2011年电磁场与电磁波实验指导书

2011年电磁场与电磁波实验指导书
2011年电磁场与电磁波实验指导书

东北林业大学

《电磁场与电磁波》实验指导书王琢乔世坤编写

2011年5月

电磁场与电磁波实验介绍

《电磁场与电磁波》课程属于通信工程专业基础课之一,其实验课程的主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过实验环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前实验内容主要利用MATLAB仿真软件进行相关的实验,通过实验将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。

本课程实验包含两个实验:

实验一直线电荷与共面圆弧电荷之间的相互作用力分析

实验二理想介质中均匀平面电磁波的传播

总实验时数为4学时,在实施过程中,对不同层次、不同对象,可灵活安排,也可以安排一些内容作为示教,也可依据教学大纲和理论教学情况合理安排。

实验一 直线电荷与共面圆弧电荷之间的相互作用力分析

一、实验目的

1、掌握MATLAB 仿真的基本流程与步骤;

2、掌握静电场的基本分析方法与基本性质;

3、理解矢量积分法在静电场分析中的应用;

4、了解数值分析手段在电磁场分析中的应用。

二、实验原理

如图所示,一无限长直线电荷旁边有一共面的圆弧,直线电荷的线密度为λ(0λ>),圆弧均匀带电q (0q >),半径为a ,张角为α,弧心O 到直线的距离为d 。分析圆弧所受的电场力。

分析与讨论:

基本分析过程: 圆弧长为2C a α=,电荷的线密度为'/q c λ=,在圆弧上取一长为dl ad θ=弧元,带电量为d d d 2q q l λθα'==

,直线电荷在弧元处产生的电场强度方向沿着x 轴正向,大小为022π()cos k E d x d a λ

λεθ

==++ 电荷元所受的电场力为:d d d (cos )k q F E q d a λθαθ==

+,

圆弧所受的电场力为:0

2d cos k q F d a α

λθαθ=+? (1)如果0d = ,则02d cos k q F a αλθαθ

=?,根据积分公式可得21sin ln cos k q F a λααα+= 但/2a π≠,否则圆弧接触直线电荷。

(2)如果d a =,则2002d 2d 1cos 2cos (/2)

k q k q F a a ααλθλθαθαθ==+??积分得2tan 2k q F a λαα= 但a π≠,否则圆弧接触直线电荷。

(3)如果d a =-,则积分得到F →-∞,这是圆弧与直线电荷接触的情况。d a =-的距离

称为奇点。

以上仅为简单的分析,讨论了几种特殊情况,下面来分析一般情况:

2d cos k q

F d a α

λθαθ=+?

设d ))1cos 22S k θθθθ===+? 取/k a d =,可得圆弧所受的电场力:

)2F α=

或)2F α= 当d a <-时,圆弧所受力方向向左,上面两式都要取负号。

下面开始讨论

①当0d =时,可得:

421tan(/2)21sin arctanh(tan )ln[]ln 21tan(/2)cos k q k q k q F a a a λαλαλαααααα

++===- ②当d a →时,可得:

2)tan 22

k q F a αλαα= ③当d a >>

1≈则: 4122k q k q F d d

λαλα≈= 可见:在很远的地方,不论什么样的圆弧电荷都可以当作点电荷。

④当cos d a α→-时,这是圆弧上下两端接触直线电荷的情况,可得:

414)arctanh(1)sin 2sin k q

k q F a a λαλαααα

→=→∞ ⑤cos a d a α-<<-当时,圆弧跨在直线电荷的两边(相互绝缘),圆弧所受直线电荷的作

用力仍然由上面两式计算。

⑥当0d a →--时,圆弧B 点从左边接近直线,可得(要加负号):

)2F α=→→-∞ ⑦当0d a →-+时,圆弧跨在直线电荷的两边,其B 点从右边接近直线,

设2x α=

则x →∞。由于arctanh 1x x →,可得:

4arctanh()2()tan(/2)tan(/2)

k q

x x k q F a d a λλαααα=→- 可知:在d a =-的两边,力的左右极限并不相等。

再讨论:

①当0α→时,圆弧退化为一点,可得:

F → 这正是点电荷在直线电荷的电场中所受的电场力。

②当/2απ=时,可得:

