(2),v ij(2),其适应度分别为f1,f2,且f1>f2,我们以概率P cross进行交叉操作。随机产生p∈[0,1],若p>P cross,则进行交叉操作。取随机数r∈[0,1],交叉结果值

在所有蚂蚁都得到解以后,修改边条上的信息量按式(8)和式(9)相应地更新各子区间上的信息量。但对Δτijk的更新应按下式进行:

其中W为一个常数,f k为蚂蚁k的解的适应度。

前向神经网络的训练过程

基于上述的定义,用蚁群算法训练具有三层前向神经网络,可按以下步骤进行:

输入相关参数:输入最大迭代次数number,每次迭代选取的适应度最好的解的个数num,每个分量的ki个子区间中信息量最大的子区间被选种的概率q0(其余子区间被选中概率为

(1-q0))。

初始化:通过神经网络在控制变量可行域内随机产成m只蚂蚁,即产生m组{w ij},{w i0},{v ki},{v k0},且各个分量均为[-1,1]区间内的随机数。

迭代过程:对于n个分量,分别对m个蚂蚁进行循环更新相应的信息量τij(t),对候选组中的分量进行遗传操作,计算新解的适应度,对各边的信息量进行修改,根据适应度的优劣增删候选组中的值。判断是否满足结束条件,若不满足则继续迭代。

第(3)步的具体算法如下:

while not结束条件(如最大迭代次数) do

{for i=1 to n do (对n个分量循环)

{for k=1 to m do (对m个蚂蚁循环)

{根据q0和概率p ij k(t)确定第i个分量的值在第j个子区间;

局部更新第j个子区间的信息量τij(t);

在第j个子区间候选组里通过遗传操作生成第i个分量值;} 计算新解的适应度函数值;}

修改个条边上的信息量;

取适应度最好的num个解将其各分量直接插入相应的子区间的候选组中,并淘汰候选组中的较差者。}

上述过程中根据下列公式选取第i个分量的值所在的子区间号j:

由于算法中以q0的概率选择ki个子区间中信息量最大的子区间,因此信息量最大的那个子区间常常被选中,这就使得新一代解的该分量值集中在这个子区间,容易发生停滞现象。为了避免这种现象,在上述过程中对所选的子区间的信息量进行局部更新,对被选中的子区间立即适当地减少其信息量,使

其他蚂蚁选中该子区间的概率降低。设第k个个体的第i个分量选中第j个子区间,则按下式局部更新子区间j的信息量:

这样,更新后的信息量是原来的信息量和有关第i个分量各子区间的最小信息量的凸组合。当信息量最大的子区间被多次选中之后,信息量减少到k i个子区间的信息量的平均水平,从而蚂蚁选择其他子区间的概率增加,增加了所建立解的多样性,同时也有效减少了停滞现象的发生。

实验结果

为了评价蚁群算法的性能,笔者做了大量的计算机模拟试验,在此给出了两个函数COS(X)和SIN(X)函数的实验结果,选择蚂蚁群规模m=20;每次迭代选取的适应度最好的解的个数num=10;每个分量的ki个子区间中信息量最大的子区间被选中的概率q0=0.8;前向神经网络的输入层有1个神经元,隐层有10个神经元,输出层有1个神经元,多个方法SIN(X)函数的试验结果列于表1,多个方法COS(X)函数的试验结果列于表2。

结论

本文给出了基于蚁群算法的三层前向神经网络的训练模型,并建立了一种新的网络训练算法。从试验结果分析,与演化算法、模拟退火算法、加动量项的BP算法相比,蚁群算法具有较快的收敛速度,能够达到较小的均方误差值,因此,此方法收敛过程有比较明显的优势和稳定性。

网络训练算法。从试验结果分析,与演化算法、模拟退火算法、加动量项的BP算法相比,蚁群算法具有较快的收敛速度,能够达到较小的均方误差值,因此,此方法收敛过程有比较明显的优势。

matlab遗传算法优化神经网络权值教程

matlab遗传算法优化神经网络权值教程第4章nnToolKit神经网络工具包 4.1 nnToolKit简介 神经网络工具包是基于MATLAB神经网络工具箱自行开发的一组神经网络算法函数库 可在MATLAB环境下均独立运行,也可打包成DLL组件,直接被VB、VC、 C++ 、C#、JAVA或其他支持COM的语言所调用 本工具包中增加了一些MATLAB中没有的神经网络算法,如模糊神经网络、小波神经网络、遗传神经网络算法等 4.2nnToolKit函数库 4.2nnToolKit 函数库 4.2nnToolKit函数库 例4-1 对ch4\nnToolKit工具箱\lmnet文件夹中文件(input_para1.txt和output_para1.txt)提供的专家样本数据进行网络训练。%此为BP网络训练程序

