抽油机井举升工艺方案设计方法研究

抽油机井举升工艺方案设计方法研究
抽油机井举升工艺方案设计方法研究

龙源期刊网 https://www.360docs.net/doc/3c6718804.html,

抽油机井举升工艺方案设计方法研究

作者:张华先潘晨虞小卫蔡旭东

来源:《E动时尚·科学工程技术》2019年第05期

摘要:目前,我国的科技发展十分想迅速,为了保证抽油机举升工艺系统满足生产要

求、提高整个系统运行的稳定性、延长设备的整体寿命,需要对抽油机举升工艺系统进行优化设计。根据举升工艺方案设计思路,对每一项设计内容的预测方法进行归纳汇总,并对应用中的注意事项及局限性进行分析,对抽油机井举升工艺方案设计起到积极地指导作用。

关键词:抽油机;举升工艺;方案;设计方法

0 引言

如今我国对油田资源的开发开始进入后期阶段,当前因为针对聚合物驱油技术的开发手段与运用技术都在不断完善,我厂实践所汇集的数据也显示抽油机井检泵率指标指数也节节攀升,从举升工艺“硬件”潜力看,基本上达到了极限。今后降低其检泵率的重要举措是,从举升工艺的管理方面出发,研究也进入了后期阶段,通过完善相关的工作制度,保证抽油机井的合理运行,除此之外,还希望达成抽油机稳定、长期的生产,这对油田开发经济效益的提高有着十分重要的作用。

1 抽油机井举升工艺适应性分析系统动态控制图和参数

1.1 抽油机井地面设备动态控制图

1)参数的选择能够反映抽油机井地面设备运转的主要特性参数有悬点载荷、曲柄轴输出扭矩、电机实耗功率。2)驴头悬点载荷驴头悬点载荷是反映抽油机井的工作能力的重要参数之一,也是选型的主要依据,当抽油机工作时,驴头悬点主要承受以下五种载荷,即:(1)抽油杆杆柱重;(2)油管内活塞以上液柱重;(3)抽油杆柱和液柱在运转时所产生的惯性载荷;(4)抽油杆柱和液柱在运转时所产生的振动载荷;(5)活塞与泵筒、抽油杆与油管内壁的摩擦,以及抽油杆与液柱、液流与油管内壁的摩擦等。若不考虑摩擦载荷的影响,抽油机井悬点最大载荷Pmax和最小载荷Pmin:Pmax=Wl+Wr(1+SN2/1790)Pmax——抽油机井悬点最大载荷,单位(N);Wl——柱塞以上液体的重力,单位(N);Wr——杆柱在空气中的重力,单位(N);SN2/1790——无因次动载荷系数;Pmin=Wrl-Wr×SN2/1790Wrl——杆柱在液体中的重力,单位(N);抽油机井负载利用率f:f=P实际/P铭牌×100%P实际——抽油机现场实测载荷,单位(KN);P铭牌——抽油机铭牌允许最大载荷,单位(KN);3)减速箱曲柄轴输出扭矩减速箱曲柄轴输出扭矩是衡量抽油机运转的重要技术参数,其经验公式M实际:M实际

=30S-0.236S×(Pmax-Pmin)抽油机井减速箱曲柄轴输出扭矩利用率M:M=M实际/M铭牌

×100%M实际——抽油机减速箱曲柄轴实测输出扭矩,单位(KNm);M铭牌——抽油机减速箱曲柄轴铭牌输出最大扭矩,单位(KNm).

抽油泵泵效

中国石油大学采油工程实验报告 实验日期: 2014.10.26 成绩: 班级: 石工11-14学号: 11034128 姓名:朱光辉 教师: 战永平 同组者:王天宇 孙艺 孙贝贝 赵艳武 万欣成 胡雄军 游家庆 杨琛 张紫峣 抽油泵泵效实验 一、 实验目的 (1)观察抽油机、抽油泵的结构和工作工程(机杆泵的四连杆机构); (2)掌握抽油泵扬程、功率和效率的计算方法; (3)观察泵效的和产气量之间的关系; (4)观察气锚的分气效果; 二、 实验原理 抽油泵的效率是分析抽油机井工作状况的重要参数,根据气液混合物流过抽油泵的能量方程式和机械能守恒原理可以分析泵效。 泵的实际排量要小于理论排量,两者的比值称作容积泵效率,油田称泵效,也称泵的排量系数,即: T V Q Q = η 式中:Q -----泵的实际排液量; T Q -----泵的理论排液量; V η-----泵效; Sn D Q T 4 2 π= 式中:D----泵径; S-----冲程; n-----冲次; 影响泵效的因素是多方面的,如油杆、油管的弹性变形,液体漏失及泵筒液体的充满程度和液体在地层与地面体积的差异等。 要注意的是,在实际井中,由于排量系数只表示抽油机井的实际产液量占抽油泵理论排量的份额,它并不能从能量角度准确的表示抽油泵的效率。 当有气体进入泵中时,泵效由于气体的影响而降低,增加气锚装置可将部分气体分离到环空,使泵效提高,通过测定有气锚和无气锚时的排量就可计算出气

锚的分气效果(泵效的相对减少量): 未通气时泵效 通气后泵效 未通气时泵效泵效的相对减少量-= 实验用供液瓶代替地层供液,用小型抽油机带动活塞产液,由空压机供气,在油管口用量筒和秒表计量实际排量。 三、实验设备和材料 1.实验设备 小型抽油机、深井泵模型、空压机、阀组、空气定值器、浮子流量计、供液瓶、秒表等; 2.实验介质 空气、水; 四、 实验步骤 1. 记录实验深井泵的泵径; 2. 移动支架使泵筒中心线与驴头对准,检查对应泵筒的进气管和进液管是 否通畅; 3. 用手转动皮带轮带动驴头上下运动,记录柱塞冲程; 4. 接通抽油机电源,测量冲次; 5. 用量筒和秒表在油管口记录实际排液量,重复三次; 6. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位0.4 方/小时,待产液稳定后,记录三次井筒的排量; 7. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位0.8 方/小时,待产液稳定后,记录三次井筒的排量; 8. 打开空压机电源,调节空气定值器旋钮,井进入泵筒中的气量定位1.6 方/小时,待产液稳定后,记录三次井筒的排量; 9. 关闭抽油机和空压机电源,轻抬支架更换泵筒,更换对应的进液管和进 气管; 10. 重复5-9步; 11. 清扫地面,实验结束; 五、 实验记录与数据处理 表1 实验数据记录表

