14-关于富水构造型底板突水系数计算方法的探讨

14-关于富水构造型底板突水系数计算方法的探讨
14-关于富水构造型底板突水系数计算方法的探讨

第24卷第1期(总第146期)煤一矿一开一采Vol.24No.1(Series No.146) 2019年2月COAL MINING TECHNOLOGY February一2019

关于富水构造型底板突水系数计算方法的探讨

樊振丽1,2

(1.天地科技股份有限公司开采设计事业部,北京100013;2.煤炭科学研究总院开采研究分院,北京100013) [摘一要]一为了反映底板突水主控因素对评价结果的作用,将承压含水层富水性和地质构造因素引入到改进型突水系数计算公式中,提出含水层富水性影响系数(Kω)和底板完整性系数

(K c),并提出了富水构造型突水系数计算公式三通过原始突水系数和富水构造系数计算公式评价结

果对比,改进的全要素突水系数计算公式可解决富水性和地质构造发育程度不一区域的底板突水评价

不准确的问题三

[关键词]一构造突水;底板突水;突水系数;主控因素

[中图分类号]TD745.2一[文献标识码]A一[文章编号]1006-6225(2019)01-0035-05 Calculation Method of Water Bursting Coefficient of Water-rich Tectonic Floor

FAN Zhen-li1,2

(1.Coal Mining&Designing Department,Tiandi Science&Technology Co.,Ltd.,Beijing100013,China;

2.Mining Institute,China Coal Research Institute,Beijing100013,China)

Abstract:In order to illustrated the function of the main control coefficient of floor water bursting to evaluation results,confined aqui-fer watery and geological tectonic were introduced to improving water bursting coefficient formula,and confined aquifer watery coeffi-cient Kωand floor integrity coefficient K were all proposed,the formula of watery tectonic water bursting coefficient was put forward,

c

and compared with two different formula of original water bursting coefficient and watery tectonic coefficient,the inaccurate question of floor water bursting evaluation for the region by the formula,which was about watery and geological different.

Key words:tectonic water bursting;floor water bursting;water bursting coefficient;main control factors

一一随着我国煤矿开采水平的不断延伸二开采深度及强度的增大,许多矿井将面临更加复杂的水文地

质条件,特别是华北型煤田下组煤开采受灰岩岩溶承压含水层的威胁日益严重[1-3]三目前,对底板水害的评价方法主要有突水系数法二脆弱性指数法及五图双系数法等,其中,突水系数法以其简单二实用的优点被广泛应用于煤层底板突水危险性评价以及矿井的生产实践中三

众所周知,突水系数法是以典型大水矿区底板突水资料为基础,经统计分析于1964年焦作水文

地质大会提出的,计算式为T=P(水压)/M

s

(底板隔水层厚度)三煤炭科技及现场工程人员经几十年的实践和研究,认为煤层底板突水是受含水层水压二富水性及渗透性二底板隔水层厚度二矿山压力二底板岩层组合以及地质构造等多种因素综合作用的结果,且初始的突水系数计算公式评价结果在不同矿井出现了不适用等情况,因而国内相关科研机构及学者在实践中不断深入研究探讨,使突水[收稿日期]2019-01-04系数计算公式不断得以改进,所考虑的引发底板突水的各项影响因素逐渐接近客观实际[4-5]三2018年6月4日,国家煤矿安全监察局印发的‘煤矿防治

水细则“将初始公式作为评价底板突水危险性的计算公式,即仅以含水层水压和底板隔水层厚度作为计算要素获取突水系数值三笔者认为初始突水系数计算式作为统计意义的经验公式是底板突水综合要素的量值反映,具有相对较好的适用性,但是,该公式毕竟在一些矿区出现了小于突水系数临界值突水或者大于甚至远大于突水系数临界值未突水的情况,鉴于此,从学术角度探讨矿山压力(对应计算要素为底板破坏带深度)二底板岩层组合(对应计算要素为等效隔水层厚度)二奥灰原始导升带二含水层富水性二地质构造等作为突水系数计算要素,从而解决特定煤层水文地质条件下的底板突水评价问题是有意义的三

国内许多学者和科研机构在将底板突水主控因素作为突水系数计算要素方面做了大量工作[6-8]三[DOI]10.13532/j.cnki.cn11-3677/td.2019.01.008

[基金项目]国家科技重大专项大型油气田开发项目(2016ZX05045007-003,2016ZX05043005);国家自然科学基金资助项目(51704161) [作者简介]樊振丽(1983-),男,河南郑州人,博士,副研究员,主要从事煤矿水害防治二 三下 采煤二矿山环境治理等方面的技术应用和研究工作三

[引用格式]樊振丽.关于富水构造型底板突水系数计算方法的探讨[J].煤矿开采,2019,24(1):35-39.

35

总第146期煤一矿一开一采2019年第1期

目前,较完善的突水系数公式考虑了底板破坏深度二有效隔水层厚度二奥灰原始导升带二奥灰顶部隔水层等计算要素,形成式(1)改进型突水系数

计算式[9]三

P

T s =

ΣM i 四ξi -C -h d +M 0

(1)

式中,P 为煤层底板隔p 水层承受的水压力,MPa;M i 为底板隔水层中第i 层岩层厚度,m;ξi 为底板隔水层中第i 层岩层等效隔水系数(无岩溶化灰岩二泥灰岩为1.3,泥岩二泥灰岩二黏土二页岩为

1.0,砂质页岩为0.8,褐煤为0.7,砂岩为0.4,砂二砾石二碎石二岩溶化灰岩二垮落裂缝带为0);

C 为采矿对底板扰动的破坏深度,m;H d 为承压水p 导升高度,m;M 0为奥灰顶部充填隔水层厚度,m三

式(1)较全面地体现了底板突水主控因素,

但是底板含水层的富水性和地质构造这两大重要因素并未以计算要素的形式出现三含水层的富水性呈

现不均一性,水压仅是含水层属性的表现因素之一,某区域水压高并不代表其富水性好,若该区域不富水则不易发生底板突水或突水量不大三而承压水体上的开采实践证明,构造使得底板相对隔水层变薄,构造区域往往是发生底板突水的危险区三

煤矿现场钻探反映出,若某区域灰岩含水层富水性差,即使突水系数大也不容易突水;某区域突水系数再小,但是存在断层二陷落柱等导水构造,突水危险性骤增三因此,本文探讨一种研究思路将含水层富水性和地质构造因素转化为突水系数计算要素,从而解决上述问题三1一含水层富水性计算要素表征

1.1一含水层富水性与底板突水的关联分析根据肥城二焦作二淄博二峰峰二郑州二西山二

霍州二晋北等矿区突水资料的分析[8,10-12],以突水

点规模为依据,将突水点单位涌水量与突水量进行关联分析,如表1所示三

表1一突水规模与含水层富水性(q )关联性统计

突水规模q ?0.05L /(s四m)突水次数占比/%

q ?0.1L /(s四m)突水次数占比/%

0.1

1

q >5L /(s四m)突水次数占比/%

在突水统计总数中占比/%

小型突水02.7231.913.93038.56中等突水001.8630.1221.7453.72大型及特大型突水

7.72

7.72

注:①小型突水:Q ?60m 3/h;②中等突水:60m 3/h1800m 3/h三

一一由表1统计可知,当含水层富水性指标q ?