function retstr = LmTrain(ModelNo,NetPara,TrainPara,InputFun,OutputFun,DataDir)NNTWARN OFF retstr=-1; ModelNo=‘1’;NetPara(1)=7;Ne tPara(2)=1; NetPara(3)=6;NetPara(4)=10; 4.2nnToolKit函数库 4.2nnToolKit函数库 例4-2 输入一组测试样本数据,对例4-1训练的网络模型进行仿真 %此为一仿真程序%首先读入权域值参数 function retdouble = LmSimu(ModelNo,NetPara,SimulatePara,InputFun,OutputFun,DataDir)NNTWA RN OFF %%%% 输入参数赋值开始 %%%%%%%%%%%%%%%%%%%%%%%% 这 部分代码主要是方便用户调试用ModelNo=‘1’; NetPara(1)=7; 4.2nnToolKit函数库

遗传算法在BP神经网络优化中的应用.

遗传算法在 BP 神经网络优化中的应用 2O世纪80年代后期,多机器人协作成为一种新的机器人应用形式日益引起国内外学术界的兴趣与关注。一方面,由于任务的复杂性,在单机器人难以完成任务时,人们希望通过多机器人之间的协调与合作来完成。另一方面,人们也希望通过多机器人间的协调与合作,来提高机器人系统在作业过程中的效率。1943年,Maeullocu和 Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展、停滞、再发展的过程,时至今日正走向成熟,在广泛领域里得到了应用,其中将人工神经网络技术应用到多机器人协作成为新的研究领域。本文研究通过人工神经网络控制多机器人完成协作搬运的任务-3 J,并应用遗传算法来对神经网络进行优化。仿真结果表明,经过遗传算法优化后的搬运工作效率显著提高,误差降低。 1 人工神经网络 ANN)的基本原理和结构 人工神经网络(Artiifcial Neural Network,ANN)) 是抽象、简化与模拟大脑神经结构的计算模型,又称并行分布处理模型 J。ANN 由大量功能简单且具有自适应能力的信息处理单元——人工神经元按照大规模并行的方式通过一定的拓扑结构连接而成。ANN拓扑结构很多,其中采用反向传播(Back-Propa- gation,BP)算法的前馈型神经网络(如下图1所示),即BP人工神经网络,是人工神经网络中最常用、最成熟的神经网络之一。 BP网络模型处理信息的基本原理是:输入信号x;通过中间节点(隐层点 )作用于出节点,经过非线形变换,产生输出信Yk,网络训练的每个样本包括输入向量 x和期望输出量 T,网络输出值Y与期望输出值T之间的偏差,通过调整输入节点与隐层节点的联接强度取值w;;和隐层节点与输出节点之间的联接强度Y以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数 (权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

粒子群算法和蚁群算法的结合及其在组合优化中的应用

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求精确解(即细搜索)。将文中提出的算法用于经典TSP问题的求解,仿真结果表明PAAA算法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspiredComputing)的研究,越来越引起众多学者的关注和兴 趣,产生了神经网络、 遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。粒子群优化(ParticleSwarmOptimization,PSO)算法[1,2]是由Eberhart和Kennedy于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1)算法简洁,可调参数少,易于实现;(2)随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](AntColonyOptimization,ACO)是由意大利学者M.Dorigo,V.Maniezzo和A.Colorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP问题[5,6]、二次分配问题、工件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术SPACEELECTRONICTECHNOLOGY76

改进的BP神经网络算法(C语言源码)

