SF DZ-3电能质量监测仪用手册

SF DZ-3电能质量监测仪用手册
SF DZ-3电能质量监测仪用手册

目录

测量仪器

功能介绍 3

功能特点 3

技术指标 4

仪器的面板操作说明及测量接线

仪器前面板 5

仪器后面板 6

仪器的功能操作

概述 8

谐波测量

谐波分析 8

统计分析 10

日变化曲线 12

电压偏差

电压偏差 13

日变化曲线 14

频率偏差

频率及偏差 16

日变化曲线 17

功率测量 18

不平衡度 19

波动闪变

波动闪变值 20

波动日变化 20

Pst日变化 21 Plt日变化 22

暂态电压

过电压、欠电压记录 23

电压骤升、电压骤降记录 24

系统设置

通道配置 24

变比设置 25 谐波限值设置

国家标准 27 谐波限值 28 其他限值设置 30

后台软件

系统功能 32 站点设置 32 实时监测 39 历史数据 46 暂态事件 47 校准时间 48 报表打印 49

测量仪器

功能介绍

仪器设计为在线式电能质量监测仪,采用多个高速DSP+工控板作为电能质量监测分析的核心,可对任意时段的测量数据进行监测分析。由硬件采样系统和分析软件两部分组成。

功能特点

?信号路数

本仪器可接入多路A、B、C三相电压测量信号及多路A、B、C三相电流测量信号(电压及电流测量信号均为互感器二次侧信号)。

?稳态电能质量监测分析

可测量2 - 50次谐波电压、电流的畸变率、有效值、序分量、电压波动、闪变、电压偏差、功率因数、有功、无功、频率等技术指标。

?暂态电能质量监测分析

电压骤升、电压骤降、过电压、欠电压记录。

?数据输出功能

仪器可通过串行通讯口或以太网卡口、调制解调器方式实现数据的远距离传输。

?信号采集

采用16位高精度A/D,采集速率12.8 kHz。

?测量方式

仪器设有两种测量方式,第一种是单周波测量,每次对信号采样一个周波,然后进行FFT 分析,这种方法适用于对快速变动的信号源进行测量;第二种是在3秒钟内对信号进行6次等间隔采样,利用FFT分析出这6次采样的测量结果,然后进行3秒平均处理,这样可以区分暂态现象和谐波。

?运行方式

仪器可实时显示数据分析结果及信号波形、频谱,并可随时进行存盘和打印输出;

技术指标

?电压测量范围:交流电压 10 - 400V。

?电流测量范围:交流电流0.05 - 6A。

?频率测量范围:47.5 - 52.5Hz

?谐波分析范围:00 - 50次谐波, “00”表示电压总畸变率或谐波电流总有效值。?谐波含有率误差:

当谐波电压含有率≥1% 时,相对误差σ=(分析值-真值)/真值×100% < ±5% 当谐波电压含有率 <1% 时,绝对误差σ< ±0.05%;

当谐波电流含有率≥3% 时,相对误差σ=(分析值-真值)/真值×100% < ±5% 当谐波电流含有率 <3% 时,绝对误差σ< ±0.15%;

?电压偏差误差:≤±0.5%

电压波动误差:≤±5%

闪变误差:≤±5%

?电压不对称因数绝对误差:< 0.2%

电流不对称因数绝对误差:< 1%

?测频误差: < 0.01Hz

?电压侧输入直流电阻:> 100KΩ

电流侧输入直流电阻:< 0.1Ω

?工作电源:

电压:AC220V±20%

频率:45 - 55Hz

?工作温度:0℃- 40℃

?机体尺寸:168mm×434 mm×378mm(高×宽×深)

仪器的面板操作说明及测量接线

仪器前面板

?开机

接通工作电源后打开仪器电源开关,仪器将自动进入电能质量监测分析系统。?USB1、USB2

接口用来对测量结果进行存盘输出。

?电话线、网卡口

用来对测量结果进行远距离数据传输。

?按键的详细操作见仪器的功能操作部分。

仪器开孔图

单位:毫米

注:与开孔底线平行进深25cm做一横支架,以便支托仪器

水分检测仪中文操作手册

1 HALO-H2O 超高精度高纯气体微量水分仪用户操作手册 指导手册 M7000 系列 版本 B

2 重要标识 这个警告标志提醒用户人身安全 这是高压标志提示有高压存在 这个警告标志提醒用户有激光射线存在 警告标签 注意:在操作HALO-H2O之前请确认已阅读手册中所有的警告注释,为了您的使用方便我们已经列出所有的警示信息,您必须在操作仪器之前通读此手册,否则可能对仪器造成损害。  使用有毒,易燃易爆或混合后易爆气体(如氢气和氧气混合)之前,请先用惰性气体彻底吹扫管路,否则气体管路中的残余气体可能会引起爆炸等危险,对仪器造成损害。  使用合格的独立电源线(1米,120V或220V, 2极3相电源,接地,耐压15A)  在进行任何维修维护装箱之前,请切断电源

3 目录 1. 规格和图表 1.1 规格 1.2 尺寸图 1.3 单HALO-H2O 尺寸图 1.4 HALO-H2O 前面板 1.5 HALO-H2O 后面板 2. 安装HALO-H2O 2.1 总论 2.2 拆包 2.3 产品序列号 2.4 采样管路的准备 2.5 组装采样管路 2.6 采样管路渗漏试验 2.7 HALO-H2O 的放置 2.8 排空压力的考虑 2.9 采样管路进口和出口的连接 2.10 封盖采样管路进口和出口,防止污染 2.11 连接考虑 3. 启动和操作 3.1 介绍 3.2 用户界面 3.3 操作模式 3.4 其他工具栏功能 4. 远程操作 4.1 概述 4.2 界面连接 4.3 指令 5. 发现并修理故障及日常维护 5.1 概述 5.2 定期检修 5.3 故障指南