0.1L /(s四m)(传统弱富水性)时,以发生小型突水为主,且突水次数占比较小;发生大型及特大

型底板突水时,含水层富水性指标q >5L /(s 四

m),即在传统的极强富水性含水层(段)时才发生大型及特大型突水;小型突水最易发生在0.11L /(s四m)时,且在1

生中等规模突水占比最高三

由此可见底板突水的发生与否和突水点规模与岩溶含水层富水性息息相关三若隔水层厚度一定,底板岩层完整的条件下,开采区段底部含水层富水性越强,发生突水的可能性越大,且突水规模越大三当使用初始突水系数公式计算值较大时,富水性参数q ?0.1L /(s 四m)时,底板突水可能性小;另外,统计显示当q ?0.05L /(s四m)时,即使初始公式突水系数值大,底板仍有极大可能不突水三

1.2一含水层富水性影响系数

由岩溶发育特征和富水性对底板突水关联分析结果可知,使用突水系数法评价底板突水危险性时,须考虑含水层富水性特征三当含水层富水性弱

(q ?0.05L /(s四m))时,底板基本无突水事故,含水层向采掘空间充水水源和强度不足,这种情况下应弱化突水系数;当含水层富水性参数为0.055L /(s四m)时多发生大型和特大型突水,易发生灾难性后果,应注意防范底板水害,并提供安全预防级别,预测时应增大富水性的影响程度三据此提

出含水层富水性影响系数(K ω),以反映底板含

水层富水性对底板突水危险性评价的贡献,K ω赋值

见表2三

表2一不同富水性级别含水层富水性影响系数(K ω)取值

级别q /单位涌水量-1)

(L四(s四m)含水层富水性影响系数(K ω)

1q ?0.05

0.120.05

q >5

2.5

36

c 樊振丽:关于富水构造型底板突水系数计算方法的探讨

2019年第1期

一注:K ω赋值依据突水系数折减效果及现场突水案例符合程度综合确定,随底板突水样本的增加,应适时修正三

2一地质构造计算要素表征

构造因素是底板突水的关键因素和最重要的控制因素

[13]

三初始突水系数计算公式应用时,存在

突水系数安全区在构造的影响下突水的情况三针对这种情况,提出构造规模指数(S )和构造底板

c 完整性系数(K )的概念三

c 定义标准统计单元格内(1000m ?1000m),断

层二陷落柱和褶皱轴部及其影响区面积占整个单元格的比值为构造规模指数(Structure Scale Index)三

构造规模指数的表达式:

S c =S f +S k +S fa

(2)

式中,S c 为构造规模指数;S f 为断层规模指数;S k 为岩溶陷落柱规模指数;S fa 为皱褶轴影响指数三

断层规模指数表达式:

n 1

ΣL f i 四H i

i =1

S f =

(3)

S

式中,S 为统计单元格面积,m 2;L f i 为第i 条断层落在单元格内走向长度,m;H i 为第i 条断层落差,

m;n 1为统计单元格中的断层数三

岩溶陷落柱规模指数表达式:n 2

S k =

i Σ=1

1.2S s i 四h i

(4)

S

式中,S 为第i 个岩溶陷落柱横截面面积,m 2;h i 为第i 个陷s i 落柱垂高,m;n 2为统计单元格中的岩

溶陷落柱个数三

褶皱轴影响指数表达式:n 3

ΣL fa i 四D i

i =1

S fa =

(5)

S

式中,L fa i 为第i 个褶皱轴落在单元格中走向长度,

m;D i 为第i 个褶皱翼核垂高,m;n 3为统计单元格中的褶皱轴个数三

将式(3)~(5)代入式(2)中,可得:n 1

n 2n 3

S =

i Σ=1

L f i 四H i +i Σ=1

1.2S s i 四h i +i Σ=1

L fa i 四D i

(6)

c S

利用式(6)计算出井田全部构造规模指数后,将各个统计单元格构造规模指数进行归一化处理,评价井田受构造影响程度三

归一化公式为:

S -min(S c i )S 1=c i (7)

c i

max(S c i )-min(S c i )

归一化的构造规模指数反映了不同区块对底板突水的构造控制程度,利用突水系数法进行突水危险性评价时,主要体现在构造对底板隔水层完整性影响系数参数中三底板隔水层完整性系数(K )

反映了构造对底板突水相对隔水层完整性的影响程度,K c 值越大,底板越破碎,抵抗水压的能力越差,越易发生底板突水三不同构造规模指数下底板

完整性系数见表3三

表3一构造规模指数与底板完整性系数取值

影响级别构造规模指数S 1c

底板完整性系数K c

无构造影响S 1=c 01一般影响S 1c ?0.250.6中等影响0.25

0.5

严重影响

0.5

0.25

3一富水构造型突水系数全要素计算式

将含水层富水性和地质构造作为突水系数法的计算要素,在公式(1)的基础上提出富水构造型突水系数计算公式:

K ω四P

T qC =

(8)

K c 四(ΣM i 四ξi -C p -h d +M 0)

该公式不仅考虑了含水层水压二相对隔水层厚度二底板采动破坏带二承压水导升带和奥灰含水层顶部隔水层,还将岩溶含水层富水性和构造影响这两个重要因素纳入底板突水评价中,形成全计算要

素的突水系数计算式三

4一初始突水系数与富水构造型突水系数评价结果对比4.1一评价区概况

河东煤田离柳矿区某矿刚进入下组煤开采,主采太原组9号煤,煤层平均采厚4m,采用长壁后退式综采一次采全高采法,全部垮落法管理顶板,

9号煤层开采主要受底板奥灰水害威胁三

煤层底板隔水层承受的奥陶系灰岩含水层水压

变化范围为0.52~3.42MPa,水压等值线如图1所示;奥陶系峰峰组富水性极不均匀,浅埋区强于深埋区,富水性大部区域属中等级别,即0.1

1L /(s四m)三下组煤大巷掘进时,在初始突水系数计算的安全区内发现岩溶陷落柱4个,其中3个

涌水,涌水量为10~60m 3/h三

煤层底板下伏太原组二本溪组和奥陶系峰峰组

地层,煤层底板距奥灰峰峰组含水层57.3~

67.5m,如图2所示三下组煤至奥陶系峰峰组顶界

地层以泥岩类地层为主,较软弱,易受采动影响而破坏形成采动破坏带二层间离层裂隙,但是,在不受构造影响的情况下,该段隔水层隔水性能良好,

37

总第146期煤一矿一开一采2019年第1

图1一9号煤层底板隔水层所受奥灰含水层水压等值线

是抵抗底板突水的重要地质屏障

图2一9号煤层至奥灰含水层间隔水层厚度等值线

4.2一初始突水系数计算式评价

利用初始突水系数公式T s =M P

计算9号煤层

突水系数,结果显示全井田各钻孔突水系数值为

0.009~0.061MPa /m三据‘煤矿防治水细则“,底板受构造破坏块段突水系数一般不大于0.06MPa /m,正常块段不大于0.1MPa /m 的标准评价,9号煤层正常块段一般不会突水,构造块段9号煤层仅在井田南部ZK3钻孔附近区域突水系数值为

0.061MPa /m,构造发育区域存在突水危险(图

3)三

图3一煤层突水系数等值线

4.3一富水构造型突水系数计算式评价

利用富水构造型突水系数法进行评价,需逐步分析各计算要素的取值,除了水压通过地勘资料获得外,其他计算要素要根据采区或钻孔信息进行获取三(1)含水层富水性系数K ω:井田范围奥陶系

峰峰组含水层富水性处于0.05

(2)底板完整性系数K :井田构造简单,仅

c 在井田西南部9号拐点区域发育有4条断层,东部

9号煤层大巷掘进时发现了4个陷落柱,根据井田

构造发育情况,划分评价网格,计算构造规模指数二底板完整性系数[14]三

(3)等效隔水层厚度ΣM i 四ξi :根据各钻孔煤

层至奥灰含水层不同岩性地层的分层厚度二等效隔水系数,计算获取各钻孔的等效隔水层厚度三9号煤层距离峰峰组顶界等效隔水层分布如图4所示

图4一9号煤层至奥灰等效隔水层厚度等值线

由图2和图4可知,9号煤层有效隔水层厚度较实际煤层底板至奥灰顶界面之间的相对隔水层厚度均有折减,但折减幅度不大,说明下组煤底板至奥灰含水层泥岩类地层比重大,底板岩层具有良好的隔水性能三