抽油机井无泵效问题的认识

抽油机井无泵效问题的认识 [摘要]抽油机井泵况是描述油井是否正常生产的重要资料。近几年,因为无泵效造成抽油机井检泵率呈逐年上升趋势。本文通过总结现场的工作经验,结合示功图、沉没度、产液量、含水、电流、压力等多项生产数据,对可能产生无泵效的原因进行分析。使对无泵效井的检查和处理有的放矢,同时提出针对无泵效问题的预防性措施。 【关键词】油井;泵效;防治措施 一、前言 抽油机井泵效是抽油机井的实际产液量与抽油泵的理论排量的比值叫泵效。深井泵泵效的高低反映了杆、管、泵性能的好坏及抽油参数的选择是否合适等。油井泵效受砂、蜡、原油粘度、气体等因素影响。在生产过程中,主要依靠视泵效来判断油井生产是否正常。 二、油井无泵效判断方法 1、直观判断: 日常管理中,在井口可以通过看、摸、听、试直观判断; 看:光杆变黑、盘根干磨或冒水; 摸:光杆烫手或有黑屑; 听:井口有无出液声、气声; 试:电流、取样。电流严重不平衡或变化大;取样时含水变化大或清水或不出液。 根据以上信息,需要进一步核实功图和液面等资料,以便进行准确判断。 2、憋压诊断法 抽油机井日常管理中,判断泵况正常与否的常用的诊断方法是憋压诊断法。憋压时,会出以以下几种现象:A抽不起压;B稳不住;C上冲程下降下冲程上升;D上行时大幅度上升、下时时大幅度下降、总的趋势上升不明显;E上冲程上升下冲程下降、表针在一定范围内波动等。憋压诊断法是通过油井正常起抽的条件下,关闭油井的回油阀门,记录井口压力随时间的变化画出憋压曲线来诊断泵况的方法。憋压曲线就是起机关回油和停机关回油井的不同条件下,各测一条油压与时间变化的关系曲线。从曲线中可以看出,单井泵况是否正常。 3、综合判断法(根据功图、产量、含水、沉没度、电流等生产数据综合分析) 综合判断法,既根据每次录取的有关生产数据(产量、含水、油套压电流等数据)综合分析,对数据中变化较大的井,查找原因,进行泵况诊断。无泵效井的普遍特征是该井的产液量降,含水上升,沉没度上升。对于中上部油管漏失井,当漏失位置高于液面时,且漏失量较小,产液量下降,含水微升;当液面高于漏失部位,由于套管压力大于油管压力,油井产液量恢复到原来正常时产液量,但含水上升,产油下降,从功图和产液量无法诊断这种井漏失,必须通过含水资料和憋压曲线才能准确判断。常用的示功图法对受单因素影响的纯油井,一般可得出较准确的判断结论(图1) 但对受自喷因素影响或中上部油管漏失井,诊断准确性会大大降低。根据油套压是否平衡可以诊断油管是否漏失。 三、油井无泵效原因及分析

抽油机井举升工艺方案设计方法研究

龙源期刊网 https://www.360docs.net/doc/3c6718804.html, 抽油机井举升工艺方案设计方法研究 作者:张华先潘晨虞小卫蔡旭东 来源:《E动时尚·科学工程技术》2019年第05期 摘要:目前,我国的科技发展十分想迅速,为了保证抽油机举升工艺系统满足生产要 求、提高整个系统运行的稳定性、延长设备的整体寿命,需要对抽油机举升工艺系统进行优化设计。根据举升工艺方案设计思路,对每一项设计内容的预测方法进行归纳汇总,并对应用中的注意事项及局限性进行分析,对抽油机井举升工艺方案设计起到积极地指导作用。 关键词:抽油机;举升工艺;方案;设计方法 0 引言 如今我国对油田资源的开发开始进入后期阶段,当前因为针对聚合物驱油技术的开发手段与运用技术都在不断完善,我厂实践所汇集的数据也显示抽油机井检泵率指标指数也节节攀升,从举升工艺“硬件”潜力看,基本上达到了极限。今后降低其检泵率的重要举措是,从举升工艺的管理方面出发,研究也进入了后期阶段,通过完善相关的工作制度,保证抽油机井的合理运行,除此之外,还希望达成抽油机稳定、长期的生产,这对油田开发经济效益的提高有着十分重要的作用。 1 抽油机井举升工艺适应性分析系统动态控制图和参数 1.1 抽油机井地面设备动态控制图 1)参数的选择能够反映抽油机井地面设备运转的主要特性参数有悬点载荷、曲柄轴输出扭矩、电机实耗功率。2)驴头悬点载荷驴头悬点载荷是反映抽油机井的工作能力的重要参数之一,也是选型的主要依据,当抽油机工作时,驴头悬点主要承受以下五种载荷,即:(1)抽油杆杆柱重;(2)油管内活塞以上液柱重;(3)抽油杆柱和液柱在运转时所产生的惯性载荷;(4)抽油杆柱和液柱在运转时所产生的振动载荷;(5)活塞与泵筒、抽油杆与油管内壁的摩擦,以及抽油杆与液柱、液流与油管内壁的摩擦等。若不考虑摩擦载荷的影响,抽油机井悬点最大载荷Pmax和最小载荷Pmin:Pmax=Wl+Wr(1+SN2/1790)Pmax——抽油机井悬点最大载荷,单位(N);Wl——柱塞以上液体的重力,单位(N);Wr——杆柱在空气中的重力,单位(N);SN2/1790——无因次动载荷系数;Pmin=Wrl-Wr×SN2/1790Wrl——杆柱在液体中的重力,单位(N);抽油机井负载利用率f:f=P实际/P铭牌×100%P实际——抽油机现场实测载荷,单位(KN);P铭牌——抽油机铭牌允许最大载荷,单位(KN);3)减速箱曲柄轴输出扭矩减速箱曲柄轴输出扭矩是衡量抽油机运转的重要技术参数,其经验公式M实际:M实际 =30S-0.236S×(Pmax-Pmin)抽油机井减速箱曲柄轴输出扭矩利用率M:M=M实际/M铭牌 ×100%M实际——抽油机减速箱曲柄轴实测输出扭矩,单位(KNm);M铭牌——抽油机减速箱曲柄轴铭牌输出最大扭矩,单位(KNm).