#include "stdio.h" #include "stdlib.h" #include "time.h" #include "math.h" /********************************************* inpoints 为输入神经元个数,可改变 outpoints为输出神经元个数 defaultpoints为隐层神经元个数 datagrough为样本数据个数 ********************************************** ******以下数据定义可以修改*****/ #define A 0 #define a 1 #define b 1 #define c 1 #define ALFA 0.85 #define BETA 0.2 //学习率0~1 #define Total 20000 #define inpoints 9 #define outpoints 5 #define defaultpoints 28 #define datagrough 44 #define forecastdata 4 /**********定义所需变量********/ double InpointData[datagrough][inpoints],OutpointData[datagrough][outpoints]; /* 输入输出数据*/ double InpointData_MAX[inpoints],InpointData_MIN[inpoints]; /* 每个因素最大数据*/ double OutpointData_MAX[outpoints],OutpointData_MIN[outpoints]; /* 每个因素最小数据*/ double w[defaultpoints][inpoints],limen[defaultpoints],v[outpoints][defaultpoints]; /* 连接权值、阈值*/ double dlta_w[defaultpoints][inpoints],dlta_limen[defaultpoints],dlta_v[outpoints][defaultpoints]; /* 连接权、阈值修正值*/ double defaultOutpoint[defaultpoints],Outpoint_dp[outpoints],Outpoint_ep[datagrough]; /**************************读数据文件******************************/ void ReadData() { FILE *fp1,*fp2; int i,j; if((fp1=fopen("D:\\data\\训练输入.txt","r"))==NULL) {

BP神经网络算法步骤

B P神经网络算法步骤 SANY GROUP system office room 【SANYUA16H-

传统的BP 算法简述 BP 算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi ,rt 。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 (3)计算新的连接权及阀值,计算公式如下: (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 第一步,网络初始化 给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计 算精度值 和最大学习次数M 。 第二步,随机选取第k 个输入样本及对应期望输出 ()12()(),(),,()q k d k d k d k =o d ()12()(),(),,()n k x k x k x k =x 第三步,计算隐含层各神经元的输入和输出 第四步,利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k a δ 第五步,利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ 第六步,利用输出层各神经元的()o k δ和隐含层各神经元的输出来修正连接权值()ho w k 第七步,利用隐含层各神经元的()h k δ和输入层各神经元的输入修正连接权。 第八步,计算全局误差211 1(()())2q m o o k o E d k y k m ===-∑∑ ε

神经网络学习算法的过拟合问题及解决方法

神经网络学习算法的过拟合问题及解决方法 李俭川 秦国军 温熙森 胡茑庆 (国防科技大学机电工程与自动化学院 长沙,410073) 摘要 针对反向传播学习算法及其改进算法中出现的过拟合问题,探讨了三种解决方法:调整法、提前停止法和隐层节点自生成法,并用实例对三种方法进行了验证和比较。其中,调整法和提前停 止法针对一个较大的网络可以解决过拟合问题,而隐层节点自生成法的提出既能避免过拟合问 题,又能获得最少神经元网络结构。这三种方法有效地解决了在神经网络学习过程中的过拟合问 题,提高了网络的适应性。它们不仅适合于函数逼近,而且可以推广到其他网络结构等应用领域。关键词 神经网络 计算机 BP 算法 过拟合 均方误差 自生成 故障诊断 中图分类号 T H 165.3神经网络已经在模式分类、机器视觉、机器听觉、智能计算、自动控制、故障诊断、信息处理、地震勘探、通信、雷达和声纳等领域有着十分广泛的应用前景,并随着计算机技术和信号处理技术的发展而发展。应用神经网络必须解决两个问题:模型和算法。现有的神经网络模型已达上百种[1] ,应用最多的是Hopfield 神经网络、多层感知器、自组织神经网络、概率神经网络以及它们的改进型。自Rumellhart D E,H inton 和Williams 提出误差反向传播算法(即BP 算法),解决了神经网络在引入隐层节点后的学习(或训练)问题后,已经发展了许多的改进学习算法[1],如快速下降法、共轭梯度法、一维搜索法及Lev enberg -Mar quardt 法等,其收敛速度很快,能满足实时性要求,但也存在着一些问题。1 学习算法及其过拟合问题 BP 算法及其改进算法是目前应用最广泛的学习算法,尽管不能证明这类算法能象单层感知器一样收敛,但是对许多问题的解决是成功的[2]。实际上,BP 算法是把一组样本的输入输出问题,变为一个非线性优化问题,它使用了优化技术中最普通的一种梯度下降法,用迭代运算求解权值并相应于学习记忆问题,加入隐层节点可使优化问题的可调参数增加,这样可得到更精确的解。要应用学习算法对网络进行训练,首先需要确定网络的结构,即输入、输出层神经元数目和隐层数及其神经元数目。 如何适宜地选取隐含层神经元的数目还没有确定的规律可以指导,但是,隐含层神经元数目是否合适对整个网络是否能够正常工作具有重要的甚至是决定性的意义。隐含层神经元数第22卷第4期2002年12月 振动、测试与诊断Jo ur nal of Vibr ation,M easur em ent &Diag no sis V o l.22No.4 D ec.2002 国家自然科学基金资助项目(编号:59775025)。 收稿日期:2001-07-09;修改稿收到日期:2001-12-03。