(4)底板破坏带深度C :根据‘建筑物二水体二铁路及主要井巷煤柱设与压煤开采规范“,留p 考虑采深二倾角和工作面斜长因素,底板采动破坏带深度计算公式:

C =0.0085H +0.1665α+0.1079L -4.3579

(9)

式p 中,H 为开采深度,m;α为煤层倾角,(?)三

断层带附近的采动导水破坏带深度比正常岩层中增大约0.5~1.0倍三

9号煤层平均埋深约373m;煤层倾角平均5?;工作面斜长200m三代入式(9)计算可得9号煤层底板破坏深度约21.23m三

(5)奥灰承压水导升带高度h d :承压水导升

带的存在与奥灰含水层之上地层的原生裂隙关系密切,若该层原生裂隙越发育,则承压水导升带越高,反之则相反三该矿奥灰含水层之上为本溪组泥岩二铝土岩类隔水层,原生裂隙不发育,承压水越过隔水层而导升的可能性小,因此,这里取承压水导升带高度为0三

(6)奥灰含水层顶部充填隔水层厚度M 0:根

据钻探资料,钻孔进入奥灰含水层后,多数钻孔即

38

樊振丽:关于富水构造型底板突水系数计算方法的探讨2019年第1期

出现大小不一的涌水量,可见本矿奥灰顶部风化带充填不好,无充填隔水层存在,故M 0取值为0三

将以上取值代入公式(8)计算各钻孔的富水

构造型突水系数,通过插值运算,绘制煤层底板突水危险性分区图(图

5)三

图5一富水构造型突水系数等值线

由图5可知,富水构造型突水系数法评价结果突出了富水性二构造的影响,与初始突水系数法评价结果相比,该评价结果预警意义显著三正常块段突水危险区有3个,其中Ⅰ区受水压和断层影响明显,突水系数突破了0.1MPa /m 的临界值;Ⅱ区主要受断层影响,突水系数明显增大;Ⅲ区受陷落柱影响显著三矿井采掘工程表明,若依据原始突水系数评价结果,下组煤开拓大巷属安全区,但实际上出现巷道底板突水现象,而富水构造型突水系数法可以对该情形进行预测,是该方法的优势所在三5 结束语

(1)煤层底板突水是多重地质二采矿因素综

合影响的结果三初始突水系数计算式采用水压和隔水层厚度2个计算要素反映众多影响因素对底板突水的作用结果,在水压低二采动影响适中等历史背景条件下具有其合理性和实用性,但是其并非普适于各个矿井三随着深部开采二地质复杂矿井二富水性不均底板等矿井的增多,进行多计算要素形式的探讨研究是有实践意义的三

(2)探索性地将底板含水层的富水性和地质

构造对底板突水的作用,以量化的计算要素形式纳入突水系数的计算,提出含水层富水性系数和底板完整性系数及其计算方法三

(3)富水构造型突水系数法所反映的含水层

富水性和构造区威胁,均是基于已探明的水文地质条件和构造分布而形成的评价结果,因此,矿井应进一步查明未采区水文地质条件,采用先进探测技术对含水层富水性二地质构造进行探查,查明其富水性和导水性特征,进而进一步修正突水系数法的评价结果三

[参考文献]

[1]武一强,张志龙,张生元,等.煤层底板突水评价的新型实

用方法Ⅱ 脆弱性指数法[J ].煤炭学报,2007,32(11):1121-1126.

[2]武一强,樊振丽,刘守强,等.基于GIS 的信息融合型含水

层富水性评价方法 富水性指数法[J].煤炭学报,2011,

36(7):1124-1128.

[3]樊振丽,武一强,孙晓宇.梧桐庄矿多含水层底板突水危险

性评价[J].煤矿开采,2011,16(5):89-93.

[4]刘一钦,孙亚军,徐智敏.改进型突水系数法在矿井底板突

水评价中的应用[J].煤炭科学技术,2011,39(8):107-109.

[5]李本军,刘海新,刘晓威.突水系数法在煤矿深部开采中的

应用[J].河北工程大学学报(自然科学版),2011,28

(3):68-70,90.

[6]樊振丽,胡炳南,申宝宏.煤层底板采动导水破坏带深度主

控因素分析[J].煤矿开采,2012,17(2):5-7.[7]聂伟涛.突水系数法评价煤层底板带压开采的局限性[J].山西焦煤科技,2013(10):67-69.

[8]乔一伟,李文平,赵成喜.煤矿底板突水评价突水系数-单位

涌水量法[J].岩石力学与工程学报,2011,39(8):107-109.

[9]王计堂,王秀兰.突水系数法分析预测煤层底板突水危险性

的探讨[J].煤炭科学技术,2011,39(7):106-111.[10]王作宇,刘鸿泉.承压水体上采煤[M].北京:煤炭工业出版社,1993.

[11]武一强.矿井水灾防治[M].徐州:中国矿业大学出版社,2002.

[12]武一强,金玉洁.华北型煤田矿井防治水决策系统[M].

北京:煤炭工业出版社,1995.[13]樊振丽.煤矿陷落柱水害特征与防治技术研究[J].煤炭工程,2011,43(8):93-95.

[14]天地科技股份有限公司.山西柳林金家庄煤业有限公司下组

煤开采底板突水危险性评价报告[R].2017.

[15]王计堂,王秀兰.汾源井田主采煤层底板突水危险性分析[J].资源与产业,2012(2):133-137.[16]齐庆新,潘一山,舒龙勇,等.煤矿深部开采煤岩动力灾害

多尺度分源防控理论与技术架构[J].煤炭学报,2018,43(7):1801-1810.

[17]樊朋飞.疏水降压技术在西坡煤矿水害防治中的应用[J].

山西煤炭,2018(1):23-27.

[18]杨延文.霍州煤电庞庞塔煤矿矿井充水条件及突水危险性评

价[J].内蒙古煤炭经济,2018(11):108-110,69.[19]陈一超,宋正宇,石小蒙.张双楼矿区9#煤层底板突水危险性分析及防治[J].中国煤炭,2012(4):103-106.[20]常海雷.奥灰顶部相对隔水性及其在底板突水评价中的应用[J].中国煤炭,2018(8):131-135.

[21]李宏杰,马一君,姜一鹏,等.准格尔煤田岩溶水文地质特

征及水害防治技术[J].煤矿安全,2018(9):246-251.[22]李金松.导水裂隙带影响下的煤层稳定性及安全开采措施研

究[J].山东煤炭科技,2018(8):153-155,162.[责任编辑:徐乃忠]

39

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

灌溉水利用系数

灌溉水利用系数综合测定法 □ 许建中赵竞成高峰黄修桥李英能 摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。 关键词灌溉利用系数综合测定法 灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。 一、典型渠道的选择及要求 1.选择具有代表性的典型渠道 典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。 2.测流断面的选 应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。 3.测量方法的选择

关于某实用标准化系数地定义

在设计时,必须考虑生产上的要求,如结构工艺性、经济性、标准化等,符合生产要求的电气设备,才能高效率、低成本的制造出来,产品质量才能得到保证。 现将产品的结构工艺性作一个系统的介绍。 产品的工艺性是指产品无需作重大变化且在一定数量下以最低成本适用于工业制造的程度。工艺性与工艺过程不同,它是指在设计产品时所赋予产品的一些质量指标,这些指标规定有可能以最少的人力与物力制造产品、降低成本、缩短设计周期。 结构工艺性包括:零配件加工工艺性,装配工艺性。 结构的工艺性是指结构是否适合于所规定的批量的消耗和工时的消耗、制造新结构所需的时间以及生产资金的相对消耗量等结构性能的总和。因此,影响结构工艺性的因素是多方面的。决定电气设备工艺性的主要因素有:结构的继承性,零配件的复杂性,结构的标准化,材料的消耗和工艺安装过程的合理性等。 工艺性是按以下主要工艺性质来进行评价的:标准化的零部件的适用范围;早期研制出的产品的继承性;所研制的零配件的复杂性;材料的利用率。为了定量的表征结构工艺性,常用到以下几个量化的参数: 1、标准化系数 定义:表征结构中标准化或规格化零件的使用程度,用K1表示。