几种主要车辆检测器的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

双路车辆检测器说明书中文

线圈型车辆检测器使用说明 NO:9001- 0410-110 ■安装检测器 ■接线图 车车辆检测器必须安装在离探测线圈尽可 能近的、防水防潮的干燥环境里。在安装车辆检 测器时,应与其它设备或装置保持一定的距离 (约10—20mm)以方便维护。并且应当注意其 工作环境温度不要超过55oC。检测器能否良好 工作在很大程度上取决于它所连接的感应线圈。 线圈的几个重要参数包括:线圈材料,线圈形状 和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。) ■使用及工作指示 接通电源后,检测器将会自动校准。校准过程约3秒。校准进行时,面板上的LED会闪烁(亮0.5秒,灭0.5秒)几次。在校准期间,不应有车停在线圈上。当校准成功后,面板上的“检测”指示灯熄灭,当线圈上有车通过时,面板上的“检测”指示灯亮起,且存在输出继电器1(7、8脚)吸合导通;若在校准过程中未检测到线圈或线圈电感值不在允许范围内,对应的LED指示灯会不 停地闪烁。其闪烁 情况如下: 线圈未连接: 线圈电感太小: 线圈电感太大: ■工作频率调节 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆下胶壳。DIP开关5(LB)用于设置线圈2的频率;DIP开关6(LA)用于设置线圈1的频率。开关在“ON”位置表示低频频工作方式,在“OFF”位置表示高频工作方式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:双路车检在出厂时已将线圈1设为高频,线圈2设为低频。所以用户一般不需对线圈频率作调整。 ■灵敏度调节 灵敏度调节使用顶端面板上的滑动开关,有三档:H为高灵敏度,M为中灵敏度,L为低灵敏度。在试运行时,先将灵敏度设在较低档位,在实际测试后如果车辆检测没有反应,则应将灵敏度调高一档,如此反复,直至车检器稳定、正常工作。 ■继电器输出方式 当有车辆进入线圈时,继电器的输出方式由主控板上的拔码开关设定(见左图)。 双路车检有两个线圈,对应有两个输出继电器。线圈1(7、8引脚)对应继电器1(5、6、10引脚)的输出为固定的存在输出信号,线圈2(7、9引脚)对应继电 器2(3、4、 11引脚)的 输出信号 由DIP拔 码开关的 DIP1、 DIP2、 DIP3 (SW0、SW1、SW2)决定。 表 一双路 A-D型 表二、H/ I/ K 车辆存在 检测模 式输出 信号与设置 车辆方向(计数)检测模式输出信号与设置 ■检测器复位 当检测器上电时,或改变顶端面板上灵敏度开关时,检测器会进行复位操作。在复位后,检测器会被初始化为无车状态。 ■技术参数 工作电源:AC 220V±10% 110V±10% 24V±5% 12V±5% DC 24V±5% 12V±5% 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:180毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线)最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总电阻小于10欧姆。

乳腺检测仪操作手册

腺诊断仪专

仪器整体图 1打开仪器2,接上电源线 3轻按电源总开关 4开机后等待一分钟5 仪器自动进入工作状态

本产品已取得国家专利 检测仪系统专利号091316229.X)仿冒必究 仪器附带自动修复功能 当仪器遇到缓慢或操作问题 请重新起动电脑后按F11 可以自动修复 (修复密码是101) 新一代 1.可单人操作方便快捷图相更清晰 2.附带脚踏开关 仪器简介 专业:多位医学专家,历时数年对百余万例病历分析研究而成。 安全:采用无创伤性的检查方式,对人体无害。 快捷:根据中医疗理论、结合现代医学科技,应用计算机技术,仅需要测。

图2-1 按钮 图2-2 对话框和焦点 用鼠标在这里第二章 系统启动与视频设置 一、文档约定 鼠标指针:鼠标移动时跟随它在屏幕上移动的一个标志,它代表你选中 的屏幕上的位置。 单击:在屏幕上选定的区域内快速按一下鼠标左键,也叫点击。 双击:在屏幕上选定的区域内快速连续按两下鼠标左键。 右击:在选定的区域内快速按一下鼠标右键。 拖放:按住左键的同时,移动鼠标,最后到达目的地时松开左键即可。 按钮:屏幕上一块带特定标志的区域,单击或双 击它可执行它所代表的任务,按钮形象易记,代替了复杂的命令,便于学习、操 作 ,是软件 设计的趋势。 对话框:用于向计算机输入信息的窗口,通过对 话框可以方便的进行人机交流。 焦点:Windows 是一个多任务操作系统,它 同时执行 很多任务,屏 幕上 同时可以打开很多窗口,窗口中又有很多按钮、文本框等等,只有有焦点的文本框才接受键盘输入, 这就是按钮

用鼠标在你想输入字符的地方单击一下即可使它获得焦点。 二、汉字的输入 1:让目标窗口拥有输入 焦点。 2:按住键的同时,按 下空格键,然后同时松 开,即可进入汉字输入状 态。此时的汉字输入法是 上次选择的输入法。再次按下+空格键,就退出汉字输入状态。3:按住键的同时,按下键,然后同时松开,即可选择汉字输入法(如拼音,五笔等)。需要取消汉字输入操作时,同样可按+空格键,汉字输入窗口消失。 4:微软拼音输入法 首先使该窗口拥有输入焦点。然后,按+键或+空格键,选择“微软拼音输入法”后,即出现如图图标。 在此只对一些简单必要的计算机知识作了介绍,更多的知识请阅读相关书籍。 三、开机及启动软件

TLD100-110车辆检测器技术手册V200印刷版

TLD-100/110系列车辆检测器 技术手册 版本 2.00

TLD-100/110型智能车辆检测器,主要用于车辆存在检测。适用于停车场、公路车辆收费站以及交通信号灯控制等系统。TLD-100和TLD-110系列均为单通道型,它只能联接一个电感线圈,但有两个输出继电器可提供两组输出信号;TLD-100和TLD-110系列分别提供不同的输出信号供用户选择。 工作电源:AC220V、AC110V、AC/DC24V、 AC/DC12V 可选择,2.5W功率 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:100毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线) 最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总 电阻小于10欧姆。 储存温度:-40oC到+85oC