F = 这是半圆形电荷所受的电场力。当d a →时,可得:4πk q F a λ→

③当απ=

时,可得:F =

如果d a →±,圆形电荷的边缘就接近直线电荷,则F →∞; 如果d a <,圆形电荷就跨过直线电荷(相互绝缘),则0F =。

三、实验内容

1、绘制对于不同的圆弧,电场力与距离之间的变化规律示意图。(可参考下图)

2、结合所绘制的示意图,分析电场力与距离之间的变化规律。

四、实验步骤

1、推导直线电荷与共面圆弧电荷之间的相互作用力公式。

2、详细讨论圆弧的大小和两者之间的距离与电场力之间的关系。

3、取圆弧的角度为参数,显示力与两者之间距离的曲线族。

4、结合曲线族分析作用力关系。

五、实验仪器

1、计算机一台

2、MATLAB仿真软件一套

六、实验报告

1、写出仿真程序源代码。

2、对于不同的圆弧,电场力与距离之间的变化规律示意图。

(要在图中绘制出姓名与学号)

3、分析示意图总结电场力与距离之间的变化规律。

七、参考代码:

%均匀带电圆弧在直线电荷的电场中所受的力

clear %清除变量

dm=4; %最大距离

d=linspace(-dm,dm,200); %距离向量

alpha=0:60:180; %圆弧半张角向量

a=alpha*pi/180+eps; %化为弧度

n=length(a); %角度个数

[A,D]=meshgrid(a,d); %化为矩阵

F=sign(D+1)*2./A./sqrt(D.^2-1).*atan(sqrt((D-1)./(D+1)).*tan(A/2));%计算电场力

%F=sign(D-1)*2./A./sqrt(D.^2-1).*atan(sqrt((D-1)./(D+1)).*tan(A/2));%计算电场力

%F=sign(D+1)*2./A./sqrt(1-D.^2).*atanh(sqrt((1-D)./(1+D)).*tan(A/2));%计算电场力(同上)

figure %创建图形窗口

%plot(d,F) %画电场力

plot(d,F(:,1),d,F(:,2),'--',d,F(:,3),'-.',d,F(:,4),':','LineWidth',2)%画电场力

%plot(d,F(:,1),'o-',d,F(:,2),'d-',d,F(:,3),'s-',d,F(:,4),'^-')%画电场力

grid on %加网格

leg=[repmat('2\it\alpha\rm=',n,1),num2str(2*alpha'),repmat('\circ',n,1)];%图例字符串legend(leg,4) %图例

axis([-dm,dm,-3,3]) %曲线范围

fs=16; %字体大小

xlabel('\itd/a','FontSize',fs) %标记横坐标

ylabel('\itF/F\rm_0','FontSize',fs) %标记纵坐标

title('均匀带电圆弧在直线电荷的电场中所受的电场力','FontSize',fs)%标题

text(-dm,0,'\itF\rm_0=2\itk\lambdaq/a','FontSize',fs)%标记力的单位

f=1./a./tan(a/2); %圆弧跨直线电荷的最小作用力

hold on %保持图像

plot(-1,f,'o') %画圈

pause %暂停

syms x k %定义符号变量

y=1/(1+k*cos(x)); %形成符号函数

% y=sym('1/(1+k*cos(x))'); %形成符号函数

f=int(y) %符号积分

F=subs(f,{x,k},{A,1./D})./D./A; %替换数值

% F=subs(f,{'x','k'},{A,1./D})./D./A; %替换数值(同上)

plot(d,F,'.') %重画力的曲线

实验二 理想介质中均匀平面电磁波的传播

一、实验目的

1、掌握理想介质中的波动方程;

2、理解理想介质中电场、磁场、坡印亭矢量之间的关系;

3、掌握理想介质中均匀平面波的性质;

4、理解平面电磁波的传播过程。

二、实验原理

由麦克斯韦方程组可知:变化的电场和变化的磁场相互激发,所形成的电磁波在真空中以光速传播;理想介质中的均匀平面电磁波是横波,电场方向和磁场方向垂直于波的传播方向,两者也相互垂直,如下图所示,E 和H 与传播速度方向c 呈右手螺旋关系。

根据麦克斯韦方程组,可推导理想介质中均匀平面电磁波的波动方程:

220022200200E E t H H t εμεμ???-=???????-=???

u v u v u u v u u v 假设其中电场为线极化方式,并且电磁波沿x 轴方向,则可得:

22000022()()E H H E x x t t x t

μμεμ??????=-=-=?????? 同理可得220022H H x t

εμ??=??,以上两式都是波动方程。

电场和磁场的传播速度,即电磁波的传播速度为:81/310m/s c =≈?由此可见:电磁波的传播速度等于光速,理论值与实验值十分吻合,为光的电磁波理论提供了一个重要依据。 由波动方程:22002222002

2E E x t H H

x t εμεμ???=????????=???? 平面电磁波的电场强度和磁场强度的频率和相位相同,两个波动方程最简单的解为:

00cos[()]cos[()]x E E t c x H H t c ω?ω??=-+????=-+??