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

蚁群优化神经网络

二、 function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alp ha,Beta,Rho,Q) %%========================================================== ===== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%========================================================== ====== C=[1304,2312;3639,1315;4177,2244;3712,1399;3488,1535;3326,1556; 3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756; 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370; 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367; 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826; 2370 2975]; m=31; Alpha=1; Beta=5; Rho=.1; NC_max=30; Q=100; %%第一步:变量初始化 n=size(C,1);%*表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else

人工神经网络算法

https://www.360docs.net/doc/3c5855941.html,/s/blog_5bbd6ec00100b5nk.html 人工神经网络算法(2008-11-20 17:24:22) 标签:杂谈 人工神经网络算法的作用机理还是比较难理解,现在以一个例子来说明其原理。这个例子是关于人的识别技术的,在门禁系统,逃犯识别,各种验证码破译,银行预留印鉴签名比对,机器人设计等领域都有比较好的应用前景,当然也可以用来做客户数据的挖掘工作,比如建立一个能筛选满足某种要求的客户群的模型。 机器识别人和我们人类识别人的机理大体相似,看到一个人也就是识别对象以后,我们首先提取其关键的外部特征比如身高,体形,面部特征,声音等等。根据这些信息大脑迅速在内部寻找相关的记忆区间,有这个人的信息的话,这个人就是熟人,否则就是陌生人。 人工神经网络就是这种机理。假设上图中X(1)代表我们为电脑输入的人的面部特征,X(2)代表人的身高特征X(3)代表人的体形特征X(4)代表人的声音特征W(1)W(2)W(3)W(4)分别代表四种特征的链接权重,这个权重非常重要,也是人工神经网络起作用的核心变量。 现在我们随便找一个人阿猫站在电脑面前,电脑根据预设变量提取这个人的信息,阿猫面部怎么样,身高多少,体形胖瘦,声音有什么特征,链接权重初始值是随机的,假设每一个W均是0.25,这时候电脑按这个公式自动计 算,Y=X(1)*W(1)+X(2)*W(2)+X(3)*W(3)+X(4)*W(4)得出一个结果Y,这个Y要和一个门槛值(设为Q)进行比较,如果Y>Q,那么电脑就判定这个人是阿猫,否则判定不是阿猫.由于第一次计算电脑没有经验,所以结果是随机的.一般我们设定是正确的,因为我们输入的就是阿猫的身体数据啊. 现在还是阿猫站在电脑面前,不过阿猫怕被电脑认出来,所以换了一件衣服,这个行为会影响阿猫的体形,也就是X(3)变了,那么最后计算的Y值也就变了,它和Q比较的结果随即发生变化,这时候电脑的判断失误,它的结论是这个人不是阿猫.但是我们告诉它这个人就是阿猫,电脑就会追溯自己的判断过程,到底是哪一步出错了,结果发现原来阿猫体形X(3)这个 体征的变化导致了其判断失误,很显然,体形X(3)欺骗了它,这个属性在人的识别中不是那 么重要,电脑自动修改其权重W(3),第一次我对你是0.25的相信,现在我降低信任值,我0.10的相信你.修改了这个权重就意味着电脑通过学习认为体形在判断一个人是否是自己认识的人的时候并不是那么重要.这就是机器学习的一个循环.我们可以要求阿猫再穿一双高跟皮鞋改变一下身高这个属性,让电脑再一次进行学习,通过变换所有可能变换的外部特征,轮换让电脑学习记忆,它就会记住阿猫这个人比较关键的特征,也就是没有经过修改的特征.也就是电脑通过学习会总结出识别阿猫甚至任何一个人所依赖的关键特征.经过阿猫的训练电脑,电脑已经非常聪明了,这时你在让阿猫换身衣服或者换双鞋站在电脑前面,电脑都可以迅速的判断这个人就是阿猫.因为电脑已经不主要依据这些特征识别人了,通过改变衣服,身高骗不了它.当然,有时候如果电脑赖以判断的阿猫关键特征发生变化,它也会判断失误.我们就