工作温度:-40oC到+65oC 相对湿度:最大95% 外形尺寸:85×74×36mm 3.1 检测器的安装 车辆检测器必须安装在离探测线圈尽可能近的、防水防潮的干燥环境里。在安装车辆检测器时,应与其它设备或装置保持一定的距离(约10—20mm)以方便维护。 检测器能否良好工作在很大程度上取决于它所连接的感应线圈。线圈的几个重要参数包括:线圈材料,线圈形状和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。 3.2 车辆检测器接线示意图

图一、TLD-100/110接线端子接线示意图 3.3 工作频率设定 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆开胶壳。DIP开关6(LA)用于设置频率;开关在“ON”位置时表示低频工作方式,在“OFF”位置表示高频工作方式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:TLD-100和TLD-110在出厂时已设为高频。当两个检测器的安装距离较近时,用户可以将两个检测器设置成不同的频率。

化验室检测仪器操作指导书

布氏硬度检验操作规程 1.试件检测表面预处理 测试前对被测表面进行抛光打磨,使被测表面露出金属光泽并且平整光滑,无油污,对于轴类零件,应在两端、中点三处位置进行表面打磨处理。其他零件可选择有代表性的一处进行表面打磨处理。 2.启动 按下电源开关,此时电源接通,液晶屏全屏显示二秒钟后,示值显示区右起三位数字显示“00.0”;其余项恢复显示上次关机前的状态。如果要求测试参数与当前状态相符时,便可进行测试。否则应通过键盘重新设置。 3.设置测试参数 具体详情见HLN-里氏硬度计使用说明书。 4.进行测试 测试前如有必要可先使用校验试块对仪器进行检验。(要求每星期进行一次校验) 随机试块的数值是用标定过的里氏硬度计,在其上垂直向下测定5 次,取其算术平均值作为随机试块的硬度值。 4.1加载 向下推动加载套,使冲击体被锁住。见图(1) 图(1)图(2)图(3) 4.2 定位 将冲击装置下部的支承环压紧在被测表面,要求每处被测表面的测试不低于三次。注:每两次测试点距离应≥3mm。见图(2)

4.3 启动 按动冲击装置上部的释放按钮,进行测试。 此时要求被测工件、冲击装置、操作者均稳定,并且作用力方向应通过冲击装置轴线。见图(3)每次测试结束后,示值显示区便显示出该次测试的硬度值或强度值,同时测试次数增一。 注:若测试值显示“E”,表示超出换算范围,则本次测试无效。测试次数显示区显示的数字不变。 5.显示本组平均值 测试值应是3~5 次或更多次测试的平均值,但每组测试次数不能超过9 次,否则,前9 次测试值不予保留。按ENTER AVERAGE键,示值显示区便会显示出本组测试的硬度或强度的平均值,同时在测试次数显示区的左下角出现“Ave”提示符号,本组测试结束,再按ENTER AVERAGE键,将开始下一组的测试。 6.检查测试结果 按DELETE 键,可查看前一次的测试结果,按ENTER AVERAGE键,可查看后一次的测试结果。 偏差太大的测试值可在按DELETE键的同时按O STATE键,将其删除,则该次测试值不打印且不参与平均值计算。 7.打印记录 使打印机开关置于开启状态,按PRINT 键,打印机将自动打印出各次的测试结果及其平均值。并按要求完成相应的检验记录。 8.关机 测试结束后,关掉电源开关和打印机开关。 9.保养 9.1严格避免碰撞、重尘、潮湿、强磁场、油污等。 9.2在使用1000—2000 次后,要用尼龙刷清理冲击装置的导管及冲击体,清刷导管时先将支承环旋下,再将冲击体取出,将尼龙刷以逆时针方向旋入管内,到底后拉出,如此反复5 次,清刷后,再将冲击体及支承环装上。 9.3使用结束后,要将冲击体释放。 9.4冲击装置内绝对禁止使用各种润滑剂。 9.5定期给主机充电,一般工作8~24 小时充电一次,每次充电约8 小时。

(2020)瓶口检测仪的验证

瓶口检测仪的验证

Prepared by/编制者:Reviewed by/审阅者:Authorized by/批准者:____________________ ____________________ ____________________ Date/日期:Date/日期:Date/日期:

1.0目的 制定瓶口检测仪验证程序,以确保其对有缺口的空瓶或椭圆瓶口瓶剔除有效性符合质量要求。 2.0范围 所有吹瓶连线生产的瓶口检测仪 3.0职责 3.1QC负责验证瓶口检测仪剔除有效性; 3.2吹瓶机操作工负责验证所必要的吹瓶机操作工作; 3.3工程部负责瓶口检测仪的调校工作; 3.4QA工程师负责制作验证所需标准样品; 3.5QA经理对本文件的有效性负责。 4.0定义 4.1 瓶口缺损瓶:在瓶或瓶胚的瓶口上沿或内外侧面存在半径超过0.5MM的缺口的瓶胚或空 瓶. 4.2 椭圆瓶口瓶:瓶口不圆呈椭圆状,且长短直径差(在1~3MM的高度范围内测量)超过 0.2MM的瓶胚或空瓶. 4.3 静态验证:在吹瓶机开机前,用瓶口缺损瓶或椭圆瓶口瓶手动验证。 4.4 动态验证:在吹瓶机正常工作状态,用瓶口缺损瓶胚或椭圆瓶口瓶胚与其它瓶胚放在吹瓶 机上验证。 5.0程序 5.1 吹瓶机操作在每次吹瓶机开机前,做好验证瓶口检测仪的必要工作后,通知吹瓶线QC. 5.2 QC各用1个缺口瓶口瓶和椭圆瓶口瓶标准样品对瓶口检测仪进行静态验证,如果能有效 剔除,就通知操作工该项验证合格,并记录在开机检查表内(注明“合格”);否则,必须通知工程人员调整。 5.3 工程人员接到QC通知后,对瓶口检测仪进行调整,直到QC复验合格。 5.4 QC每周对每台瓶口检测仪至少做一次动态验证,每次用三个瓶口缺损瓶胚或椭圆瓶口瓶 胚验证(必须100%被剔除),并记录在瓶口检测仪动态验证记录表内。 5.5 QC每2小时对剔除品进行1次统计分析,发现异常,必须进行动态验证。验证不合格,必须 通知工程人员调整,并复验合格,才可以继续生产。 5.6 QC每月做剔除品统计分析表。 5.7 QC主任每月把剔除品统计分析表发给相关人员,以便跟踪瓶口检测仪的剔除有效性. 6.0参考文献 6.1本文件支持纲要文件:生产过程品质控制纲要(R-QA-008)