其中,0E 是电场强度振幅,0H 是磁场强度振幅,ω是电磁波的圆频率,?是初相。 两式代入公式:0E H x t

μ??=-?? 可得00E cB =。两边同乘以余弦函数,可得E cB =,平面电磁波的电场强度与磁感应强度(磁场强度)成正比。

三、实验内容

1、推导理想介质中的波动方程。

2、绘制理想介质中电场、磁场、坡印亭矢量之间的关系示意图。

3、动画显示平面电磁波的传播过程。

4、分析理想介质中均匀平面波的性质。

四、实验步骤

1、理论上推导理想介质中的波动方程。

2、假设电场极化方向为y 轴方向,绘制理想介质中电场示意图。

3、假设波的传播方向沿x 轴方向,绘制电场、磁场、坡印亭矢量之间的关系示意图。

4、动画显示平面电磁波的传播过程。

五、实验仪器

1、计算机 一台

2、MATLAB 仿真软件 一套 六、实验报告

1、写出仿真程序源代码。

2、动画显示平面电磁波的传播过程,抓取不同时刻四幅以上示意图。

(要在图中绘制出姓名与学号)

3、分析理想介质中均匀平面波的性质。

七、参考代码:

%平面简谐电磁波的传播

clear %清除变量

m=3; %波的个数

x=(0:0.01:1)*m; %位置向量(波长倍数)

figure %创建图形窗口

grid on %加网格

box on %加框架

axis([0,m,-1,1,-1,1]) %坐标范围

fs=16; %字体大小

title('平面简谐电磁波的传播','FontSize',fs)%标题

xlabel('\itx/\it\lambda','FontSize',fs)%x标签

ylabel('\itE/E\rm_0','FontSize',fs) %y标签

zlabel('\itH/H\rm_0','FontSize',fs) %z标签

e=zeros(size(x)); %零向量

hold on %保持图像

he=plot(x,e,'LineWidth',2); %电场强度曲线的句柄

hh=plot3(x,e,e,'LineWidth',2); %磁场强度曲线的句柄

hes=stem(x,e,'r.'); %电场强度杆图的句柄

hhs=stem3(x,e,e,'g.'); %磁场强度杆图的句柄

pause %暂停

n=length(x); %坐标向量长度

i=1; %起点下标

while 1 %无限循环

if get(gcf,'CurrentCharacter')==char(27) break,end%按ESC键退出

if i>n %如果波传播到最右边

e=[e(end),e(1:end-1)]; %最后一个元素移到第一个

else %否则

e=[sin(2*pi*x(i)),e(1:end-1)]; %插入第一个元素,其他后移

end %结束条件

set(he,'YData',e) %设置电场纵坐标

set(hh,'ZData',e) %设置磁场高坐标(磁场与电场同步) set(hes,'YData',e) %设置电场杆图

set(hhs,'ZData',e) %设置磁场杆图

drawnow %更新屏幕

pause(0.02) %延时

i=i+1; %下一个点的下标

end %结束循环

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 00 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

3 静电场基本知识点 (1)基本方程 00 22=?==?- =?=?=??=?=?????A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电 位方程(注意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计 算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 :

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )(???????? ?????? ???? ??ρ 本构关系: E J H B E D ? ???? ?σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000?????????????ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-??????????? ???((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0)0 )(0 )==-?==-?==-?==-?????????? ???((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ ???????? 本构关系: E D ? ?ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : ρ s 球对称 轴对称 面对称

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波课程知识点总结

电磁场与电磁波课程知识点总 结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电磁场与电磁波课程知识点总结 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ω e =εE 2/2 或者电容(C=Q/φ)。 (3)典型问题 导体球(包括实心球、空心球、多层介质)的电场、电位计算; 长直导体柱的电场、电位计算; 平行导体板(包括双导体板、单导体板)的电场、电位计算; 电荷导线环的电场、电位计算; 电容和能量的计算。 例: a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电磁场与电磁波课程知识点汇总和公式