K1=N1/N 式中N—设备中结构零件的总数量;N1—设备中规格化和标准零件的数量。 2、继承性系数 定义:表征结构的继承性程度,用K2表示。 K2=N2/N 式中N2—结构中采用本公司已经掌握的、从其它产品中移用过来的标准化结构零件数量。 3、重复性系数 定义:表征结构中零件规格的统一程度,用K3表示。 K3=N3/N 式中N3—同一规格零件的种类总数量。 4、材料利用系数 定义:表征材料的合理使用程度,用K4表示。 K4=N4/N5 式中N4—设备中某类材料制成配件的净重量总和;N5—设备中某类材料制成配件的材料重量总和。 从以上工艺指标看出: 1、标准化系数K1越大,即表示设备标准化程度越高,结构工艺性越好。 2、继承性系数K2越大,即表示设备零配件的通用性越高,则设备的结构工艺性越好。 3、重复性系数K3越小,表示设备中采用的零配件种类少,则设备的结

需用系数的计算

需用系数和功率因素的一些问题 PE=141KW KX=0.65,COSX=0.85 PJS=92KW SJS=108KVA LJS=163A 据cosφ=0.85 得tgφ=0.62 有功功率计算:Pjs=Pe×kx=141kW×0.65=91.65kW 无功功率计算:Qjs=Pjs×tgφ=91.65kW×0.62=56.82kVar 计算负荷:Sjs=√Pjs2+ Qjs2=√91.652+56.822=107.84kVA 计算电流:Ijs=108kVA×1000/380V/1.73=164A 其中tgφ、cosφ、KX又是如何得出来的? 需用系数,包括同时系数的,由同时系数得的。同时系数只同时使用的设备同时间的概率,需用系数指计算电流的需用系数。 需用系数除了得考虑同时系数(即考虑各种设备不会同时使用的系数),还需要考虑负荷系数(即各种设备部可能都达到额定值)。这样算下来的计算负荷就小于各种设备总负荷的相加值。 kx是需用系数,是由同时系数乘以负荷系数得来的。用来描述用电设备的真实负荷和设备额定负荷之间的长期关系。我们可以通过需用系数来计算计算负荷。这种方法就叫需用系数法,是三种常用的计算

负荷的方法之一,也是最常用和简单的方法。 kx可以查表得来,表中通过你对负荷性质的筛选可以找到你需要的kx值。比如是大范围办公照明还是电镀车间还是电解车间等等。。。表中除了有kx之外还有tgφ、cosφ都可以查。属于经验数据。当然。如果只求计算负荷的话,只要cosφ就好了。不需要用tgφ。从你给出的式子也可以看出这一点。 Sjs=Pjs/cosφ 关于计算电流中的1.73是什么? 根号3等于1.732。。。。它只取了小数点后两位。 这样看就能把他们的单位换算看清楚些 108kVA×1000=108000 VA 108000va除以380V=....安 由于这个是三项电,它的单项电流需要乘以根号3 ...乘以1.73=164A 所以Ijs=164安1、cosφ、Kx是经验数据; 2、根号3=1.732. 计算电流,用这样的公式形式会更容易理解: Ijs=[(Pe/3)/220]*Kx/cosφ =[(141000/3)/220]*0.65/0.85 =163.3(A .

标准化经济效益的评价指标与公式

标准化经济效益的评价指标与公式 为了正确评价标准化经济效益,必须建立一套衡量标准化经济效益的指标,通过这些指标从某些方面、在一定范围内或在一定程度上反映出标准化经济效益的大小。目前我国评价标准化经济效益的指标体系主要由以下四个指标组成:(1)标准化经济效益(X) 标准化经济效益分为标准有效期内总经济效益(XΣ)和年经济效益(X n)两种: 式中J——标准化年节约额,元/年;K——标准化投资,元;α——标准有效期内,标准化投资折算成一年的费用系数;n——标准有效期,年。 在计算年经济效益时,采用标准化投资的“分摊法”,目前一般按五年分摊,即取α值为0.2。 (2)标准化投资回收期(T k) T k=K/J 标准化回收期单位为常为年,也可以分别乘上12(月)或360(日)转换成月、日表示。 如有两个标准化方案进行比较时,可用下式表示: 式中t K——追加投资回收期,年;K1、K2——分别为方案1、方案2的标准化投资,元;C1、C2——分别为方案l、方案2的年生产成本,元/年。 标准化投资回收期是用标准化获得的节约来偿还投资所需

要的时间。我国在计算基本建设投资回收期时,一般是以利润(包括税收)来回收的,虽然标准化产生的各种节约,一般是成本的节约,但二者的做法基本上是一致的。 标准化投资回收期从何时候开始计算,有两种意见,一种是从投资开始支出的时候算起,另一种是从贯彻标准后产生效益时开始计算。从理论上讲,前者的计算较为合理,这会有助于缩短标准从制定起到贯彻所需的时间。但由于标准的制订费用比贯彻费用要少得多,据苏联统计两者比例大约是1:20,这就是说,标准的制订费用与标准化总投资的比例甚小,第一种计算方法就显得实际意义不大。而贯彻标准所消耗的投资较多,时间一般也较集中,所以就一般采用第二种方法计算标准化投资回收期,但是当制订标准的费用较多时,也可以按第一种方法计算。 (3)标准化投资收益率(R K) 标准化投资收益率是贯彻标准所获得的年节约与投资之比: R K=J / K 标准化投资收益率实际上是标准化投资回收期的倒数。 (4)标准化经济效益系数(E) 标准化经济效益系数表示单位投资在标准有效期内可以获得的节约: 上述四个指标构成一组指标体系,它们从不同侧面反映标准化的经济效益。标准化经济效益X 是从数量上表达了经济效益的大小,反映了标准化经济效益的绝对值,是一个净收入的概念;标准化投资收益率R K、标准化经济效益系E 数则从比率的关系上表达经济效益的大小,反映了标准化经济效益的相对值。标准化投资回收期T k又从时间上反映了取得经济效益的速度。它们互相关联又互相补充,四个指标同时运用,才能较全 面地综合地反映出标准化经济效益。