车辆检测技术的介绍

车辆检测技术的介绍 摘要:车辆检测是智能交通的组成部分,是实现智能化监测、控制、分析、决策、调度和疏导的依据。本文分析了智能交通中常用的车辆检测方式、环境适应性和优缺点及线圈检测和视频检测的应用。 1.引言 智能交通系统(Intelligent Transportation Systems,ITS)在我国得到了广泛应用。车辆检测是智能交通系统的组成部分,通过车辆检测方式采集有效的道路交通信息,获得交通流量、车速、道路占有率、车间距、车辆类型等基础数据,有目的地实现监测、控制、分析、决策、调度和疏导。目前,车辆检测器的种类很多,如有线圈检测、视频检测、微波检测、激光检测、声波检测、超声波检测、磁力检测、红外线检测等。本文列举了几种国内智能交通中常用的车辆检测方式、环境适应性以及优缺点。 2.车辆检测方式特点比较 2.1线圈检测方式 通过一个电感器件即环形线圈与车辆检测器构成一个调谐电子系统,当车辆通过或停在线圈上会改变线圈的电感量,激发电路产生一个输出,从而检测到通过或停在线圈上的车辆。线圈检测技术成熟、易于掌握、计数非常精确、性能稳定。缺点是交通流数据单一、安装过程对可靠性和寿命影响很大、修理或安装需中断交通、影响路面寿命、易被重型车辆、路面修理等损坏。另外高纬度开冻期和低纬度夏季路面以及路面质量不好的地方对线圈的维护工作量比较大的。 2.2视频检测方式 视频检测方式是一种基于视频图像分析和计算机视觉技术对路面运动目标物体进行检测分析的视频处理技术。它能实时分析输入的交通图像,通过判断图像中划定的一个或者多个检测区域内的运动目标物体,获得所需的交通数据。该系统的优点是无需破坏路面,安装和维护比较方便,可为事故管理提供可视图像、可提供大量交通管理信息、单台摄像机和处理器可检测多车道。它的缺点是精度不高,容易受环境、天气、照度、干扰物等影响,对高速移动车辆的检测和捕获有一定困难。因为,拍摄高速移动车辆需要有足够快的快门(至少是1/3000S )、

地磁车辆检测器安装(参考指南)说明书V1.0

地球磁场型车辆检测器/车位探测器安装说明书 参考指南(V1.0) 概述 地磁车辆检测器安装方式有两种: 一、埋入路面下安装。埋入路面下安装优点:车辆距离检测器安装固定后,其离车辆地 盘距离可控制在某个范围内(一般0.5米以内),需要埋设设备和牵引电缆线,要对路面挖掘安装空和引线槽。但工程量相对埋设线圈是很少的。另外灵敏度调节和其他参数设置可离线设置,相对占用车道时间也是很短的。所以该方式并不会在施工方面带来特别大的困扰。 二、道路侧(路)边安装。 也可选择路边安装。特别适合某些不能破坏路面或路面比较松软(安装后无法保证检测器位置长期不发生位移的)场合。这种场合下,能够在道路侧边安装仍能实现车辆检测,且综合考虑价格、性能因素,地磁检测器某种意义上将是唯一的有性价比的产品选择了。另外车道较窄,宽度不超过3~4米,可选择侧边安装方式,道路两侧各安装一个检测器,就可非常方便的检测每一侧车辆;如高速公路出入口匝道,一般很窄,就可直接将检测器安装在护栏上,非常方便,高速公路收费站的出入口,也可选择侧边安装(在收费亭上)。 安装方式一:埋入路面下安装

图一检测器埋设安装示意图 图一为车辆检测器在路面下安装示意图, 安装步骤如下: 1、在路面上挖掘或钻一个安装孔,宽度以能放入检测器为适宜,深度为0.2~0.6米。 2、在路面挖掘引线槽。 3、将套好(地磁检测器的)电缆线的PVC管放入槽中。 4、调节电缆线,将地磁检测器放入孔中,调整好距离地面高度H=0.2~0.4米。电缆线 要出于松弛状态。 5、往地磁检测器与安装孔间隙处填充固化且防水材料。 6、将电缆线连接到客户控制系统。 材料与安装要点: 1、PVC管选择不要太粗,比电缆线直径稍大,能套入电缆线为妥。 2、电缆线在PVC管中应处于适当松弛状态(不可处于紧绷状态),避免PVC管变形, 拉断电缆电气线。PVC与电缆出入口出要填充防水材料。 3、同样的,装PVC管的引线槽宽度以能埋下PVC槽为合适。 4、引线槽深度不能太浅,太浅,容易被车轮压塌该槽,并影响到其中的电缆性能,甚至 会压断。 5、安装孔与检测器间隙的填充材料可选用水泥或环氧树脂,沥青等,视情况而定。 参数调试: 1、参数预设置: 预固定好检测器(只要确实保证检测器不会移动,)。然后,根据参数设置步骤设置背景参数,灵敏度,反应设置,恢复设置等,可按参考下表。 表1 反应设置数恢复设置数灵敏度 小于5 小于5 30~200 高速100公里/小时 较高速60~100公里/小时 5~30 5~30 30~200 中速40~80公里/小时 20~30 20~30 30~200 大于30 大于30 30~200 低速10~40公里/小时 设置后,按规定速度范围,通过一辆汽车,应能被检测到,否则要检查检测器与安装孔是否有问题。 2、固化安装,如果预调通过,说明安装高度基本合适,检测器没有故障,可填入防水、 固化材料,进行防水和加固。 安装方式二:道路侧边安装 道路侧边安装是本检测器不同与线圈型检测器的鲜明特点,它由于这种特点,它可为客户提供更高的性价比,最小的施工量。