电磁场与电磁波课程知识点汇总和公式

————————————————————————————————作者:————————————————————————————————日期:

电磁场与电磁波课程知识点总结与主要公式 1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组 ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== (2)静态场时的麦克斯韦方程组(场与时间t 无关) ????=?=??=?=??=?=??=?=??s s l l s d B B Q s d D D l d E E I l d H J H 0 000 ρ 2 边界条件 (1)一般情况的边界条件 n n n sT t t s n s n n s n t t n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210 )())(0 )==-?=-=-?=-=-?==-? ((ρρ (2)介质界面边界条件(ρs = 0 J s = 0) n n n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210 )(0 )0 )(0 )==-?==-?==-?==-? ((

(1)基本方程 00 2 2 =?==?- =?=?=??=?=??? ??A A p s l l d E Q s d D D l d E E ???ε ρ ?ρ 本构关系: E D ε= (2)解题思路 ● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注 意边界条件的使用)。 ● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能 量ωe =εE 2/2或者电容(C=Q/φ)。 (3)典型问题 ● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算; ● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。 例 : a b ρ r ε ρs r S a b ε q l 球对称 轴对称 面对称

电磁场与电磁波实验报告

实验一 静电场仿真 1.实验目的 建立静电场中电场及电位空间分布的直观概念。 2.实验仪器 计算机一台 3.基本原理 当电荷的电荷量及其位置均不随时间变化时,电场也就不随时间变化,这种电场称为静电场。 点电荷q 在无限大真空中产生的电场强度E 的数学表达式为 204q E r r πε= (r 是单位向量) (1-1) 真空中点电荷产生的电位为 04q r ?πε= (1-2) 其中,电场强度是矢量,电位是标量,所以,无数点电荷产生的电场强度和电位是不一样的,电场强度为 1221014n i n i i i q E E E E r r πε==+++=∑ (i r 是单位向量)(1-3) 电位为 121014n i n i i q r ????πε==+++=∑ (1-4) 本章模拟的就是基本的电位图形。 4.实验内容及步骤 (1) 点电荷静电场仿真 题目:真空中有一个点电荷-q ,求其电场分布图。

程序1: 负点电荷电场示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; E=(-q./m1).*r; surfc(x,y,E);

负点电荷电势示意图 clear [x,y]=meshgrid(-10:1.2:10); E0=8.85e-12; q=1.6*10^(-19); r=[]; r=sqrt(x.^2+y.^2+1.0*10^(-10)) m=4*pi*E0*r; m1=4*pi*E0*r.^2; z=-q./m1 surfc(x,y,z); xlabel('x','fontsize',16) ylabel('y','fontsize',16) title('负点电荷电势示意图','fontsize',10)

哈工大电磁场与电磁波课程总结

电磁场与电磁波课程总结 时代背景 麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样。它揭示出电磁相互作用的完美统一,而这个理论被广泛地应用到技术领域。 1831年,法拉第发现了电磁感应现象,揭示了电与磁之间的重要联系,为电磁场完整方程组的建立打下了基础。截止到1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培-毕奥-萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。场是一种看不见摸不着而又确实存在的东西,它可以用来描述空间中的物体分布情况,进而用空间函数来表征。“场”概念的提出,使得人们从牛顿力学的束缚中摆脱出来,从而对微观以及高速状态等人类无法用肉眼观测的世界,有了更加深入的认识。1864年,麦克斯韦集以往电磁学研究之大成,创立了电磁场的完整方程组。1868年,麦克斯韦发表了《关于光的电磁理论》这篇短小而重要的论文,明确地将光概括到电磁理论中,创立了“光的电磁波学说”。这样,原来相互独立发展的电、磁和光就被巧妙地统一在电磁场这一优美而严整的理论体系中,实现了物理学的又一次大综合。 德国物理学家赫兹深入研究了麦克斯韦电磁场理论,决定用实验来验证它。通过多年的实验探索,于1886年首先发现了“电磁共振”现象,紧接着在1888年发表了《论动电效应的传播速度》一文,以确凿的实验事实证实了麦克斯韦关于电磁波的预言和光的电磁理论的正确性,到此,麦克斯