β系数的计算方法

β系数得计算方法 一、公式法 运用公式法计算行业β系数得具体步骤如: 1。计算市场整体收益率。计算公式为: 式中:R 为第t期得市场整体收益率;为沪深300指数第溯期末 得收盘数;为沪深3oo指数第t—1期期末得收盘数。。 2.计算各参照上市公司收益率.计算公式为: 式中:为参照上市公司第t期得收益率;为参照上市公司第溯期末 得股票收盘价;为参照上市公司第t—I期期末得股票收盘价。 3.计算市场整体收益率与各参照上市公司收益率得协方差。我们可以利用EXCEL中得协方差函数“COVAR”来计算。 4。计算市场整体收益率得方差。我们可利用EXCEL中得方差函数“VAKP"来计算。 5.计算各参照上市公司受资本结构影响得β系数。 式中:BL为参照上市公司受资本结构影响得p系数. 6.计算各参照上市公司消除资本结构影响得β系数。计算公式为: 式中:Bu为参照上市公司消除资本结构影响得β系数;T为参照上市公司得所得税税率;D为参照上市公司债务得市场价值;E为参照上市公司股权得市场价值。7。计算被评估企业所在行业受资本结构影响得B系数,即被评估企业所在行业得β系数。计算公式为: 式中:为被评估企业所在行业受资本结构影响得β系数;为被评估企业所在行业消除资本结构影响得β系数,为被评估企业所在行业得所得税税率,一般取25%;e(D÷E)为被评估企业所在行业得债务股本比。 二、线性回归法 利用线性回归法计算行业β系数得具体步骤如下: 1。计算市场整体收益率。同公式法 2.计算无风险报酬率.取各年度得一年定期存款利率作为无风险年报酬率,再将其转换为月报酬率。 3.计算市场风险溢价。市场风险溢价为“” . 4。计算各参照上市公司得收益率。同公式法。 5.计算市场风险溢价与各参照上市公司收益率得协方差。参照公式法下市场整体收益率与各参照上市公司收益率得协方差得计算 6.计算市场风险溢价得方差。参照公式法下市场整体收益率得方差计算。7.计算各参照上市公司受资本结构影响得β系数。同公式法. 8.计算各参照上市公司消除资本结构影响得β数。同公式法。 9.计算被评估企业所在行业受资本结构影响得β系数,即被评估企业所在行业得β系数.同公式法。 方法一、二摘自《财会月刊·全国优秀经济期刊》(长安大学经济与管理学院徐

渠系水利用系数、灌溉水利用系数计算方法

渠系水利用系数、灌溉水利用系数 近十几年来,随着水文业务范围的不断拓宽,区域水资源评价和水资源论证工作已成为水文部门的主要业务工作之一。而在水资源评价和论证工作中,往往要用到渠道、渠系和灌溉水利用系数,为使有关技术人员正确理解和掌握这一知识,现根据有关书籍及有关水资源评价细则中的规定,对渠道、渠系和灌溉水利用系数简介如下: 1、渠系的组成 完整的输配水灌溉渠道包括干渠、支渠、斗渠、农渠和毛渠。其中,农渠以上输配水量称为渠系水,农渠以下输配水量称为田间水。 2、渠道水利用系数 某渠道的出口流量(净流量)与入口流量(毛流量)的比值,称为渠道水利用系数。换言之,某渠道下断面的流量与上断面流量的比值,称为该段渠道的渠道水利用系数。也就是说,渠道水利用系数反映的是单一的某级渠道的输水损失,公式表示如下: η渠道=Q净/Q毛=Q下/Q上

3、渠系水利用系数 渠系水利用系数反映了从渠道到农渠的各级输配水渠道的输水损失,表示了整个渠系的水的利用率,其值等于同时工作的各级渠道的渠道水利用系数的乘积,公式表示如下: η渠系=η干渠×η支渠×η斗渠×η农渠 4、田间水利用系数 是指农渠以下(包括临时毛渠直至田间)的水的利用系数η田间。若在田间工程配套齐全,质量良好,灌水技术合理的情况下,田间水利用系数可达到0.90,而水田可达到0.90~0.95。 5、灌溉水利用系数 全灌区的灌溉水利用系数(η灌溉水)为田间所需的净水量与渠首引入水量之比,或等于渠系水利用系数与田间水利用系数的乘积。公式表示如下: η灌溉水=Q田间净/Q渠首引=η渠系水×η田间水

灌溉水有效利用系数(effective coefficient of irrigative water utilization) 灌溉期内,灌溉面积上不包括深层渗漏与田间流失的实际有效利用水量与渠道头进水总量之比,以η水表示。它由渠系水利用系数与田间水利用系数两部分组成。从末级固定渠道(一般为农渠)的渠尾进入毛渠的水量总和与渠首同期进入总量的比值,通常以η渠系表示,具有下列关系:η渠系=η干·η支·η斗·η农 式中:η干、η支...分别表示干渠、支渠...的渠道水利用系数。 计划湿润层内实际灌入的水量与进入毛渠的水量的比值称为田间水利用系数,通常以η田表示。灌溉水有效利用系数应等于渠系利用系数与田间水利用系数的乘积,即η水=η渠系·η田。 灌溉水利用系数(又称灌溉水利用率),是指灌入田间的有效水量与灌溉水源引进的总水量的比值。渠系水利用系数是指各级固定渠道水利用系数的乘积或末级固定渠道放出的总水量与渠首引进的总水量的比值。“十五”时期灌溉水利用系数从0.43提高到0.45。 灌溉水利用系数

X射线机暴光参数计算法

X射线机曝光参数计算法 基本参数确定 一、以透照厚度为准:单壁单影=T;双壁单影或双壁双影=2T 1、≤10mm时,1mm相当于5KV; 2、10~20mm时,1mm相当于6.2KV; 3、21~30 mm时,1mm相当于9KV; 4、31~40 mm时,1mm相当于12KV; 二、焦距 焦距每增加或者减少100mm,电压增大或者减少10KV。 三、时间 1分钟=25KV 三、X射线机曝光参数为(基数): 透照厚度T=8mm时,电压170KV,时间为1分钟。 四、X射线机焦点到窗口的距离 XXQ 2005 120 mm XXQ 2505 150 mm XXQ 3005 170 mm 五、计算方法 1、当透照厚度增加或者减少1 mm时,电压变化按(一)中各变化范围执行; 2、当焦距每增加或者减少100mm时,压变化按(二)中执行; 3、时间每增加或者减少1分钟,电压增加或者减少25KV; 例:计算φ219*14管焊口的曝光 第一步:确定所用X射线机型号,XXQ 2505或者XXQ 3005型; 第二步:计算焦距-----219+150=369 mm或者219+170=389 mm 第三步:确定焦距和电压变化量,我们一般以X射线机曝光正常基数为准,即600 mm;这里φ219*14的焦距为219+150=369 mm或者219+170=389 mm,比基数600 mm缩短231 mm或者211 mm,那么电压就应该减去23.1KV或者21.1KV。 第四步:计算透照厚度变化时,电压变化量,我们基本厚度是8 mm,现在透照厚度是 14×2=28 mm。这样比基本厚度8 mm增加20mm,根据(一)中4参照,电压补偿量为: 20 mm×8KV=160KV。因为基数是170KV,故正常曝光参数为:170KV+160KV-23.1KV=306.9KV 或者170KV+160KV-21.1KV=308.9KV,时间1分钟。 第五步:因为1分钟=25KV,在此基础上计算XXQ 2505或者XXQ 3005型的曝光参数: 1、XXQ 2505:用240KV拍片,其时间为(306.9 KV-240 KV)÷25KV/分钟=2.68 分钟;这里2.68分钟是在原来1分钟基础需要补偿的2.68分钟,故还应加上基础1分钟, 即正常曝光时间为2.68分钟+1分钟≈4分钟

冷负荷计算方法

冷负荷计算方法 发布时间:2016-01-30 冷负荷的定义是维持室内空气热湿参数在一定要求范围内时,在单位时间内需要从室内除去的热量,包括显热量和潜热量两部分。 1建筑物结构的蓄热特性决定了冷负荷与得热量之间的关系。瞬时得热中潜热得热和显热得热的对流成分立即构成瞬时冷负荷,而显热得热中的辐射成份则不能立即构成冷负荷,辐射热被室内的物体吸收和储存后,缓慢散发给室内空气。 2、空调负荷为保持建筑物的热湿环境,在某一时刻需向房间供应的冷量称为冷负荷。相反,为了补偿房间失热量需向房间供应的热量称为热负荷。 3、室内冷负荷主要有以下几方面的内容:照明散热、人体散热、室内用电设备散热、透过玻璃窗进入室内日照量、经玻璃窗的温差传热以及维护结构不稳定传热。

外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2·K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度;τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h;τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。(a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2·K。工程中用下式计算:

基尼系数及计算方法

基尼系数及计算方法 居民收入分配的差异程度,是当前人们所普遍关心的一个问题。收入分配差异的合理与否,一方面可以反映按劳分配原则的实现情况;另一方面是保障居民生活和社会稳定的重要条件。衡量收入差异状况最重要、最常用的指标是基尼系数(即吉尼系数)。 基尼系数(Gini coefficient)是20世纪初意大利经济学家基尼根据洛伦茨曲线提出的判断分配平等程度的指标(如下图),设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际收入分配曲线右下方的面积为B。并以A除以(A+B)的商表示不平等程度。这个数值被称为基尼系数或称洛伦茨系数。如果A为零,基尼系数为零,表示收入分配完全平等;如果B为零则系数为1,收入分配绝对不平等。该系数可在零和1之间取任何值。收入分配越是趋向平等,洛伦茨曲线的弧度越小,基尼系数也越小,反之,收入分配越是趋向不平等,洛伦茨曲线的弧度越大,那么基尼系数也越大。 洛伦茨曲线 图中,0M为45度线,在这条线上,每10%的人得到10%的收入,表明收入分配完全平等,称为绝对平等线。OPM表明收入分配极度不平等,全部收入集中在1个人手中,称为绝对不平等线。介于二线之间的实际收入分配曲线就是洛伦茨曲线。它表明:洛伦茨曲线与绝对平等线OM越接近,收入分配越平等;与绝对不平等线OPM越接近,收入分配越不平等。 实际应用中的计算公式是:

公式中:是按收入分组后各组的人口数占总人口数的比重;是按收入分组后,各组人口所拥有的收入占收入总额的比重;是从i=1到i的累计数,如,=Y1+Y2+Y3….+Yi。

计算基尼系数,可以用收入分组数据计算,也可用分户数据计算。但要注意的是,无论分组还是分户计算,均应先对数据按收入从低到高排序,分组计算时,一般应使分组的组距相等。用分组数据计算的基尼系数要明显小于分户数据的计算值,特别是当分组的组数不多时,差距更大。用分户数据计算基尼系数时,采用的计算指标不同,也会出现不同的结果。一般有两种计算方法,一种方法是按户总收入排序,按户计算基尼系数,此时,为每户收入占总收入的比例,为调查户数的倒数;另一种计算方法是按每户家庭的人均收入排序,此时,为每户人口占全部人口的比例,为本户人均收入占人均收入之和的比例。这两种计算方法,结果是有差异的,按人均收入计算的基尼系数要大于按户收入计算的基尼数据。在用基尼系数时进行不同地区、不同时期的收入差距比较时,应注意计算方法的一致性,不同计算方法得出的基尼系数是没有可比性的。 国际上通常用基尼系数来判定收入分配均等程度。基尼系数是界于0-1之间的数值,当基尼系数为0时,表示绝对平等;基尼系数越大,不均等程度越高;当基尼系数为1时,表示绝对不平等。市场经济国家衡量收入差距的一般标准为:基尼系数在0.2以下表示绝对平均;0.2-0.3之间表示比较平均;0.3-0.4之间表示较为合理;0.4-0.5之间表示差距较大; 0.5以上说明收入差距悬殊。例如:依据全国城市住户调查收入分组资料,计算出的基尼系数1978年为0.16,1988年为0.23,2000年为0.32,说明1978年我国城市居民个人收入差距不大,比较平均;1988年以后城市居民个人收入差距已经开始拉开,到2000年城市居民个人收入差距逐步拉大。 用基尼系数分析居民收入的差异,是一种比较普遍的方法。其特点:一是方法本身具有科学性,基尼系数的计算是将社会经济现象数学化了的办法,能从整体上反映居民集团内部收入分配的差异程度。二是基尼系数反映收入分配的差异程度精确、灵敏,可以反映差异程度细微的和连续的变化。三是在经济工作中可以作为一个综合经济参数纳入国家的计划管理和宏观调控之中。四是基尼系数在国际上应用广泛,便于在实际工作加强横向联系比较,学习和借鉴外地区和国外的经验。 推介一个简便易用的基尼系数计算公式 近年来,我国经济生活中,在国民经济整体快速发展的同时,不同行业、不同地区、不同个人之间的社会收入分配差距明显拉大,引起了社会各界人士的广泛关注,基尼系数也随之成为当前我国经济生活中最流行的经济学语词之一。 但是,对于如何计算基尼系数,目前国内经济学教科书鲜有介绍。就笔者手头所有的十几种经济学教科书来讲,绝大多数都只限于介绍定义,而没有具体计算公式。只有臧日宏编者《经济学》(中国农业大学出版社2002年7月第1版)和王健、修长柏主编《西方经济学》(中国农业大学出版社2004年10月第1版)这两种教科书给出了基尼系数的计算公式,但该公式推导过程相当复杂,理解记忆比较困难,实际计算烦琐。为此,笔者经反复思索,找到了一种简便易用的计算方法,并于笔者所著《经济学——入门与创新》(中国农业出版

灌溉水利用系数的计算方法

灌溉水利用系数的计算方法 灌溉水利用系数在水土平衡和渠道设计流量分析中使用。 一、用模式分析法计算渠道灌的灌溉水利用系数 1计算公式 (1)灌溉水利用系数:η=ηη 式中:η——渠系水利用系数,可用各级渠道水利用系数连 乘求得。 η——田间水利用系数。 (2)渠道水利用系数 在无实测资料时按下式计算: η=1- 土渠:= 净 衬砌渠:= 式中:——渠道单位长度水量损失率(%.km) L——渠道长度(km) K——土壤透水性系数,可从表3.1.9-1查得 m——土壤透水性指数,可从表3.1.9-1查得 ——衬砌渠道渗水修正系数,可从表3.1.9-3查得2 参数选择 (1)设计净流量: 1)干渠:Q净=q s A干=0.368 2.46=0.972m3/s

2)支渠:Q净=支=m3/s 3)斗渠:Q净=n Q农净=20.091=0.182 m3/s 4)农渠:Q净= 农==0.091 m3/s (2)渠道长度: 1)干渠:1条,长12.6km砼板防渗结构,灌溉面积2.64万亩。标准条田规格:长宽=700250=262.5亩拆合标准条田100块2)支渠:4条,总长7.6km,平均长1.9km,平均灌溉面积0.66万亩,拆和标准条田25块 3)斗渠:14条,总长21km,平均长1.5km,平均灌溉面积0.1886亩,拆和标准条田7块 4)农渠:100条,总长0.65km,平均长度0.65km (3)m、k、的选择 查表3.1.9-1沙壤土:K=3.4,m=0.5 查表3.1.9-3干渠砼板衬砌:=0.15-0.05,取=0.10 支渠浆砌石衬砌:=0.20-0.10取=0.15 3.渠道水利用系数计算 利用渠道净流量、渠道长度及选择的参数计算各渠道水利用系数,考虑到蒸发损失,管理损失及衬砌渠道在使用期防渗性能降低等因素,并结合现场调查,对计算值作适当调整作为采用值。