INSPECTOR射线检测仪操作手册

INSPECTOR 射线检测仪操作手册 (中文版仅供参考,请以英文原版为准) 1.引言 该产品是一种健康、安全的仪器,适用于检测低强度辐射。它可以检测到α、β、γ三种 射线。其应用范围如下: ·探测和检测表面污染 ·在有放射性核素的情况下,可监控可能的辐射方向 ·环境污染筛查 ·探测稀有气体和低能量放射性核 检测器如何探测辐射 该检测器运用盖革计数管来探测辐射。每次射线穿过管子并引起电离时,盖革计数管会产生 一脉冲电流。每个脉冲都是电子探测并进行运算。探测器以你选择的模式显示计算:CPM,mR/hr, 或者总计。在s1 单位中,使用CPS 和μsv/hr。 检测器探测出来的计数数字由于放射能的任意状态而每分钟都在变化。以过去一段时间内的 平均值表示更加准确,而且这段时间越长数据越准确。 警告 为了使检测器保持良好状态,要轻拿轻放,并且遵守以下规范: ·不要由于接触放射性表面或材料而污染检测器。如果怀疑被污染,你可以用检测器提供的额 外的带子替换后面标签上面和下面的橡皮带。 ·不要将检测器放在100oF(38℃)以上的高温中和长时间在阳光下直晒。 ·避免潮湿。水会损害电路和盖革计数管表面的云母涂层。 ·避免探测器薄片在阳光直射下;如果盖革计数管表面的云母涂层由于潮湿被磨损被损害,这 将会影响数据读取。 ·不要将检测器放入微波炉中。检测器不能测量微波,这样做会损坏检测器和微波炉。 ·避免在无线电波频率、微波、静电和电磁波范围内使用;仪器在这一范围内可能比较敏感, 而且会运转不正常。 ·若超过一个月不用,将电池拿开,以免造成电池的腐蚀破坏。 ·如果电池指示器出现在显示器上,请更换电池。 2.特性 检测器可以测定α、β、γ和x 射线。用来探测辐射强度的微小变化,并且对通常的放射性 核有很高的灵敏度。 这一节简单的介绍检测器的功能。对于更多的如何使用检测器,请看第三章“操作”。 检测器计数电离情况并将结果显示在液晶显示器(LCD)(4)上。使用模式开关可以显示你所选择的测定单位。 检测器运行时,每探测到一次计数(一个电离过程),红计数灯(1)就会闪动一次。 显示器 LCD 上的几个指示器显示出模式设置、当前功能和电池状态等信息。 ·数字显示器(A)显示出在模式开关设置在指定单位时的当前辐射强度。 ·数字显示器左边的一块小电池(B)的出现表明低于电池电压。 ·在计数时间或Cal 模式下,沙漏(C)会出现在数字显示器的左边。 ·检测器在Total/Timer 模式下,合计(D)会出现。 ·辐射强度在x1000 模式下显示时,x1000(E)出现。 第 1 页共8 页 ·在你校准检测器时会出现CAL(F)。

车辆检测器

交通流检测技术及应用 摘要:车辆检测器是用来实时采集通过检测点的车辆有关交通信息的设备,主要是通过数据采集和设备监视等方式,向监控系统中的信息处理和信息发布单元提供各种交通参数,是监控中心分析、判断、发出信息和提出控制方案的主要依据。 关键词:车辆检测器交通信息 Abstract: ITS real-time traffic information is the most basic one of the information source, only for real-time traffic information having accurate master can effectively implement and play such as traffic guidance and so on ITS functions, so the real-time detection of the traffic information technology is the core of ITS technology ,so is one of the most basic technology. Traffic information collectionneeds to rely on all kinds of detectors. This paper introduces several kinds of mainstream detector technologies, and gives analyses and comparisons on the performance. Key words: traffic information; vehicle detector 分类 ①按安装方式分为永久式安装(固定式安装)、临时性安装(便 携式安装); ②按采集时间长短分为连续式采集设备(一般采用永久式安 装设备)、间隙式采集设备(多采用临时性安装设备); ③按检测技术方法分为感应线圈检测、视频检测、微波检测、 气压管检测、超声波检测、磁映像检测、红外检测、激光检

车辆检测控制器参数设置说明

车辆检测控制器参数设置说明 每块检测板上有5个指示灯,从上而下,第1个为电源指示灯,其它4个为CH1至CH4的状态指示灯,分别对应4个检测通道,当有车辆经过时相应的状态指示灯会亮起;在复位或上电时,状态指示灯会快速闪烁多次,正常情况下会熄灭,但是如果慢闪,则代表线圈为断路或车检器有故障;如果快闪,则表示线圈短路。 面板上共有3个6位拔码开关,从上而下,依次为SW1、SW2和SW3。 1.灵敏度设置 根据需要设定车检器的灵敏度,使其对期望监控的车辆有正常信号输出。SW1和SW2是灵敏度选择开关,用于选择通道和设置每个通道的灵敏度。其中可以选择任意通道工作或不工作。每个通道的灵敏度可以单独设置,共分七级。其中7级灵敏度最高。设置方法见下表。SW1用于设置1通道和2通道。SW2用于设置3通道和4通道。(1=ON,0=OFF) 2.存在时间 状态选择开关SW3的第1和第2位用来设置存在时间。进入型和离开型输出信号脉冲宽度为15ms。存在型输出脉冲宽度取决于车停留在地磁线圈上方的时间和“存在时间”的设置。“存在时间”分为:

10秒、5分钟,35分钟,无穷大。设置方法如下表所示: (1=ON,0=OFF) 3.工作方式 状态选择开关SW3的第3和第4位用来设置工作方式。车辆检测部分有四种工作方式:进入型、存在型、离开型、校准。 ?进入型:当车进入地磁线圈时,检测部分输出车辆检测信号。 ?存在型:当车进入地磁线圈时,“存在时间”开始有效,该信号结束时间与车离开地磁线圈的时间和“存在时间”设置有关。当车辆停在线圈上的时间小于设置的“存在时间”时,车离开线圈时,车辆检测信号结束。当车辆停在线圈上的时间大于设置的“存在时间”时,车辆检测信号在设置的存在时间到时结束。 ?离开型:当车离开地磁线圈时,检测部分输出车辆检测信号。 ?校准:此开关只为仪器调试及维修专用。 工作方式由面板上的开关SW3设置,如下表所示:

PGM-检测仪操作规程

QRAEII PGM-2400复合式气体检测仪操作、维护与保养规程 起草:日期: 审核:日期: 批准:日期

1 目的 保障气体检测仪的正确使用、精心维护和保养,使其经常处于良好的技术状态,并且安全稳定的运行。 2 主要技术性能

3 电池充电 在每次使用QRAE II 之前,均应将电池充足电。QRAE II 仪器的锂电池通过放在充电座上充电。把QRAE II 底部的接触片和充电座的接触点对齐即可充电,不需任何连接。 注意:在将仪器放到充电座上充电前,先目视检查一下接触片是否干净。如果不干净,要用软布轻擦,不可使用溶剂或清洁剂。 充电步骤如下: 1)把交直流转换器连接到充电座上。 2)把交直流转换器连接到电源插座上。 3)把QRAE II 安放到充电座上,轻压QRAE II,使充电指示灯亮起。 QRAE II 自动开始充电,充电指示灯红色表示正在充电,仪器显示“Charging...”(充电中…)。同时,显示屏上还将电池符号旁显示电源

插头符号。 当电池充足电,仪器显示:“Fully Charged!”(电池充满),电池符号和插座符号仍将显示,充电指示灯转为绿色。 同时,显示屏上还将电池符号旁显示电源插头符号。 当电池充足电,仪器显示:“Fully Charged!”(电池充满),电池符号和插座符号仍将显示,充电指示灯转为绿色。 注意:备用电池可以直接放在充电座上充电,详见备用电池充电。 注意:碱性电池适配器(编号为:020-3403-000)装上3 节5 号电池可以代替锂离子电池。 4 用户界面 4.1 组成 用户界面由液晶显示屏、LED 指示灯、报警器和2 个按键([MODE][Y/+])组成。液晶显示屏可显示时间、传感器类型、电池状态、数据采集开/关。

TLD-600_中性车辆检测器说明书

线圈型车辆检测器使用说明 NO: 9001- 0600-103 ■ 技术参数 工作电源: AC 220 V ±10% 频率范围:20KHz ~ 170KHz 灵 敏 度: 十级可调(0~9级)反应时间:10ms 工作温度: -40oC 到+80oC 相对湿度:< 90%环境补偿: 自动飘移补偿 输出方式: 继电器 线圈电感: 推荐100uH ~ 300 uH (包含连接线) 外形尺寸:长100mm 宽70mm 高118mm ■ 线圈埋设 线圈一般切成平行四边形的凹槽采用耐高温铁氟龙线埋设多圈,测试正常后用液体沥青灌封。当地面下有较多钢筋时增加1~2圈进行补偿,线圈电感量保持在150~300uH 之间。线圈引出线必须紧密双绞以防止震动产生干扰。 请务必注意:线圈宽度的一半约为车辆检测高度。 线圈施工要点: ? 导线截面:大于0.75mm 2 ? 相邻线圈:圈数不能相同? 地面切槽:宽约5mm 、深30mm 以上 ? 灌封材料:液体沥青 ? 切槽清洗:切槽务必清洗晾干后再绕线圈 ? 绕线方法:顺时针、逆时针均可 ? 相邻间距:边到边的距离大于1个线圈宽度 ? 导线材质:耐高温铁氟龙多股镀锡铜线? 线圈引线:无接头、每米必须至少双绞20次 ■ 安装检测器 车辆检测器必须安装在防水、防潮、远离热源、远离强磁场的位置,与机箱壁至少保持10mm 以上的距离(切勿紧贴机箱安装)。检测器应在机箱中垂直安装,以防止接触不良。 ■ 接线方法 通常情况下,1、2脚接电源,11、12脚接线圈A ,13、14脚接线圈B ,5、6脚接继电器A1,8、9脚接继电器B1,18、19脚接继电器B2,15、16脚接继电器A2。 务必注意:线圈引出线必须紧密双绞,否则不稳定。 ■ 工作模式 当面板上DIP1拨到OFF 位置,两个线圈可独立工作(即只接一个线圈也可以工作)。 在单线圈独立工作模式(DIP1为OFF )时:线圈A 输出为继电器A2(15、16脚);线圈B 输出为继电器B2(18、19脚)。A2 和B2的输出类型有三种:车辆进入线圈、线圈上有车、车辆离开线圈,最终由面板上 的DIP2、DIP3决定。见右图在车辆行驶方向判别模式(DIP1为 ON )时:车辆由线圈A 进入线圈B 的方向信号由继电器B2输出,接18、19引脚;车辆由线圈B 进入线圈A 的方向信号由继电器A2输出,接15、16引脚。A2和B2的输出类型由面板上的DIP2和DIP3设置选择(见“选择继电器2输出”)。 无论线圈工作在何种模式,继电器A1始终只输出线圈A 的有车存在信号(不能改变),接5、6引脚;继电器B1始终只输出线圈B 的有车存在信号(不能改变),接8、9引脚。 ■ 检测器复位 当接通电源或改变面板上灵敏度开关时,会自动复位为无车状态。 ■ 工作状态指示 接通电源或按复位按钮后,自动校准过程约2秒,面板上的状态指示灯会长亮2秒。在校准期间,如有车停在线圈上会当作无车处理。自动校准后,当线圈上有车时,对应状态指示灯点亮;当线圈上无车时,对应状态指示灯熄灭。如果检测器在工作中未检测到线圈或线圈短路,状态指示灯会持续闪烁。 ■ 调试灵敏度 灵敏度调节使用面板上的旋转编码开关,共有十档,“0”为最低,“9”为最高。左侧的编码开关A 对应线圈A ;右侧的编码开关B 对应线圈B 。在试运行时,先将灵敏度设在“5”档,在实际测试后如检测器没有反应则应将灵敏度调高一档,如此反复几次直至检测器达到稳定状态。 注意: “8”档或以上档位应谨慎使用!若地感线圈匝数较少时,灵敏度调至“8”或以上档位,反应太快,会导致线圈上没有车时也会误检测为有车,出现“假死”现象。 ■ 调整工作频率 当发现车辆检测器与相邻车辆检测器、中远距离读卡器、遥控设备等有干扰时,可以尝试调整工作频率,减轻或消除干扰。 调整方法:首先拆下面板四个角上的螺丝,用手指捏紧接线端子往外拉出电路板,按上图设置拨码开关SW1或 SW2的DIP1、DIP2位置,选择相应频率。SW1用于调整线圈A 的频率,SW2用于调整线圈B 的频率。一般频率越低,稳定性越好。 线圈长度建议2~3米,具体视车道而定,但线圈离两侧路肩距离大于1/2线圈宽。小 汽 车:宽1米,绕5~7圈小型货车:宽1.2米,绕5~7圈中型货车:宽1.5米,绕4~6圈 大型货车或拖挂车:宽一般1.8米,长一般3.5米,绕4-5圈 车辆由线圈A 进入线圈B 车辆离开线圈A 后,继电器B2闭合导通直至车辆离开线圈B 车辆离开线圈A 后,继电器B2闭合导通0.5秒然后断开车辆进入线圈B 后,继电器B2闭合导通直至车辆离开线圈B 车辆进入线圈B 后,继电器B2闭合导通0.5秒然后断开 车辆由线圈B 进入线圈A 车辆离开线圈B 后,继电器A2 闭合导通直至车辆离开线圈A 车辆离开线圈B 后,继电器A2 闭合导通0.5秒然后断开 车辆进入线圈A 后,继电器A2 闭合导通直至车辆离开线圈A 车辆进入线圈A 后,继电器A2 闭合导通0.5秒然后断开