电磁场与电磁波实验报告 2

电磁场与电磁波实验报告

实验一 电磁场参量的测量 一、 实验目的 1、 在学习均匀平面电磁波特性的基础上,观察电磁波传播特性互相垂直。 2、 熟悉并利用相干波原理,测定自由空间内电磁波波长λ,并确定电磁波 的相位常数β和波速υ。 二、 实验原理 两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反) 方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λ πβ2=,βωλν==f 得到电磁波的主要参量:β和ν等。 本实验采取了如下的实验装置 设入射波为φj i i e E E -=0,当入射波以入射角1θ向介质板斜投射时,则在 分界面上产生反射波r E 和折射波t E 。设介质板的反射系数为R ,由空气进入介质板的折射系数为0T ,由介质板进入空气的折射系数为c T ,另外,可动板 2r P 和固定板1r P 都是金属板,其电场反射系数都为-1。在一次近似的条件下, 接收喇叭处的相干波分别为1001Φ--=j i c r e E T RT E ,2002Φ--=j i c r e E T RT E

这里 ()13112r r r L L L ββφ=+=;()()231322222L L L L L L r r r r βββφ=+?+=+=; 其中12L L L -=?。 又因为1L 为定值,2L 则随可动板位移而变化。当2r P 移动L ?值,使3r P 有零指示输出时,必有1r E 与2r E 反相。故可采用改变2r P 的位置,使3r P 输出最大或零指示重复出现。从而测出电磁波的波长λ和相位常数β。下面用数学式来表达测定波长的关系式。 在3r P 处的相干波合成为()210021φφj j i c r r r e e E T RT E E E --+-=+= 或写成 () ?? ? ??+-?Φ-=200212cos 2φφj i c r e E T RT E (1-2) 式中L ?=-=?Φβφφ221 为了测量准确,一般采用3r P 零指示法,即02cos =?φ 或 π)12(+=?Φn ,n=0,1,2...... 这里n 表示相干波合成驻波场的波节点(0=r E )数。同时,除n=0以外的n 值,又表示相干波合成驻波的半波长数。故把n=0时0=r E 驻波节点为参考节点的位置0L 又因 L ??? ? ??=?λπφ22 (1-3) 故 ()L n ??? ? ??=+λππ2212 或 λ)12(4+=?n L (1-4) 由(1-4)式可知,只要确定驻波节点位置及波节数,就可以确定波长的 值。当n=0的节点处0L 作为第一个波节点,对其他N 值则有: n=1,()λ24401=-=?L L L ,对应第二个波节点,或第一个半波长数。 n=1,()λ24412=-=?L L L ,对应第三个波节点,或第二个半波长数。

北邮电磁场与电磁波演示试验

. 频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行: '. .

GSM900下行: '. . CDMA下行:

3G下行: '. . 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G

北邮电磁场与电磁波实验报告

信息与通信工程学院 电磁场与电磁波实验报告 题目:校园信号场强特性的研究 姓名班级学号序号薛钦予2011210496 201121049621

一、实验目的 1.掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2.研究校园内各种不同环境下阴影衰落的分布规律; 3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5.研究建筑物穿透损耗与建筑材料的关系。 二、实验原理 1、电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。 2、尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为: ()[]()() PL d dB PL d n d d =+(式1) 010log/0 即平均接收功率为: ()[][]()()()[]() =--=- d dBm Pt dBm PL d n d d d dBm n d d Pr010log/0Pr010log/0 (式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对