遗传算法优化BP神经网络的实现代码-共6页

%读取数据 data=xlsread('data.xls'); %训练预测数据 data_train=data(1:113,:); data_test=data(118:123,:); input_train=data_train(:,1:9)'; output_train=data_train(:,10)'; input_test=data_test(:,1:9)'; output_test=data_test(:,10)'; %数据归一化 [inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_tr ain,output_train); %对p和t进行字标准化预处理 net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm'); net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN %网络训练 net=train(net,inputn,outputn); %数据归一化 inputn_test = tramnmx(input_test,mininput,maxinput); an=sim(net,inputn); test_simu=postmnmx(an,minoutput,maxoutput); error=test_simu-output_train; plot(error) k=error./output_train

利用蚁群算法优化前向神经网络

利用蚁群算法优化前向神经网络 来源:深圳发票 https://www.360docs.net/doc/3c5855941.html,/ 内容摘要:蚁群算法(ant colony algorithm,简称ACA)是一种最新提出的新型的寻优策略,本文尝试将蚁群算法用于三层前向神经网络的训练过程,建立了相应的优化模型,进行了实际的编程计算,并与加动量项的BP算法、演化算法以及模拟退火算法进行比较,结果表明该方法具有更好的全局收敛性,以及对初值的不敏感性等特点。关键词:期货经纪公司综合实力主成分分析聚类分析 人工神经网络(ANN)是大脑及其活动的一个理论化的数学模型,由大量的处理单元(神经元)互连而成的,是神经元联结形式的数学抽象,是一个大规模的非线性自适应模型。人工神经网络具有高速的运算能力,很强的自学习能力、自适应能力和非线性映射能力以及良好的容错性,因而它在模式识别、图像处理、信号及信息处理、系统优化和智能控制等许多领域得到了广泛的应用。 人工神经网络的学习算法可以分为:局部搜索算法,包括误差反传(BP)算法、牛顿法和共轭梯度法等;线性化算法;随机优化算法,包括遗传算法(GA)、演化算法(EA)、模拟退火算法(SA)等。 蚁群算法是一种基于模拟蚂蚁群行为的随机搜索优化算法。虽然单个蚂蚁的能力非常有限,但多个蚂蚁构成的群体具有找到蚁穴与食物之间最短路径的能力,这种能力是靠其在所经过的路径上留下的一种挥发性分泌物(pheromone)来实现的。蚂蚁个体间通过这种信息的交流寻求通向食物的最短路径。已有相关计算实例表明该算法具有良好的收敛速度,且在得到的最优解更接近理论的最优解。

本文尝试将蚁群算法引入到前向神经网络的优化训练中来,建立了基于该算法的前向神经网络训练模型,编制了基于C++语言的优化计算程序,并针对多个实例与多个算法进行了比较分析。 前向神经网络模型 前向人工神经网络具有数层相连的处理单元,连接可从一层中的每个神经元到下一层的所有神经元,且网络中不存在反馈环,是常用的一种人工神经网络模型。在本文中只考虑三层前向网络,且输出层为线性层,隐层神经元的非线性作用函数(激活函数)为双曲线正切函数: 其中输入层神经元把输入网络的数据不做任何处理直接作为该神经元的输出。设输入层神经元的输出为(x1,x2,Λ,xn),隐层神经元的输入为(s1,s2,Λ,sh),隐层神经元的输出为 (z1,z2,Λ,zh),输出层神经元的输出为(y1,y2,Λ,ym),则网络的输入-输出为: 其中{w ij}为输入层-隐层的连接权值,{w i0}隐层神经元的阈值,{v ki}为隐层-输出层的连接权值,{v k0}为输出层神经元的阈值。网络的输入-输出映射也可简写为: 1≤k≤m (5)

基于遗传算法的BP神经网络优化算法

案例3:基于遗传算法的BP神经网络优化算法 ******************************************************************************* **** 论坛申明: 1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB 智能算法30个案例分析》 2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。 3 作者长期驻扎在板块,对读者和会员问题有问必答。 4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。 MATLAB书籍预定方法和优惠服务:https://www.360docs.net/doc/3c5855941.html,/thread-9258-1-1.html 点击这里,预览该案例程序:https://www.360docs.net/doc/3c5855941.html,/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:https://www.360docs.net/doc/3c5855941.html,/thread-11921-1-1.html * ******************************************************************************* ** 1、案例背景 BP网络是一类多层的前馈神经网络。它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。BP算法是Rumelhart等人在1986年提出来的。由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如: ①、学习收敛速度太慢; ②、不能保证收敛到全局最小点; ③、网络结构不易确定。 另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。 本节以某型号拖拉机的齿轮箱为工程背景,介绍使用基于遗传算法的BP神经网络进行齿轮箱故障的诊断。