浅谈如何提高抽油机井泵效延长检泵周期

浅谈如何提高抽油机井泵效延长检泵周期 发表时间:2019-04-30T17:59:34.890Z 来源:《基层建设》2019年第6期作者:姜松1 谢仕洪2 宋晶鑫3 [导读] 摘要:本文针对抽油机井冲次快慢对抽油杆、油管、抽油泵使用寿命有哪些制约关系,从而得出降低冲次是延长检泵周期的途径之一;其次针对调整抽油机井冲程大小,观察产量,功图的变化,从而达到提高泵效的目的。 1大庆油田有限责任公司第五采油厂第一油矿九区一队;2大庆油田有限责任公司第五采油厂生产维修大队加工车间;3大庆油田有限责任公司第五采油厂第二油矿 摘要:本文针对抽油机井冲次快慢对抽油杆、油管、抽油泵使用寿命有哪些制约关系,从而得出降低冲次是延长检泵周期的途径之一;其次针对调整抽油机井冲程大小,观察产量,功图的变化,从而达到提高泵效的目的。 关键词:提高;泵效;延长检泵周期 1:抽油机井冲次与检泵周期的关系 抽油机冲次是指抽油泵活塞在工作筒内每分钟往复运动的次数。目前抽油机井冲次多为4次\分,6次\分,8次\分,其它有9次\分。从定义上可以推算,以8次\分为例,理想状态下(无其它因素影响),1分钟活塞在泵筒内往复8次,一天为8×1440=11520次\天,一年为11520×365=4204800次\年,所以冲次越快,活塞往复次数越频繁,设备磨损程度越严重,检泵几率越高,检泵周期越短。 检泵原因主要为杆管偏磨断脱,油管漏失,抽油泵漏失。下面结合实际针对快冲次(8次\分以上)的井对杆、管、泵有哪些影响进行分析。 1.1.抽油杆 抽油杆位于油管内,连接活塞,与它同时做上下往复运动,将液体抽到地面,在此过程中,造成抽油杆杆断偏磨主要有两个力的影响,一个是抽油杆本身的弹性力。由于抽油杆是一种弹性体,当驴头开始上行时,游动阀关闭,液柱载荷作用在柱塞上,使抽油杆发生弹性伸长。下冲程开始时,吸入阀立即关闭,液柱载荷由抽油杆柱逐渐移到油管上,使抽油杆缩短。因此抽油杆在这种伸长-缩短-伸长的变化过程中,容易出现杆断脱现象,冲次越快,这一过程越频繁,断脱的出现几率越高。 另一个力是抽油杆在上下行过程中存在法向力。抽油杆随着活塞向上下运动时,游动凡尔打开,固定凡尔关闭,由于抽油杆线性运动,抽油杆会向油管一侧移动,造成杆管偏磨。同样,冲次越快,抽油杆往复次数越频繁,抽油杆柱上的法向力也越频繁,检泵次数也频繁,周期越短。 1.2.油管 油管上接油管挂,下连接抽油泵,起到密闭液体的作用。在抽汲过程中,油管本身及各连接处必须是密封完好,否则液体会在漏失处流出,就是所说的油管漏失或断脱。其原因有两点,一是上面提到的,下冲程开始时,吸入阀立即关闭,液柱载荷由抽油杆柱逐渐移到油管上,油管伸长;相反上冲程时,油管缩短。油管频繁的伸长-缩短-伸长,增加了断脱几率。二是受到抽油杆对油管壁的磨损,造成管壁越来越薄,最终磨漏。所以,油管的漏失、断脱仍与冲次快慢有直接关系。 1.3.抽油泵 抽油泵位于杆管的最下部,可以作为抽油机井下部分的心脏。它通过固定阀、游动阀交替开关完成进液和排液过程,使液体源源不断的流向地面。固定阀和游动阀主要由钢球、球座组成,每次开关,钢球都会撞击球座一次,活塞完成上下往复运动一次。长时间的撞击,钢球与球座就会不密封,球座会出现麻点和小坑,使得泵漏失越来越严重。 2:抽油机井冲程与泵效的关系 抽油机冲程是指抽油机工作时,光杆在驴头的带动下作上、下往复运动,光杆运动的最高点和最低点之间的距离。也可以理解为活塞在泵筒内移动的距离。如果不考虑杆管的伸长,活塞在泵筒内移动的距离和光杆运动的最高点和最低点之间的距离是相等的。但是一般情况下柱塞冲程小于光杆冲程,它是造成泵效小于1的重要因素。抽油杆柱和油管柱的弹性伸缩愈大,柱塞冲程与光杆冲程的差别也愈大,泵效就愈低,这是影响泵效的原因之一。 原因之二:多数油田在深井泵开采期,都是在井底流压低于饱和压力下生产的,即使在高于饱和压力下生产,泵口压力也低于饱和压力。因此,在抽汲时总是气液两相同时进泵,气体进泵必然减少进入泵内的液体量而降低泵效。当气体影响严重时,可能发生“气锁”,即在抽汲时由于气体在泵内压缩和膨胀,使吸人和排出阀无法打开,出现抽不出油的现象。 通常采用充满系数β来表示气体的影响程度,充满系数β表示了泵在工作过程中被液体充满的程度。β愈高,则泵效愈高。泵的充满系数与泵内气液比和泵的结构有关。因此,在保证柱塞不撞击固定阀的情况下,尽量减小防冲距,以减小余隙。所以抽油机尽量满足满冲程,提高泵的充满系数,提高泵效。 3:结论 3.1.抽油机冲次是否合理,直接关系着检泵周期长短。特别是冲次超过8次/分(包括8次/分)的抽油机井,很容易出现杆管偏磨断脱,泵漏,首先我们要分析好每次作业跟踪结果,及时做好参数调整工作,避免出现多次返工作业。 3.2.对于目前冲次高于8次/分(包括8次/分),作业特别频繁、杆管问题多的抽油机井,首要工作应下调一级冲次。 3.3.针对抽油机井提高泵效而言,首先要考虑调大冲程,减少冲程损失,减少气体影响,增加泵的充满系数,达到提高泵效的目的。