《电磁场与电磁波》课程教学大纲-通信工程

《电磁场与电磁波》教学大纲 、课程基本信息 课程名称:电磁场与电磁波 课程编码:58083004 课程类别:专业教育必修 适用专业:通信工程 开课学期:3-3 课程学时:总学时:64学时;其中理论48学时,实验16学时。 课程学分:4 先修课程:大学物理、模拟电子线路、数字逻辑电路 并修课程: 课程简介:《电磁场与电磁波》课程是高等学校通信工程等电子科学与技术类各专业本科生必修的一门技术基础课。电磁场与电磁波是通信技术的理论基础,是通信工程专业本科学生的知识结构中重要组成部分。本课程包括电磁场与电磁波两大部分。电磁场部分是在《电磁学》课程的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念,在总结基本实验定律的基础上给出电磁场的基本规律,研究静态场的解题方法。电磁波部分主要是介绍有关电磁波在各种介质中的传播规律及天线的基本理论。二、课程教育目标 本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。 培养学生正确的思维方法和分析问题的能力,使学生学会用”场"的观点去观察、分析和计算一些简单、典型的场的问题。其教育目标主要表在以下三方面: 1、内容方面,应使学生牢固掌握矢量运算,梯度、散度和旋度概念,高斯公式和斯托克司公式; 掌握恒定和时变电磁场的麦克斯韦方程组、泊松方程、电磁波的波动方程等;掌握分离变量法、镜 像法、有有界空间中电磁波的求解方法等;理解电磁场的矢势¦和标势、规范变换、规范不变性、库仑规范、洛仑兹规范、时谐平面电磁波、推迟势、电磁辐射、截止频率和谐振频率等概念。 2、能力方面,应使学生学会和掌握如何通过数学方法求解一些基本和实际问题,对结果给予物理解释的科学研究方法;使学生在运算能力和抽象思维能力方面受到初步而又严格的训练;培养学生解决和研究问题的能力,培养学生严谨的科学学风。 3、方法方面,着重物理概念、基本规律和基本问题的解释和阐述,注意本课程与大学物理电磁学的衔接,以及与后继课程联系,注重解决常见基本问题和实际问题。在帮助学生打下坚实基础的前提下,坚持教学内容与现代科学技术接轨,使现代科学技术的成果渗透到本课程内容之中,提高学生的兴趣,拓宽

电磁场与电磁波实验报告

中南大学信息科学与工程学院 课题名称: 电磁场与电磁波实验报告 信息科学与工程学院 通信工程1201 学 班 学 姓 院: 级: 号: 名: 0909120927 苏文强 指导老师: 陈宁

实验一电磁波反射实验 一实验目的 1. 掌握微波分光仪的基本使用方法; 2. 了解3cm 信号源的产生、传输及基本特性; 3. 验证电磁波反射定律。 二预习内容 电磁波的反射定律 三实验原理 微波与其它波段的无线电波相比具有:波长极短,频率很高,振荡周期极短 的特点。微波传输具有似光特性,其传播为直线传播。电磁波在传播过程中如遇到障碍物,必定要发生反射。本实验以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即:反射电磁波位于入射电磁波和通过入射点的法线所决定的平面上反射电磁波和入射电磁波分别位于法线两侧;反射角θr 等于入射角θi。原理如图1.1所示。

图1.1 四实验内容与步骤 1. 调整微波分光仪的两喇叭口面使其互相正对,它们各自的轴线应 在一条直线上,指示两喇叭位置的指针分别指于工作平台的0-180 刻度处。将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。 2. 将反射全属板放到支座上,应使金属板平面与支座下面的小圆盘 上的90-90 这对刻线一致,这时小平台上的0 刻度就与金属板的法线方向一致。将金属板与发射、接收喇叭锁定,以保证实验稳定可靠。 3. 打开信号源开关,将三厘米固态信号源设置在:“电压”和“等幅”档。 4. 调节可变衰减器,使得活动臂上微安表的读数为满量程的80%左右。

《电磁场与电磁波课程》教学大纲

《电磁场与电磁波课程》教学大纲 课程编号: 一、课程性质、目的及开课对象 (一)课程性质:专业课 (二)目的:通过本课程的学习,全面地,系统地掌握宏观电磁场的基本性质和基本规律,及其应用方面的基本知识及技能。使学生对工程中的电磁现象与电磁过程,能应用场的观点进行初步分析;对一些简单的问题能进行计算;为学习专业或进一步研究电磁场问题,准备必要的理论基础。 (三)开课对象:物理学院电子信息工程专业本科生 二、教学方法与考核方式 (一)教学方法:以讲授为主,多媒体课件为辅。 (二)考核方式:考试 三、学时数分配 总学时:54学时,大纲中带*号的内容不是必讲的,未计入学时之内。 四、教学内容与学时 第一章矢量分析(7学时) 【主要内容】: 1.1 矢量代数 1.2 三种常用的正交坐标系 1.3标量场的梯度 1.4矢量场的通量与散度 1.5矢量场的环流与旋度 1.6无旋场与无散场 1.7拉普拉斯运算与格林定理 1.8亥姆霍兹定理 重点难点:矢量场的散度和旋度、标量场的梯度;散度、旋度和梯度的计算公式和方法;散度定理和斯托克斯定理;拉普拉斯运算与格林定理及亥姆霍兹定理。 第二章电磁场的基本规律(11学时) 【主要内容】:

2.1电荷守恒定律 2.2真空中静电场的基本规律 2.3真空中恒定磁场的基本规律 2.4媒质的电磁特性 2.5电磁感应定律和位移电流 2.6麦克斯韦方程组 2.7电磁场的边界条件 重点难点:电流连续性方程;库仑定律,磁感应强度,安培力定律;麦克斯韦方程组,电磁场的边界条件。 第三章静态电磁场及其边值问题的求解(11学时) 【主要内容】: 3.1静电场分析 3.2导电媒质中的恒定电场分析 3.3恒定磁场分析 3.4静态场的边值问题及解的唯一性定理 3.5镜像法 3.6分离变量法 *3.7有限差分法 重点难点:电位移的定义以及它和电场强度,极化强度之间的关系,高斯定律应用;静电场的基本方程,电位所满足的微分方程(泊松方程和拉普拉斯方程),电位移和电位在不同媒质分界面上的衔接条件,一维边值问题的求解方法;镜像法,分离变量法。 第四章时变电磁场(7学时) 【主要内容】: 4.1波动方程 4.2电磁场的位函数 4.3电磁能量守恒定律 4.4惟一性定理 4.5时谐电磁场

电磁场与电磁波实验指导书

电磁场电磁波实验 实验一电磁感应定律的验证 一、实验目的 1、通过电磁感应装置的设计,了解麦克斯韦电磁感应定律的内容 2、了解半波天线感应器的原理及设计方法 3、天线长短与电磁波波长的接收匹配关系 二、预习要求 1、麦克斯韦电磁理论的内容 2、什么是电偶极子? 3、了解线天线基本结构及其特性 三、实验仪器 HD-CB-IV电磁场电磁波数字智能实训平台:1套 电磁波传输电缆:1套 平板极化天线:1副 半波振子天线:1副 感应灯泡:1个 四、实验原理 麦克斯韦电磁理论经验定律包括:静电学的库仑定律,涉及磁性的定律,关于电流的磁性的安培定律,法拉第电磁感应定律。麦克斯韦把这四个定律予以综合,导出麦克斯韦方程,该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场。下面我们通过制作感应天线体,来验证电磁场的存在。 如图示:电偶极子是一种基本的辐射单元,它是一段长度远小于波长的直线电流元,线上的电流均匀同相,一个作时谐振荡的电流元可以辐射电磁波,故又称为元天线,元天线是最基本的天线。电磁感应装置的接收天线可采用多种天线形式,相对而言性能优良,但又容易制作,成本低廉的有半波天线、环形天线、螺旋天线等。

本实验重点介绍其中的一种半波天线。 半波天线又称半波振子,是对称天线的一种最简单的模式。对称天线(或称对称振子)可以看成是由一段末端开路的双线传输线形成的。这种天线是最通用的天线型式之一,又称为偶极子天线。而半波天线是对称天线中应用最为广泛的一种天线,它具有结构简单和馈电方便等优点。 半波振子因其一臂长度为λ /4 ,全长为半波长而得名。其辐射场可由两根单线驻波天线的辐射场相加得到,于是可得半波振子(L= λ /4 )的远区场强有以下关系式: │ E │ =[60 Im cos( π cos θ /2)]/R 。sin θ=[60 Im/R 。] │ f( θ ) │ 式中,f( θ ) 为方向函数。对称振子归一化方向函数为│ F( θ ) │ = │ f( θ ) │ / fmax=|cos( π cos θ /2)/sin θ | 其中fmax 是f( θ ) 的最大值。由上式可画出半波振子的方向图如下: 半波振子方向函数与ψ无关,故在H 面上的方向图是以振子为中心的一个圆,即为全方性的方向图。在 E 面的方向图为8 字形,最大辐射方向为θ = π /2 ,且只要一臂长度不超过0.625 λ,辐射的最大值始终在θ = π /2 方向上;若继续增大L ,辐射的最大方向将偏离θ = π /2 方向。 五、实验步骤 (一)测量电磁波发射频率 1、用N型电缆直接将“输出口1”连接至“功率频率检测口”。 2、在液晶界面上同时显示出发射功率及频率。 3、已知电磁波发射源的频率F,求得波长:λ=F V光,比如,电磁波发射源频率为900MHz,

相关文档
最新文档