归一化系数的计算

在区域生态环境状况评价时,用到生态环境状况指数,其中关于归一化系数的问题,我有几点看法: 1、归一化系数适用于什么范围? 归一化系数,应该是对数据的标准化的一种方法,或者叫做对数据的无量纲化。就是把反应生态环境质量的各个数据通过数据的无量纲化,统一到同一个层面上,便于比较。这个 归一化系数起的就是这个作用(用到的标准化方法应该叫做最大值法标准化)。 对单个区域,如一个县,或者某个开发区、流域等没有办法用,只有针对几个县(区)、省、全国,一组数据,才可能有最大值、最小值。具有相对性,非绝对性。 2、全省、全国的数据,如何用? 在使用归一化系数时,不是必须用本省的归一化系数,归一化系数不是必须用全国或者全省的数据。如果能找到一系列的县域的数据,可以计算,几个县也可以弄出自己的系数。但一般情况下是运用本年度的全国的数据或者全省的数据,多年来生态环境状况指数是一个 考核的指数,这方面的数据是有统计的。 3、归一化系数是定值吗? 归一化系数是动态变化的,不是定值,随着时间、生态质量而变化。即是透过同一个时间段内的一系列数据算出来的。(比如2008年,全河北省的138个县的归一化系数) 4、A最大值,如何计算? 如几个县的生物丰度,(0.35 X林地面积+ 0.21 X草地面积+ 0.28 X水域湿地面积……)/全县面积,取最大的一个县的值。即比如县A、B、C、D、E、F的生物丰度分别是0.56、0.23、0.36、0.85、0.02、0.22,则最大值便是0.85,其归一化指数是100/0.85. 5、如果沿海发达地区,无论是评价一个县,还是多个县,应参考全国的数据?这个问题的回答是, 国家没有这方面的规定。 以我国某县为例、计尊英生态环境质量指数(EQTh各措标计算方法如下卄 L生物丰度摘数计倉方法" (1)通过卫星遙感解铎埶揚与屮国植被奘型数据叠加得出该县的甫林、常址阔叶抹、當母落叶阔叶j胶林、暮叶阔叶林、转叶林等五聊霖林类型的面Th见表b各瘵林獎型权重见表2,将表1和恚2中鼓据代入计算公式:袜林面秋=IX雨林常母阔叶林*0.5 X常址薜叶匍叶j妆林和3X豚叶阚叶林M 軒叶林,计算得出该县赚P、 林面申E箔9加曲?討

齿轮各参数计算方法

齿轮各参数计算方法 1、齿数Z 闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好,小一些为好,小齿轮的齿数可取为z1=20~40。开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使齿轮不致过小,故小齿轮不亦选用过多的齿数,一般可取z1=17~20。为使齿轮免于根切,对于α=20度的标准支持圆柱齿轮,应取z1≥17 2、模数m 齿距与齿数的乘积等于分度圆的周长,即pz=πd。为使d为有理数的条件是 p/π为有理数,称之为模数。即:m=p/π 模数m是决定齿轮尺寸的一个基本参数。齿数相同的齿轮模数大,则其尺寸也大。

3、分度圆直径d 齿轮的轮齿尺寸均以此圆为基准而加以确定,d=mz 4、齿顶圆直径da和齿根圆直径df 由齿顶高、齿根高计算公式可以推出齿顶圆直径和齿根圆直径的计算公式: da=d+2ha df=d-2hf =mz+2m=mz-2×1.25m =m(z+2)=m(z-2.5) 5、分度圆直径d 在齿轮计算中必须规定一个圆作为尺寸计算的基准圆,定义:直径为模数乘以齿数的乘积的圆。实际在齿轮中并不存在,只是一个定义上的圆。其直径和半径分别用d和r表示,值只和模数和齿数的乘积有关,模数为端面模数。与变位系数无关。标准齿轮中为槽宽和齿厚相等的那个圆(不考虑齿侧间隙)就为分度圆。标准齿轮传动中和节圆重合。但若是变位齿轮中,分度圆上齿槽和齿厚将不再相等。若为变位齿轮传动中高变位齿轮传动分度圆仍和节圆重合。但角变位的齿轮传动将分度圆和节圆分离。 6、压力角αrb=rcosα=1/2mzcosα 在两齿轮节圆相切点P处,两齿廓曲线的公法线(即齿廓的受力方向)与两节圆的公切线(即P点处的瞬时运动方向)所夹的锐角称为压力角,也称啮合角。对单个齿轮即为齿形角。标准齿轮的压力角一般为20”。在某些场合也有采用α=14.5°、15°、22.50°及25°等情况。

国家统计局标准折标煤系数计算方法

国家统计局标准折标煤系数计算方法 蒸汽折标媒系数并不是确定的值,一般按经验111kg/t~170kg/t都不会错 你说的情况可能前者是饱和蒸汽,后者是过热蒸汽吧,不过2674.5千焦/千克还是有点低 同时要注意蒸汽折标煤量应减去回收余热蒸汽的折标量 近年来,全球变暖已成为全世界最关心的环保问题,造成全球变暖的主要原因是大量的温室气体产生,而温室气体的主要组成部分就是二氧化碳(CO2),而二氧化碳的大量排放是现代人类的生产生活造成的,归根到底是大量使用各种化石能源(煤炭、石油、天然气)造成的,根据《京都议定书》的规定,各国纷纷制定了减排二氧化碳的计划。 通过节约化石能源和使用可再生能源,是减少二氧化碳排放的两个关键。在节能工作中,经常需要统计分析二氧化碳减排量的问题,现将网络收集的相关统计方法做一个简单整理,仅供参考。 1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约3.67吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=3.67)。 我们在查看减排二氧化碳的相关计算资料时,有些提到的是“减排二氧化碳量”(即CO2),有些提到的是“碳排放减少量”(以碳计,即C),因此,减排CO2与减排C,其结果是相差很大的。因此要分清楚作者对减排量的具体含义,它们之间是可以转换的,即减排1吨碳(液碳或固碳)就相当于减排3.67吨二氧化碳。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 发电厂按使用能源划分有几种类型:一是火力发电厂,利用燃烧燃料(煤、石油及其制品、天然气等)所得到的热能发电;二是水力发电厂,是将高处的河水通过导流引到下游形成落差推动水轮机旋转带动发电机发电;三是核能发电厂,利用原子反应堆中核燃料慢慢裂变所放出的热能产生蒸汽(代替了火力发电厂中的锅炉)驱动汽轮机再带动发电机旋转发电;四是风力发电场,利用风力吹动建造在塔顶上的大型桨叶旋转带动发电机发电称为风力发电,由数座、十数座甚至数十座风力发电机组成的发电场地称为风力发电场。

关于遮阳系数的说明

2.在玻璃幕墙行业,遮阳系数(shading coefficient)是指太阳辐射能量透过窗玻璃的量与透过相同面积3mm厚透明玻璃的量之比值。 1.遮阳系数所检测的是太阳辐射的全光谱能量。包括350nm~2500nm波段的紫外光、可见光和近红外光(国际通用),这些光射进入室内后都能间生热量。遮阳系数越小,进入室内的太阳光越少,能够产生的热量越小。遮阳系数低并不直接意味着可见光透过率也仰低,因为在保持可见光透过率不变时,降低近红外透过率也可以降低遮阳系数。 2.遮阳系数不公包括太阳光直接穿透玻璃进入室内的部分,还包括玻璃二次热传递的能量。玻璃本体会吸收一部分太阳光的能量,自身温度升高,此时玻璃会通过辐射和对流的方式向室内进行第二次热传递。例如某种类型的茶玻太阳光直接透射比为50%,而它的太阳能总透射比为63%,多出来的13%能就是茶玻吸收热量后向室内二次传递的部分,越是着色深易吸收热量的玻璃,二次传递的热量越多。 3.遮阳系数公是一个与3nm透明玻璃的比例值,不等于样品玻璃的太阳光总透射比。例如当玻璃的遮阳系数为0.5时,不能认为此块玻璃能让50%的太阳辐射热量进入室内,应理解为此玻璃能透过的太阳热量是标准3nm白玻透过热量的50%。当玻璃的遮阳系数为1时,表示此样品的太阳光总航向比等于标准3nm白玻的太阳光总航向比。遮阳系数为0时,表示样品既不能直接透过太阳光,又不能吸收后二次传递太阳光能量。 4.遮阳系数控制的热量与传热系数控制的热量不是同一种热量。后者是指由温度差引起的热量传递(但存盘U值了太阳辐射的影响),前者主要针对的是太阳辐射。 5.遮阳系数的检测与计算 最常使用的检测玻璃遮阳系数的方法是通过实验室测量光谱数据进行计算得出。我国目前依据的标准是GB/T268,标准是ISO15099和ISO9050。这种方法也是最准 确的,但很难测量门窗遮阳系数和综合遮阳系数,还是要通过计算得出。现在已经出现了式的利用自然太阳光进行户外或现场测试的大型装,能直接测量门窗和综合遮阳 系数,但必须在晴天使用,测试周期长。 在使用GB/T2680标准确定玻璃遮阳系数时,必须注意几个问题: 1.作为基准使用的3nm透明玻璃太阳能总航向比取值为0.889,而国际上一般采用0.87。这意味着同样一块玻璃国外提供的数据会和国内不一样,例如一块太阳能总 航向比为0.82的玻璃,按国外标准计算遮阳系数为0.94,按国内标准计算为0.92。因此在精确使用遮阳系数数据时,要清楚采用的是哪一个标准。 2.此标准中需要测量的光谱范围是从350nm~1800nm,而国际上采用的是300nm~2500nm,后者是公认的太阳标准范围。造成此差别的原因是早期国内的分光光度计覆盖 波长范围窄,而使用这两种波长范围计算出的遮阳系数会有轻微的差异。 3.GB/T260中使用的表述词语是"遮蔽系数",缩写为Se,而不是遮阳系数,缩写为SC。二者在实际使用时简单看作是相同的,现在人们更习惯使用遮阳系数一诩。 如果特别标出是"遮蔽系数"时,应仅限于使用GB/T2680中的标准玻璃基数0.889和 350nm~1800nm光谱范围得出的数值。 玻璃遮阳系数对建筑节能的影响 现在建筑界越来越深刻地认识到了玻璃遮阳系数的重要性,也进行了大量的实验研究来分析对建筑节能的影响。在建筑节能上确定合适的遮阳系数时,需要考虑的