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

抽油机井参数调整方法

抽油机井参数调整方法 摘要:给出了抽油机井调整参数方法及调参依据,坚持采用长冲程、慢冲次、合理泵径效果较好。当地层压力高于原始压力,可以上调参数;当地层压力低于原始压力甚至低于饱和压力,可以下调参数。抽油系统效率随流压的增加而呈下降趋势。对于正常抽油机井,注意保持适当的流压值,可使抽油机高效运行。依据流压与泵效,流压与系统效率的关系,确定合理流压范围为3-6 MPa,满足生产的要求。 关键词:抽油机井;调参方法;合理流压 合理调整工作参数是充分发挥油井的生产能力,使动液面和流压保持一定的合理范围之内,并使消耗的能量最小,做到高产低耗[1,2]。抽油机井的抽汲参数不完全是合理的,对动液面低,示功图气体影响或供液不足的井,应在条件允许的情况下量化调整参数。 1 调整参数依据 合理调整工作参数,应该具备和油井情况相适应的合理生产压差、合理流压及调参预测方法。 (1)合理生产压差。由于受措施效果、流体性质、油层污染等因素的影响,抽油泵对生产压差的适应性是不同的。通常认为合理的生产压差应控制为2.5-6.5 MPa。但有些井虽然流压低、生产压差大,但示功图分析正常,而流压接近合理,示功图分析却出现气体影响或供液不足的现象,见表1。由表1可知,B、C、D 口井的流压对比,C井最低,但C井示功图正常,另外,B、D 井流压比C井高,但抽油泵出现了气体影响或供液不足的现象。C井的静压接近于原始地层压力水平,供液能力较为充足,原油不会从地层状况下分离出来,抽油泵没有气体影响情况。所以,对于地层压力较低(特别是低于饱和压力)的井时,可以通过调小参数,提高地层压力,保持油井的生产能力。统计调小参数的11口井,日产液量由518 t上升到535 t,静压由10.08 MPa上升到10.71 MPa,流压由3.84 MPa 上升到4.07 MPa,抽油机井泵效由39.4%上升到43.4%,这些井的压力比原始地层压力(11.9 MPa)低1.08 MPa,饱和压力为10.5 MPa。调参前,总压差为-1.62 MPa,地饱压差为-0.22 MPa,生产压差为6.2 MPa,由于地饱压差为负值,在井底必然出现脱气现象或者脱气比较严重,使抽油泵工作较为困难,所以在调参后,产量、压力、泵效普遍上升,效果较好。 表1 抽油机井数据对比 井号时间原始地层压力 (MPa)合理流压 (MPa)实测静压

抽油机典型示功图

抽油机示功图是将抽油机井光杆悬点载荷变化所作的功简化成直观封闭的几何图形,是光杆悬点载荷在动态生产过程中的直观反映,是油田开发技术人员必须掌握的分析方法。通过示功图的正确分析评价,可诊断抽油机井是否正常生产。本文将通过典型示功图示例阐述,结合现场实际,对井下生产情况进行解释分析,应用地面示功图解决现场实际问题,为油田开发现场分析诊断提供可借鉴性依据。 1、泵正常工作 图像分析:供液充足、泵的沉没度大、泵阀基本不漏 失,泵效高,游动阀尔和固定阀尔能够及时开、闭,柱塞 能够迅速加载和卸载。 管理措施:此类井供液充足,沉没度大,仍有生产潜 力可挖,可以将机抽参数调整到最大,以求得最大产量, 发挥井筒应有的产能水平。 2、振动影响 图形分析:泵深超过800m时抽油杆会发生有规律的振动,一 般不会影响泵效,振动引起悬点载荷叠加在正常工作产生的曲 线上,由于抽油杆柱的振动为阻尼振动,所以出现逐渐减弱 的波浪线。 管理措施:一般不考虑振动影响,如果冲次加大后,振动幅度 变大,就导致功图失真,上下死点有小尾巴出现,泵效低,这 时需要对油井进行综合评估,减小冲次建立合理制度。 3、供液不足 图形分析:供液不足为油田常见工况,当泵充满系数小于0.6 时,可以认为深井泵的工作制度不合理,泵的排出能力大于油 层的供液能力,造成沉没度太小,液体充满不了泵筒。 管理措施;主要进行油层改造,改善供液条件,机抽参数,对于 泵挂较深井可采取长冲程,小泵径、慢冲次,泵挂相对较浅的 井,在井况及抽油设备允许情况下,加深泵挂深度,以求得最 大泵效。 4、泵工作正常,油稠时的情况。 图像分析:油稠,使摩擦等附加阻力变大,造成上负荷线 偏高,下负荷线偏低,同时,油稠可能使得凡尔开关比6B63 常时滞后,凡尔和凡尔座配合不严密,造成较大漏失。 管理措施:对于稠油井,主要对进泵液体降粘,定期地向 油田区块注入降粘剂,采取环空加热措施,并采用反馈抽 稠泵机抽。