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

基于蚁群算法和神经网络的数控机床故障诊断技术研究

基于蚁群算法和神经网络的数控机床故障诊断技术研究 吴冬敏,邵剑平,芮延年 (苏州大学,江苏苏州215021) 来稿日期:2012-03-16 基金项目:“高档数控机床与基础制造装备”科技重大专项(2011ZX04004-061) 作者简介:吴冬敏,(1979-),女,江苏南通人,讲师,硕士,主要研究方向为机电智能、可靠性分析;芮延年,(1951-),男,安徽,教授,博士生导师,主要研究方向为仿真工程学,人工智能及机器人等 1引言 数控机床作为大中型企业生产中的关键设备,任何部分出现故障,都可能导致零件加工精度降低、机床停机、生产停顿,造成巨大的经济损失,严重时还会危及到人身安全。与传统加工设备相比,数控机床的集成化、自动化程度越来越高,这使设备发生故障的概率增大、 种类增多。经验表明:即使一个熟练的技术人员,在故障诊断时,确定故障原因和部位的时间约占总时间的(70~90)%,而只有约(10~30)%用于最后排除故障的维修工作。据调查,我国企业现有的数控设备的利用率和完好率普遍偏低,主要原因之一是维修力量不足,检修过程中故障处理速度较慢且受人为因素影响较大,因此,要提高维修效率,提高故障诊断能力是关键[1]。 文献[2]提出了用蚁群算法来训练BP 神经网络的权值,并将其应用于求解非线性模型的辨识问题及倒立摆的控制问题,取得了良好的效果。因此,将蚁群算法和BP 神经网络结合起来,可兼 有神经网络的非线性映射能力和蚁群算法的快速、 全局收敛及启发式学习等特点,在某种程度上避免了神经网络收敛速度慢,易于陷局部极小点的问题[2]。将其应用于数控机床的故障诊断中,可有效地提高故障诊断的准确度和效率。 2蚁群算法的基本原理 蚁群算法(Ant Colony Algorithm )又称为蚁群优化算法[3],是一种模拟蚂蚁智能行为的仿生优化算法。其基本思想是:蚂蚁个体之间是通过在其走过的路径上留下一种被称为信息素的物质来进行信息传递的,并根据信息素的浓度来选择自己的前进方向。因此,在某条路径上,走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大,形成正反馈机制。 随着算法的推移,代表最优解路径上的信息素逐渐增多,而其他路径上的信息素却会随着时间的流逝而逐渐消减,最终整个蚁群在正反馈的作用下集中到代表最优解的路径上,也就找到了最优解。蚁群算法具有较强的鲁棒性、优良的分布式计算机制、易 摘 要:为了克服BP 神经网络收敛速度慢、易于陷入局部极小点的缺点,在研究蚁群算法优化神经网络训练算法的基础 上,以数控机床的进给伺服系统故障诊断为例,建立其故障诊断模型。利用训练后的蚁群神经网络对其进行故障诊断,并把BP 神经网络和蚁群神经网络的训练和诊断结果相比较。实验结果表明:蚁群神经网络比BP 神经网络的收敛速度快、运算效率高、识别能力强。这说明蚁群神经网络应用于数控机床的故障诊断中,可有效地提高故障诊断的准确度和效率,具有良好的应用效果。 关键词:蚁群算法;神经网络;数控机床;进给伺服系统;故障诊断中图分类号: TH16;TG659;TH165+.3文献标识码:A 文章编号:1001-3997(2013)01-0165-03 Research on CNC Machine Fault Diagnosis Based on Ant Colony Algorithm and Neural Network WU Dong-min ,SHAO Jian-ping ,RUI Yan-nian (Soochow University ,Jiangsu Suzhou 215021,China ) Abstract :In order to overcome the shortcomings of slow convergence speed and easy falling into the local minimum points in the BP neural network ,based on the research of ant colony algorithm to optimizate neural network training algorithm ,it takes CNC machine tool feed servo system fault diagnosis as example to establish the fault diagnosis model.The fault of feed servo system is diagnosed by trained ant colony neural network ,and the training and diagnosis results of the BP neural network and the ant colony neural network are comparied.The result shows that the ant colony neural network has the advantages of more quick convergence speed ,higher operation efficiency ,stronger identification ability than BP neural network.These show that the ant colony neural used in the fault diagnosis of CNC machine tool ,which can effectively improve the accuracy of fault diagnosis and efficiency , has good application prospects.Key Words :Ant Colony Algorithm ;Neural Network ;CNC Machine ;Feed Servo System ;Fault Diagnosis Machinery Design &Manufacture 机械设计与制造 第1期 2013年1月 165