特性系数计算方法

选定系统中最不利工作作用面积,如(图3-4-1)选择最不利管径标号如图。 (1) 计算最不利喷头(喷头0)的喷水量: 使用公式为: H K q 10= (3-38) q ——计算喷头喷水量,(L/min ) K —— 喷头流量系数,标准喷头K=80; H ——喷头工作压力,MPa ; s L L q /94.0min /4.5605.010800==??= (2) 管道沿程和局部损失: 设计流速:钢管流速一般不大于5m/s,配水干管一般不超过3m/s ,常用1~2m/s 。校核流速之按照下列公式就算: Q K v c = (3-39) 式中 v ——流速 (m/s ) c K ——计算管段流速系数 (m/s ),可查表; Q ——计算管段流量 (L/s ) 表3-15 流速系数表 (3)管道沿程水头损失按照下列公式计算: 2 A L Q h = (3-40) 式中 h ——沿程水头损失,(O mH 2) A ——管道比阻,可查表; L ——计算管段长度,(m ) Q ——计算管段流量,(L/s )

(4)计算1~0的扬程水头损失 管段1~0的管径使用DN25,流速为 s m Q K v c /79.195.0883.11=?== 点“1”到点0的水头损失为: m P a O mH ALQ h 0168.0678.1033 .1)6.03(4367.022 0~~12 ==?+?== (5)计算喷头1的出水量: 喷头1的工作压力为: m P a h H H 074.0014.006.00~~101=+=+= 1号喷头喷水量为: s L L H K q /07.1min /2.64074.010801011==??=?= 依次类推到喷头4 的节点(喷头)流量。 (6)特性系数的推导 图3-10 特性系数计算草 使用沿程损失公式计算: 452 4~54~54~54~5H H Q L A h -=?= (1) e e e e e H H Q L A h -=?=62~6~6~6~6 (2) 用(1)/(2)得: 4 5e 62 4 ~52~6H H H H Q Q e --= 4 5e 64 ~5~6H H H H Q Q e --=

标准化计算题

标准化经济效果:实现标准化获得的有用效果与实现标准化所需的劳动耗费的比较。 经济效果= 有用效果/ 劳动耗费(1) 经济效果= 有用效果—劳动耗费(2) 标准化投资收益率是贯彻某项标准所获得的年节约与所需的投资之比 R k =J/K 式中:R k——标准化投资收益率 J——标准化后的节约额(元/年),为有用效果; K——标准化投资费用,为劳动耗费。 表示每一元钱的投资在标准有效期内可获得的节约量。显然R k越大越好。 标准化投资回收期是标准化所需投资与标准化所获得的节约之比。说明标准化投资需多长时间才能用它所获得节约额上收回来,即取得效果的速度。T k越小(越短)越好。 T k = K/J 式中:T k——标准化投资回收期(年)。 如果标准化投资可用当年的节约额收回,则投资回收期可用月、日表示,即: T k = (K/J)×12(月) T k = (K/J)×360(日) ?标准有效期内的总经济效益是各年度标准化节约总和扣除标准化投资后的差额。反映了标准化经济效果的绝对值,显然差额的正值越大,说明标准化经济效益越好,但是它不能用于不同行业的标准化经济效果的比较。 ?X∑=∑J i—K (i=1,2,…,t) ?式中:X∑——标准有效期内的总经济效益(元); ?t ——标准有效期; ?J i——某一年的标准化年节约额(元/年); ?∑J i——标准有效期t年内,各年度标准化节约总和。 ?标准有效期内年度经济效益是年度标准化节约额减去折算为一年的标准化投资的差值。显然差额的正值越大,说明标准化经济效益越好。 ?X n = J—αK ?式中:X n——标准有效期内年度经济效益; ?α——标准有效期内,标准化投资折算为一年的费用系数。 ?α=1/t,如果标准有效期t为5年,每平均摊费用为投资的1/5,即α为 0.2。

电机参数计算方法

我设定的自制马达规格如左:使用7.4V 1600mA锂电池,耗电在7A以内(马达功率约50W,电池放电系数约4.4C),采用直驱或减速皆可。 以上述条件,无刷马达应采用△接线铜损较小(因线电流=√3*相电流,故马达内线圈电流会较小,以相同的线径来说,铜损自然较小)。 我是采用AWG #28号线(直径0.32mm),每相每极绕21圈,采用△接线,使用7.4V 1600mA 锂电池。 以直驱测试,其数据如下: 螺旋桨测量转数(RPM) 测量电池电流(A) 测量马达线电流(A) 换算马达相电流(A) 计算功率(W) 4040 15000 6.2A 3.6A 2.1A 45W 5025 13000 7.4A 4.3A 2.5A 55W 以减速组测试(58/18=3.2),其数据如下: 螺旋桨测量螺旋桨转数(RPM) 换算马达转速(RPM) 测量电池电流(A) 计算功率(W) 7060 6250 20000 4.2A 31W 8060 5500 17600 6.2A 46W 9070 5000 16000 7.4A 55W 无刷马达/有碳刷马达效能计算 扭力常数: Kt=Kb x 1.345 Kt=1345 / kv 消耗电流: I = [V-(Kb x kRPM)] / Rm I = [V-(RPM / kv)] / Rm 输出扭力: J = (Kt x I) - (Kt x Inl) 每分钟转速: kRPM = (V - RmI) / Kb kRPM = (V - RmI) x kv / 1000 输出功率: Po = (J x RPM) / 1345 消耗功率: Pi = V x I 马达效率: Eff = (Po / Pi) x 100 最高效率电流: Ie max = Sqrt [(V x Inl) / Rm] 符号定义: Eff = 效率 I = 消耗电流值 Iemax=发挥最高效率之电流量 Inl = 无负载量测电流值 J = 扭力(oz-in) Kb = 电压常数(Volt / 1000 RPM) Kt = 扭力常数(oz-In / A) Pi = 消耗功率(Watts) Po = 机械输出功率(Watts) Rm = 马达内阻 RPM = 每分钟转速 V = 电压