防冲距对抽油机井泵效的影响分析_朱君[1]

doi:10 3969/j issn 1006-6896 2009 10 033 防冲距对抽油机井泵效的影响分析 朱君 高源 王慧(大庆石油学院) 摘要:建立了抽油泵正常工作过程中的 力学模型,根据抽油杆的弹性伸长量,计算 了防冲距的合理取值,从而改善了抽油泵防 冲距设计中常因采用经验值而使泵效降低的 问题。结合抽油泵泵阀的开启条件,推导了 抽油泵柱塞的滞后位移,进而得到抽油泵在 一定杆管泵组合下的排量系数及防冲距对泵 效的影响关系式,为合理确定防冲距提供了 依据。 关键词:抽油杆;受力分析;防冲距; 泵效 在有杆泵采油生产中,影响抽油泵泵效的因素主要有杆管柱的伸缩、井液中的含气量、泵的充满度及漏失等[1]。由于余隙空间的存在,使得泵在抽油过程中,余隙空间被弹性能大的气体所占据,致使上冲程时泵的固定凡尔开启滞后或根本打不开(气锁),井液进泵数量减少甚至进不了泵,极大地影响了抽油效率。而且余隙越大,余隙内残留气体越多,则气体影响越大,造成有效冲程越小,泵效越低。在高油气比油田的有杆泵采油中这种影响尤为明显。目前人们主要从增加泵的沉没度、加大冲程、降低冲次等方面进行研究[2],以提高抽油泵效率。本文通过对抽油杆的受力状况及其弹性变形量的分析,研究合理的余隙容积,以提高泵效。 1 防冲距的理论分析 在抽油泵抽汲循环的上、下冲程过程中,液柱的重力从固定凡尔上转到游动凡尔上,使抽油杆柱和油管交替加载和卸载。因静液柱重力引起的抽油杆柱和油管柱在工作过程中发生弹性伸长,使抽油杆下冲程时下移的距离大于实际冲程的长度,故防冲距的目的主要是考虑到抽油杆在轴向拉力的作用下会伸长,避免杆柱与泵筒底部发生碰撞而上提的一定距离,杆柱的实际伸长量一般都小于所提距离,所以活塞的实际冲程也小于理论冲程。 1 1 抽油杆受力分析 根据抽油杆柱在工作过程中的受力状态,建立力学模型(见图1)。由采油工艺[3-4]可知杆柱所受合力为 F r=W r+W fd+W rd =(1-0 127 f)W r+W r+ W f)a/g 式中W r为抽油杆柱在液体中的自重(kN); W rd为抽油杆柱动载荷(kN);W fd为液柱动载荷(kN); f为井液密度(kg/m3);W r为抽油杆柱自重(kN);W f为作用于柱塞环形面积上的液柱重量(kN);a为抽油杆加速度(m/s2); 为泵杆管的截面差之比, =(A p-A r)/(A i-A r);A i为油管内径的流通面积(m2);A p为柱塞面积(m2);A r为抽油杆截面积(m2) 。 图1 抽油杆力学模型 1 2 防冲距的计算 防冲距的大小主要取决于抽油杆柱的弹性变形量,且抽油杆柱伸长量 l计算公式为 l=F r L r(A r E) 荷。该方案流程简单,不需要液烃泵,只需将上一级产生的凝液节流后返回前一级即可,而且外输气的烃露点容易控制。 新增丙烷制冷系统,在电力能够满足需要时,应采用电机驱动。若电力不能满足可采用燃气发动机驱动螺杆制冷压缩机,缺点是燃气发动机噪音大,易损部件多,维修工作量大。 (3)分子筛再生气流程的改造方案。原设计的分子筛再生气返回压缩机四段入口,这造成了含硫化合物的再循环及设备的腐蚀。本次改造将再生气直接外输电厂或作为燃气轮机、加热炉燃料,不再返回压缩机入口。 (栏目主持 张秀丽) 60 油气田地面工程第28卷第10期(2009 10)