遗传算法优化BP神经网络权值和阈值(完整版)

https://www.360docs.net/doc/3c5855941.html,/viewthread.php?tid= 50653&extra=&highlight=%E9%81%97%E4%BC%A0%E7% AE%97%E6%B3%95&page=1 Matlab遗传算法优化神经网络的例子(已调试成功)最近论坛里问到用遗传算法优化神经网络问题的人很多,而且论坛里有很多这方面的代码。但可惜的是所有代码都或多或少有些错误!最郁闷的莫过于只有发帖寻求问题答案的探索者,却很少有对问题进行解答的victor。本人在论坛里看到不少会员对能运行成功的遗传算法优化神经网络例子的需求是多么急切,我也深有感触!现把调试成功的一个例子贴出来,供大家参考!(本例子是基于一篇硕士论文里的代码为蓝本改 编的,此处就不再注明作者了。)遗传算法优化bp.rar (3.34 KB) 注:该代码是由会员“书童”耗费了一整天的时间调试成功的,在此再次对我们的“书童”同学乐于助人的高尚品德致敬,并对其深表感谢!PS:参考会员“ilovexyq”意见,先对其做以补充。该网络为遗传算法 优化bp的一个典型例子,输入为7,输出为7,隐层为25。该网络输入输出数据就是为了说明问题而随便加的,没有实际意义。如用于自己的实际问题,把数据替换并根据需要改一下网络结构就行了。

PS:如有问题,请先阅读此贴: https://www.360docs.net/doc/3c5855941.html,/thread-52587-1-1.html### [本帖最后由 yuthreestone 于 2009-10-15 10:52 编辑] 搜索更多相关主题的帖子: 调试例子算法Matlab神经网络 https://www.360docs.net/doc/3c5855941.html,/thread-52587-1-1.html 遗传算法优化BP神经网络权值和阈值(完整版) 会员renjia前一段时间分享的程序,地址如下: https://www.360docs.net/doc/3c5855941.html,/viewthread.php?tid=50653&extra=&highlight=% E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95&page=1: (1)renjia提供的程序存在一些小错误,主要是设计的bp网络是两个隐含层,但编码的时候只有一个隐含层。修改后的程序将bp改成了单隐层以确保一致;(2)很多会员不知道该如何运行程序,各个m文件之间的关系弄不清楚。修改后的程序共包含三个m文件: 其中,主程序为ga_bp.m,适应度函数为gabpEval.m,编解码子函数为gadecod.m 注意:使用前需安装gaot工具箱(见附件),上述三个文件需放在同一文件夹中且将该文件夹设置为当前工作路径。 运行程序时只需运行主程序ga_bp.m即可。 (3)此程序仅为示例,针对其他的问题,只需将数据修改即可,但需注意变量名保持一致,尤其是全局变量修改时(在gadecod.m和gabpEval.m中也要修改)(4)gaot工具箱如何安装? 点击file选择set path,在弹出的对话框中选择add folder,将gaot文件夹添加进去,然后点击save保存即可。

粒子群算法和蚁群算法的结合及其在组合优化中的应用e

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA 算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到 初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求 精确解(即细搜索)。将文中提出的算法用于经典TSP 问题的求解,仿真结果表明PAAA 算 法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在 求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性 能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspired Computing )的研究,越来越引起众多学者的关注和兴趣,产生了神经网络、遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。 粒子群优化(Particie Swarm Optimization ,PSO )算法[1, 2]是由Eberhart 和Kennedy 于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1) 算法简洁,可调参数少,易于实现;(2) 随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](Ant Coiony Optimization ,ACO ) 是由意大利学者M.Dorigo ,V.Maniezzo 和A.Coiorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP 问题[5,6]、二次分配问题、工 件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA 算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术 SPACE ELECTRONIC TECHNOLOGY !"

相关文档
最新文档