最新几种主要车辆检测器的对比

几种主要车辆检测器 的对比

几种主要检测技术的对比 道路交通信息采集是智能交通系统的一项重要内容。在道路交通信息采集技术中,环形线圈车辆检测器因其技术成熟、易于掌握、初期建设成本较低而成为当前国内用量最大一种检测设备。但是,环形线圈检测器同时具有获得的信息量少,难于安装和较低的灵活性等缺点。为克服以上不足,微波车辆检测器和视频车辆检测器技术得以发展并应用于城市道路和高速公路的交通信息检测。 下面对几种检测技术的优缺点做具体分析 随着道路交通检测技术的发展,基于视频图像处理、模式识别技术的视频车辆检测器应运而生。视频车辆检测器具有采集信息量大、区域广泛、设定灵活、调整维护简便等特点,与传统的交通信息系统采集技术相比,视频检测器可提供现场的视频图像。 1.地感线圈 环形线圈车辆检测器是传统的交通检测器,其工作原理为在道路上埋设感应线圈,感应线圈与车辆检测器连接。当车辆经过线圈时,由于线圈电感量的变化,车辆的通过状态变化将被检测到,同时将状态信号传输给车辆检测器,由其进行采集和计算。 环形线圈车辆检测器相对于其他检测器具有低成本、高可靠性、高检测精度、全天候工作的优点,是目前应用最广泛的车辆检测器。 缺点:1、按照环形线圈施工要求,检测线圈在初次安装时要切割路面,植入环形检测线圈。封路施工不可避免会造成交通阻塞,对于城市主干道交通产生影响。2、埋植线圈的切缝容易使路面受损,缩短路面及检测线圈的使用寿命。实际使用中尤其对沥青路面的损坏更为严重,导致检测线圈的损毁率居高不下,使用和维护成本上升,影响系统的可用性。3、检测线圈容易受到路面下沉、裂缝、冰冻等环境影响,产生误报。4、受自身测量原理限制,当车流拥堵、车辆间距较小时,其测量精度大幅度下降,不适于城市交叉路口交通流检测。5、环形线圈车辆检测器一经设置即固定不变,在道路通行状况改变时调整困难。 2.微波车辆检测器 微波车辆检测器是以微波对车辆发射电磁波产生感应原理为基础。以RTMS微波为例,其工作方式为:悬挂于路侧,在扇形区域内发射连续的低功率调制微波,