影响抽油机井泵效的因素及提高泵效的措施

影响抽油机井泵效的因素及提高泵效的措施 发表时间:2019-03-27T14:41:10.817Z 来源:《基层建设》2018年第35期作者: 1王晓伟 2郭英健 3唐海燕[导读] 摘要:在改革开放的新时期,我国的经济在快速的发展,社会在不断的进步,随着当前国家综合实力的不断增强,石油开采井的数量在不断增加,并且规模也在逐年递增,而在此基础上,随着产油量的提升,地底的原油供应出现了严重不足的情况,抽油泵在其中发挥的作用也没有起到显著的效果。 1 大庆油田有限责任公司第八采油厂第四油矿黑龙江大庆 163000 2大庆油田有限责任公司第十采油厂第四油矿黑龙江大庆 163000 3大庆油田有限责任公司第二采油厂第七作业区实验二队黑龙江大庆 163000 摘要:在改革开放的新时期,我国的经济在快速的发展,社会在不断的进步,随着当前国家综合实力的不断增强,石油开采井的数量在不断增加,并且规模也在逐年递增,而在此基础上,随着产油量的提升,地底的原油供应出现了严重不足的情况,抽油泵在其中发挥的作用也没有起到显著的效果。本文基于此主要探究在当前采油井发展过程中,影响泵效的主要因素以及提升泵效的主要对策。 关键词:泵效;石油开采;强化 引言 抽油机井泵泵效是受诸多因素影响的,要想提高其泵效,必须要对其影响因素进行深入分析,尽可能降低甚至避免这些因素可能对泵效产生的影响,提高泵效的同时,提高油田的开采效率。 1油田开采中抽油机井泵效的影响因素 1.1冲程损失产生的影响 因抽油杆结构的影响,抽油泵的效率会出现大幅度降低。加之实际开采中抽油杆、管之间会产生较大的摩擦,这会降低活塞空间,抽油泵的效率将因此受到影响。基于相关数据分析,杆、管的长度越长,其效率就会越低,两者呈反比关系。实际生产中,若需要在较深的地层进行石油开采,便需要进一步拉深抽油杆以及抽油管,两者长度的增加会带来大量的动量损耗,这会对抽油泵的效率产生非常严重的影响。此外,开发因素以及设备因素也会影响泵效,这里主要指的是油稠、油井出砂以及气体过多等问题,当然也包括泵制造质量以及安装质量的影响。 1.2施工因素的影响 作业施工标准中对立井架的要求是,井口与游动滑车的左右偏差不超过20mm的偏差范围。前偏差不超过30mm、后偏差小超过50mm,但现场施工中很难达到这一标准,特别是左右偏差,几乎所有的作业井均超过了20mm的偏差范围。此外,目前施工时对油管丝扣的鉴定仅限于锥度检测,对丝扣的磨损程度尚无准确有效的检测手段,大多仅凭肉眼观察,缺乏一定的科学性,易将一些磨损严重但无明显破损的丝扣下入井内,因涂抹了密封脂,油管打压时也许无明显变化,但生产一段时间后,易使泵况变差。 1.3低流压降低泵效 在油田开采的过程中,会出现一些套压和沉没度低的油井,当这种油井的井底流压较低时,会在泵的入口处形成溶解气,导致井泵能够吸入的压力降低,同时会使气压比上升,造成泵筒内游离气体的剧增,会直接降低深井泵的充满系数,从而降低泵效。同时,这些流压降低的井,当这种压力低到一定限制时,会增加流饱压差,使得气体流度高于液体流度。在这种条件下,当原油从底层涌向井底时,井筒附近会出现脱气现象,当压力越低时这种脱气就越严重,会造成油层供液能力的降低。这个时候即便将套压放到很低,也无法消除逸出的气体对深井泵的影响。 2提升抽油泵效率的对策 2.1 根据实际情况选择工作方式 在实际抽油的过程中,有关技术人员需要根据实际的情况来选择合适的方式进行抽油作业。比如说在一些稠油生产的过程中,我们需要保证所开采石油的稠度,就需要采用高强度和高功率的抽油泵,在进行抽油的过程中需要根据实际的地质情况来调整内部活塞的空间,使得抽油泵的效率能够得到最大化的提升,保证抽油的质量。其次在抽油泵实际工作过程中,可以尽量降低冲次的频率,使得活塞运动的效率降低,在进行原油的抽取过程中,不仅能够使活塞运动的频率更好地契合原油的抽取效率,而且也能够大大提升抽油泵的使用寿命。最后,抽油泵在工作过程中,尽可能选择冲程比较长的方式,在符合一定标准作业条件之下,选择长冲程的抽油泵能够大大提升抽油效率,降低抽油泵在抽油过程中由于气体所产生的较大的影响,保证了抽油质量。总之,在进行抽油泵选择的过程中,我们需要根据实际的情况来进行选择,在符合作业标准的情况下,一般选择长冲程和慢冲次的方式来提升抽油泵的泵效。 2.2依托实际情况选择工作方式 油田抽油作业中,相关工作人员需要根据实际情况选择作业方式。以稠油生产为例,实际生产中为了保证原油的稠度,需要借助于高功率、高强度的抽油泵完成稠油作业。参照油层的地质状况调整内部的活塞空间,这样才能够实现油泵效率的最大化。其次抽油作业中,应尽可能地降低冲次的频率,这能够降低活塞运动的效率。对原油抽取工作而言,这能够在延长油泵寿命的基础上,使活塞运动的频率更好地契合特定油层的抽取效率,从而保证抽油作业的质量。最后抽油作业中,应使抽油泵在冲程较长的条件下运作。在满足实际作业条件以及相应技术标准的前提下,油泵冲程越长,其抽油效率越高。基于宏观层面分析,这也能够降低气体对抽油作业的影响,对提高效率、稳定生产有着积极的推动作用。综上,根据实际情况选择工作方式对提高泵效有着非常重要的意义,这方面的工作还需要相关工作人员不断在工作中总结经验。 2.3改善施工环境,确保抽油机井泵效 (1)控制并降低油井回压。特别是对已经进入生产后期的油井,做好此项工作是非常重要的。针对地层供液能力不断下降,抽油泵磨损加剧容易造成漏失的强狂,改变传统的生产方式,采用高架罐生产或者采用进落地罐生产。这种生产方式可以起到降低油井回压的作用,不但可以提高每天油井的产液量,而且能够提高油井的泵效。(2)提高油层供液能力。对于投产时间较早而且低效的油井,要努力通过改善油井的注汽效果来提高泵效。比如可以根据不同油层的压力情况和动用状况,根据地下存水等来对稠油开采的周期进行综合分析,采用注汽强度优选的方式提高油井泵效。 2.4降低油管自身零部件因素对泵效的影响

油井实测示功图解释大全

六、解释抽油机井理论示功图 A-驴头位于下死点 D点卸载终止点 C-驴头位于上死点AB-增载线 CD-卸载线 B-吸入凡尔打开,游动凡尔关闭点增载终止点 λ+λ-冲程损失(抽油杆伸长及油管缩短之和) D-固定凡尔关闭,游动凡尔打开点 BC-活塞冲程上行程线也是最大负荷线 AD- 下行程线也是最小负荷线 B1C-光杆冲程 OA-抽油杆在液体中重量 AB1-活塞以上液柱重量ABCD-抽油泵所做的功

七、实测示功图的解释 (1) 图1为其它因素影响不大,深井泵工作正常时测得的示功图。这类图形共同特点是和理论示功图的差异不大,均为一近似的平行四边形。 (2) 图2为供液不足的典型示功图。理论根据:活塞下行时,由于泵内没有完全充满,游动凡尔打不开,当活塞下行撞击到液面游动凡尔才打开,光杆突然卸载。该图的增载线和卸载线相互平行。 (3) 图3为供液极差的典型示功图。理论根据:活塞行至接近下死点时,才能接触到液面,使光杆卸载,但由于活塞刚接触到液面,上冲程又开始,液体来不及进入活塞以上,所以泵效极低。 (4) 图4为气体影响的典型示功图。理论根据:在活塞上行时,泵内压力降低,溶解气从石油中分离出来,由于气体膨胀,给活塞一个推动力,使增载过程变缓。当活塞下行时,活塞压缩泵内气体,使泵内压力逐渐增大,直到被压缩的气体压力大于活塞以上液柱压力时,游动凡尔才能打开。因此,光杆卸载较正常卸载缓慢。卸载线成为一条弯曲的弧线。

(5) 图5为“气锁”的典型示功图。所谓“气锁”是指大量气体进入泵内后,引起游动凡尔、固定凡尔均失效,活塞只是上下往复压缩气体,泵不排液。 (6) 图6为游动凡尔漏失的典型示功图。当光杆开始上行时,由于游动凡尔漏失泵筒内压力升高,给活塞一个向上的顶托力,使光杆负荷不能迅速增加到最大理论值,使增载迟缓,增载线是一条斜率较小的曲线。卸载线变陡,两上角变圆。 (7) 图7为游动凡尔失灵,油井不出油的典型示功图。图形呈窄条状,整个图形靠近下负荷线。 (8) 图8为固定凡尔漏失的典型示功图。示功图的特点:反应在卸载时,右下角变圆,卸载线与理论负荷线夹角变小,漏失越严重夹角越小。图形左下角变圆,漏失越严重,此角越圆滑。 (9) 图9为固定凡尔严重漏失,油井不出油的典型示功图。图形呈窄条状,且接近理论上负荷线。

抽油机井系统效率计算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P e P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q, H- p - g P e= ----------------------------- 86400 式中:P e——有效功率,KVV Q-一油井日产液量,m3/d ; H—有效扬程,m P——油井液体密度,t/m3; g --- 重力加速度,g=9.8m/s2; 其中有效扬程: (P L Pt)x 1000 H=Hd + - ------------------------ P - g 式中:H ------------ 油井动液面深度,m; P ------------ 井口油压,MPa; Pt ---------- 井口套压,MPa; 二、抽油机井平■衡合格率 1、抽油机井平■衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%? 平衡)

平衡度=(I下行峰值/I上行峰值)X 100% 采液用电单耗:油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,Kw, CH油井日产液量,t3/d 2、抽油机井平■衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S总一抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 = (Q实/Q 理)X 100% T] 式中:门一泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 x 10一3 x Sx NX D 式中:S一冲程(m) N 一冲数(n/m) D —泵径(mm); 四、米液用电单耗 油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,K^『油井日产液量,t3/d

抽油机系统合理动态控制图研究

抽油机系统合理动态控制图研究 X 袁 月 (黑龙江省科学院大庆分院榆树林油田,黑龙江大庆 163000) 摘 要:从影响抽油机井泵效的因素出发,推导出动态控制图数学模型、边界条件,结合各区块原油物性及地质条件,细化了各区域边界,分别绘制出各类区块的抽油机井动态控制图。对泵效实行分区管理,以便采取针对性措施治理控制图中不合理井。 关键词:抽油机;泵效;各类区块;控制图 中图分类号:T E933 文献标识码:A 文章编号:1006—7981(2012)10—0003—02 以往在计算和管理抽油机井泵效时,全油田统一用一个动态控制图模板,其边界条件已不能有效反映抽油机井的实际工作状态。为更加科学合理地利用动态控制图,结合油田各个区块原油物性及地质条件,2011年重新分区块对抽油机井建立动态控制图边界,对泵效进行分区管理。根据计算发现二类区块、三类区块、稠油区块和注气区块四个区块数值差别较大,从而绘制出四种动态控制图,以便对问题井重点分析研究,及时采取相应措施提高泵效。1 泵效的计算 影响泵效的因素有冲程损失、泵充满程度、漏失量以及余隙体积等。即 G 泵效=G 冲程损失G 充满程度G 漏失量G 余隙体积(1)G 冲程损失=1-DQ L 2Es 〔1D +1d 〕×10-1 (2) 将油田原油溶解系数R =2.0m 3/(m 3MPa )和气液比C =Q K (1-f w )代入上式有: G 充满程度= P 沉 (1-0.1R)P 沉+0.1Q K(1-f w ) (3) G 泵漏失=(1-G 间隙漏)(1-G 凡尔漏)油田所采用的抽油泵大多为U 32的二级泵,下泵深度取1700m 计算,得出G 间隙漏=0.012,G 凡尔漏=0.05。 1.4 余隙体积对泵效的影响 G 余隙体积=1-(1-f w )(K-K g )B g h/s (4)将(2)、(3)、(4)式代入(1)式,得油田泵效理论表达式: G 泵效 = [1-DQ L 2 E s 〔 1D + 1d 〕×10 -1 ]  [ P 沉 (1-0.1R)P 沉+0.1Q K(1-f w ) ] [1-(1-f w )(K -K g )B g h/s]G 间隙漏 G 凡尔漏(5) 油井泵吸入口压力即沉没压力表达式: P 沉=P 套+h 沉×[1×f w +(1-f w )×0.8581]×0.0098 (6) [参考文献][1] 张振华等.裂缝性碳酸盐岩油气藏保护方法[J].钻井液与完井液,1999,(5).[2] 顾军等.裂缝性储层保护技术与钻井完井液[J ].油田化学,2007,(1).[3] 李克向.保护油气层钻井完井技术[M ].北京:石油工业出版社,1993.[4] 蒋海军,鄢捷年.裂缝性储集层应力敏感性试 验研究[J].特种油气藏,2000. [5] 崔迎春,等.裂缝性油气储层保护技术研究[J].石油钻采工艺,2003,(12). [6] 虞海法,等.水平井无固相甲酸盐保护储层钻井完井液技术[J ].钻井液与完井液,2008, (5). Technology of Dr illing Fluids f or For mation Protectionof fr actured reservoir T ANG Qing-ming 1,LIAN G Da-chuan 1,YAN G Li 2,WEI Feng -juan 1 (1.Southwest Petr oleum U niversity,Xindu in Sichuan; 2.T he Engineering Technology Institute of Southwest Petroleum Branch,Deyang in Sichuan) Abstr act :Theoretical analysis and field application suggest that the invasion of liquid and solid of dr illing fluids into fractures are the main factors for damage to fractur ed reservoir .T he mechanism of for-mation damage for fractured reservoir and various drilling fluids used for formation protection are system-atically introduced in this ar ticle . K y F ;F ;D f 3  2012年第10期 内蒙古石油化工 X 收稿日期作者简介袁月(—),女,汉族,黑龙江绥化人,本科,主要从事采油工程机采管理工作。 e wor ds:ractured reservoir ormation pretection r illing luids :2012-04-10 :1984