双路车辆检测器说明书中文

双路车辆检测器说明书中 文 The latest revision on November 22, 2020

线圈型车辆检测器使用说明 NO:9001- 0410-110 ■安装检测器 ■接线图 车车辆检测器必须安装在离探测线圈尽可 能近的、防水防潮的干燥环境里。在安装车辆 检测器时,应与其它设备或装置保持一定的距 离(约10—20mm)以方便维护。并且应当注意 其工作环境温度不要超过55oC。检测器能否良 好工作在很大程度上取决于它所连接的感应线 圈。线圈的几个重要参数包括:线圈材料,线 圈形状和是否正确施工埋设。关于线圈的安装请参阅后续章节的“线圈安装指南”。) ■使用及工作指示 接通电源后,检测器将会自动校准。校准过程约3 秒。校准进行时,面板上的LED会闪烁(亮秒,灭秒)几 次。在校准期间,不应有车停在线圈上。当校准成功后, 面板上的“检测”指示灯熄灭,当线圈上有车通过时,面 板上的“检测”指示灯亮起,且存在输出继电器1(7、8 脚)吸合导通;若在校准过程中未检测到线圈或线圈电感 值不在允许范围内,对应的LED指示灯会不停地闪烁。 其闪烁情况如下: 线圈未连接: 线圈电感太小: 线圈电感太大: ■工作频率调节 线圈频率调整用设置在电路板上的两个DIP开关进行。如进行调整,必须先关闭电源再将检测器从插座上取下并拆下胶壳。DIP开关5(LB)用于设置线圈2的频率;DIP开关6(LA)用于设置线圈1的频率。开关在“ON”位置表示低频频工作方式,在“OFF”位置表示高频工作方 式。在频率调整后,检测器会在重新上电复位时自动进行标定。 注意:双路车检在出厂时已将线圈1设为高频,线圈2设为低频。所以用户一般不需对线圈频率作调整。 ■灵敏度调节 灵敏度调节使用顶端面板上的滑动开关,有三档:H为高灵敏度,M为中灵敏度,L为低灵敏度。在试运行时,先将灵敏度设在较低档位,在实际测试后如果车辆检测没有反应,则应将灵敏度调高一档,如此反复,直至车检器稳定、正常工作。 ■继电器输出方式 当有车辆进入线圈时,继电器的输出方式由主控板上的拔码开关设定(见左图)。 双路车检有两个线圈,对应有两个输出继电器。线圈1(7、8引脚)对应继电器1(5、6、10引脚)的输出为固定的存在输出信号,线圈2(7、9引脚)对应继电器2(3、4、11引脚)的输出信号由DIP拔码开关的DIP1、DIP2、DIP3(SW0、SW1、SW2)决定。 表一双路 A-D型表二、H/ I/ K 车辆存在检测模式输出信号与设置车辆方向(计数)检测模式输出信号与设置 ■检测器复位 当检测器上电时,或改变顶端面板上灵敏度开关时,检测器会进行复位操作。在复位后,检测器会被初始化为无车状态。 ■技术参数 工作电源:AC 220V±10% 110V±10% 24V±5% 12V±5% DC 24V±5% 12V±5% 频率范围:20KHz—170KHz 灵敏度:三级可调 反应时间:180毫秒 环境补偿:自动飘移补偿 线圈电感:推荐80uH—300uH(包含连接线)最大50uH—500uH(包含连接线) 连线长度:最长5米,每米至少绞合20次,总电阻小于10欧姆。 储存温度:-40oC到+85oC 工作温度:-20oC到+65oC 相对湿度:最大95% 注:在测车辆方向时,两个线圈的埋设距离不能超 过车身长度,务必使车能够同时压在两个线圈上。

工程检测仪器操作手册.

工程检测仪器操作手册 、回弹仪操作手册 1、回弹仪使用时的环境温度应为-4—40r检测时回弹仪的轴线应始终垂直于 结构或构件的混凝土检测面缓慢施压准确读数快速复位,测点宜在测区范围内均匀 分布,相邻两测点的净距不宜小于20mm,测点距外露钢筋预埋件的距离不宜小于 30mm ,测点不应在气孔或外露石子上,同一测点应弹击一次每一测区应记取16 个回弹值,每一测点的回弹值读数估读至1; 2、每一结构或构件测区数不应少于10 个,对某一方向尺寸小于4.5m 且另一方 5 个相邻两测区的间距向尺寸小于0.3m 的构件其测区数量可适当减少但不应少于 应控制在2m 以内,测区离构件端部或施工缝边缘的距离不宜大于0.5m 且不宜小于0.2m; 3 、测区应选在使回弹仪处于水平方向检测混凝土浇筑侧面当不能满足这一要求时可使回弹仪处于非水平方向检测混凝土浇筑侧面表面或底面 4 、测区宜选在构件的两个对称可测面上也可选在一个可测面上且应均匀分布在构件的重要部位及薄弱部位必须布置测区并应避开预埋件 5 、测区的面积不宜大于0.04m2 6 、检测面应为混凝土表面并应清洁平整不应有疏松层浮浆油垢涂层以及蜂窝 麻面必要时可用砂轮清除疏松层和杂物且不应有残留的粉末或碎屑;表面潮湿时,不得进行回弹; 7、对弹击时产生颤动的薄壁小型构件应进行固定 8、回弹值测量完毕后应在有代表性的位置上测量碳化深度值测点表不应少于 构件测区数的30% ,取其平均值为该构件每测区的碳化深度值,当碳化深度值极

差大于 2.0mm 时,应在每一测区测量碳化深度值。碳化深度值测量可采用适当的工具在测区表面形成直径约15mm 的孔洞,其深度应大于混凝土的碳化深度,孔洞 中的粉末和碎屑应除净并不得用水擦洗,同时应采用浓度为1%的酚酞酒精溶液滴在 孔洞内壁的边缘处,当已碳化与未碳化界线清楚时再用深度测量工具测量已碳化与 未碳化混凝土交界面到混凝土表面的垂直距离测量不应少于 3 次,取其平均值每次读数精确至0.5mm; 9、回弹仪使用完毕后应使弹击杆伸出机壳清除弹击杆杆前端球面以及刻度尺 表面和外壳上的污垢尘土回弹仪不用时应将弹击杆压人仪器内经弹击后方可按下按钮锁住机芯将回弹仪装人仪器箱平放在干燥阴凉处 10、回弹仪具有下列情况之一时应进行常规保养 1 弹击超过2000 次; 2 对检测值有怀疑时; 3 在钢砧上的率定值不合格; 11、常规保养应符合下列规定 1 使弹击锤脱钩后取出机芯然后卸下弹击杆取出里面的缓冲压簧并取出弹击锤弹击拉簧和拉簧座; 2 机芯各零部件应进行清洗重点清洗中心导杆弹击锤和弹击杆的内孔和冲击面清洗后应在中心导杆上薄薄涂抹钟表油其他零部件均不得抹油 3 应清理机壳内壁卸下刻度尺并应检查指针其摩擦力应为0.5-0.8N; 4 不得旋转尾盖上已定位紧固的调零螺丝; 5 不得自制或更换零部件; 二、楼板测厚仪操作手册

相关文档
最新文档