抽油机井典型示功图分析及应用

2011年第03期 抽油机井典型示功图分析及应用 孙 浩 大庆油田有限责任公司第二采油厂 黑龙江大庆 163414 摘 要:利用示功图对井下生产状况进行分析时,必须要全面了解油井的情况(井下设备、管理措施、目前产量、液面、油气比以及以往的生产情况等),才能对泵的工作状况和故障原因做出正确的判断,可诊断抽油机井是否正常生产,并提出了地面示功图的发展方向,为油田开发现场分析诊断提供可借鉴性依据。 关键词:抽油机 示功图 应用 发展 一、典型示功图分析 典型示功图是指某一因素的影响十分明显,其形状代表了该该因素影响下的基本特征。虽然实际情况下有多种因素影响示功图的形状,但总有其主要因素。所以,示功图的形状也就反映着主要因素影响下的基本特征。 (1)正常功图。动载荷和摩擦载荷不大,充满良好,漏失较小的正常功图,较接近于理论静载荷示功图。见图1。 图1 图2 图3 图4 (2)气体影响。由于在下冲程结束前,泵的余隙内残存一定数量的溶解气和压缩气,上冲程开始后泵内压力因气体的膨胀而不能很快降低,使固定阀打开滞后,加载变缓。余隙越大,残余的气量越多,泵口压力越低,则固定阀打开滞后的越多,则线越长。下冲程时,气体受压缩,泵内压力不能迅速提高,使游动阀滞后打开,卸载变缓。泵的余隙越大,进入泵内的气量越多,示功图卸载线的上凸抛物线越明显,见图2。 (3)泵充不满。当沉没度过小,供液不足,使液体不能充满泵筒时示功图特征是,下冲程中悬点载荷不能立即减小,只有当柱塞接触到液面时才迅速卸载。所以,卸载线较气体影响的卸载线(左凸形抛物线)陡而直。有时,因柱塞撞击液面(液击)在抽油泵上会造成很高的冲击应力,使卸载线出现波浪。快速抽吸时往往因液击发生较大的冲击载荷使图形变形严重。见图3。 (4)泵漏失。泵漏失主要包括排出部分漏失,吸入部分漏失和排出和吸入同时漏失。排出部分漏失:上冲程时,泵内压力降低,柱塞两端产生压差,使柱塞上面的液体经排出部分不严密(游 动阀及柱塞间隙),漏失到柱塞下部的泵筒内,漏失速度随柱塞下面压力减小而增大。当漏失量很大时,由于漏失液体对柱塞的“顶脱”作用很大,上冲程的载荷远低于最大载荷,固定阀始终是关闭的,泵的排量为零,见图4。吸入部分漏失:下冲程开始后,由于吸入阀漏失使泵内压力不能及时提高,延缓卸载过程。下冲程后半冲程中因速度减小,当小于漏失速度时,泵内压力降低使游动凡尔提前关闭,悬点提前加载。当固定凡尔漏失严重时,游动凡尔一直不能打开,悬点不能卸载,功图在下载荷线以上,接近上载荷线漏失图,见图5。吸入和排出部分同时漏失:吸入部分和排出部分同时漏失的示功图是分别漏失图形的叠加,在上下载荷线之间,近似于椭圆形。 图5 图6 图7 图8 (5)带喷井。在抽吸过程中,游动凡尔和固定凡尔处于同时打开状态,液柱载荷基本上不能作用于悬点。示功图的位置和载荷变化的大小取决于喷势的强弱以及抽吸液体的粘度。见图6。 (6)抽油杆柱断脱。抽油杆断脱后的悬点载荷实际上是断脱点以上的抽油杆柱重量,只是由于摩擦力,才使上下载荷线不重合。图形的位置取决于断脱点的深浅。见图7。抽油杆断脱位置比较深的示功图可能类似于带喷井的示功图,但带喷井的泵效高、产量高,而断脱井泵效和产量较低,甚至为零。抽油杆柱断脱的位置可根据公式(1)计算:L=hf d /((1-ρL /ρr )q r ),(1) 式中:L—自井口算起的断脱点深度,m;f d —测示功图所用动力仪的力比,N/mm;h—示功图中线至基线的距离,mm;q r —每米 抽油杆在空气中的自重,N/m。

相关文档
最新文档