接地设计规范和指南

接地设计规范和指南
接地设计规范和指南

目录

第一章概述 (1)

1.1 “地”的定义 (3)

1.2 “接地”的分类及目的 (4)

1.2.1 接“系统基准地” (4)

1.2.2 接“静电防护与屏蔽地” (4)

1.2.3 接“大地” (4)

1.3 接地设计的基本原则 (4)

1.4 各种地相连的六种情况 (5)

1.5 静电防护与屏蔽地 (5)

1.5.1功能单板静电防护与屏蔽地的设计 (5)

1.5.2后背板静电防护与屏蔽地的设计 (6)

第二章设备的接地设计 (7)

2.1 立式大机架设备的接地设计 (7)

2.1.1 多层机框的接地 (7)

2.1.2 设备接大地 (7)

2.2 台式设备的接地设计 (8)

2.3 射频设备的接地设计 (10)

2.3.1 接地要求 (10)

2.3.2 射频设备的接地设计 (10)

2.3.3 射频设备天馈系统的接地设计 (10)

2.4 监控设备的接地设计 (10)

2.4.1 监控设备的特殊性及其接地要求 (10)

2.4.2 模拟量输入电路 (11)

2.4.3 开关量输入电路 (12)

2.4.4 开关量输出电路 (12)

2.4.5 视(音)频模拟电路 (13)

2.4.6 监控设备接大地 (13)

2.5 浮地设备的接地设计 (13)

2.5.1 浮地的基本概念 (13)

2.5.2 浮地设备的特殊问题 (14)

2.5.3 浮地设备的接地设计 (14)

2.5.4设计案例 (15)

2.5.4.1 问题描述和原因分析 (15)

2.5.4.2 设计改进和实验结果 (15)

第三章PCB的接地设计 (16)

3.1 共模干扰、信号串扰和辐射 (16)

3.1.1 共模干扰 (16)

3.1.2 串扰 (16)

3.1.3 辐射与干扰 (17)

3.2 PCB接地设计原则 (17)

3.2.1 确定高di/dt电路 (17)

3.2.2 确定敏感电路 (17)

3.2.3 最小化地电感和信号回路 (18)

3.2.4 地层分割和地层不分割的合理应用 (18)

3.2.5 接口地保持“干净”,使噪声无法通过耦合出入系统 (18)

3.2.6 电路合理分区,控制不同模块之间的共模电流 (18)

3.2.7贯彻系统的接地方案 (18)

3.3 双面板的接地设计 (18)

3.3.1 梳形电源、地结构 (18)

3.3.2 栅格形地结构 (19)

3.4 多层板的接地设计 (20)

3.4.1 多层板的好处 (20)

3.4.2 信号回路 (20)

3.4.2.1 信号回流路径 (20)

3.4.2.2 回流分布 (20)

3.4.2.3 信号回路的构成 (21)

3.4.3 参考平面被分割的影响 (22)

3.4.3.1 参考平面分割或开槽 (22)

3.4.3.2 时钟信号走在地平面上 (22)

3.4.3.3 参考平面上通孔的隔离盘尺寸过大 (22)

3.4.4 参考平面的设计 (23)

3.4.4.1 数字电路与模拟电路之间没有信号联系 (24)

3.4.4.2 数字电路与模拟电路之间联系的信号线较少且集中 (24)

3.4.4.3 数字电路与模拟电路之间联系的信号线较多且难以集中在一

块 (26)

3.4.5 后背板的接地设计 (27)

3.4.6 PCB的叠层设计 (27)

3.4.6.1 PCB的叠层设计的原则 (27)

3.4.6.2 PCB的叠层设计举例 (28)

3.4.7 地平面的处理 (29)

3.5 有金属外壳接插件的印制板的接地设计 (31)

3.6 PCB的布局设计 (31)

3.6.1 混合电路的分区 (31)

3.6.2 数字电路的分区 (32)

3.6.3 高频高速电路和敏感电路的布局 (32)

3.6.4 保护器件的布局 (32)

3.6.5 去耦电容的放置 (32)

3.6.6 与后背板相连的插座上地线插针的设计 (33)

3.7 PCB的布线设计 (33)

3.7.1 3W原则 (33)

3.7.2 保护线 (34)

3.7.3 高频高速信号走线 (34)

3.7.4 敏感信号信号走线 (34)

3.7.5 I/O信号走线 (34)

3.7.6 金属壳体的高频高速器件 (34)

3.8 设计案例 (35)

3.8.1 问题描述 (35)

3.8.2 原因分析 (35)

3.8.3 改进措施 (35)

3.8.4 试验结果 (35)

第四章元器件的接地设计 (36)

4.1 机壳上的元器件的接地设计 (36)

4.2 功能单板上元器件的接地设计 (37)

4.3 后背板上元器件的接地设计 (37)

4.4 金属部件和解插件的接地设计 (37)

第五章线缆的接地设计 (38)

5.1 信号电缆的类型 (38)

5.1.1 双绞线 (38)

5.1.2 同轴电缆 (38)

5.1.3 带状电缆 (38)

5.2 信号电缆线的接地设计 (38)

5.2.1 屏蔽双绞线的接地 (38)

5.2.2 同轴电缆的接地 (38)

5.2.3 带状电缆的接地 (39)

第六章搭接 (39)

6.1 搭接及其目的 (39)

6.2 搭接的方式与方法 (39)

6.2.1 搭接的方式 (39)

6.2.2 搭接的方法 (40)

6.2.2.1 直接搭接的方法 (40)

6.2.2.2 间接搭接的方法 (40)

6.3 搭接的要求和处理 (40)

第一章概述

1.1 “地”的定义

大地——地球

工作地——信号回路的电位基准点(直流电源的负极或零伏点),在单板上可分为数字地GNDD与模拟地GNDA。数字地连接数字元器件接地端,模拟地连接模拟元器件接端。

-48V电源地—— -48V电源正极

保护地——连接雷击浪涌过压保护元器件接地端形成的地线。

静电防护与屏蔽地——连接ESD防护器件接地端、接插件金属外壳和屏蔽装置形成的地线。

交流保护地——低压变压器中性点接地端引出的地线。

防雷地——连接建筑物防雷接闪器或铁塔避雷针到接地网的地线。

1.2 “接地”的分类及目的

1.2.1 接“系统基准地”

单板、部件内部各部分电路的信号返回线与电位基准点之间建立良好的连接,其目的是为系统各部分提供公共的参考电平。

1.2.2 接“静电防护与屏蔽地”

ESD防护器件接地端、具有金属外壳的元器件的金属外壳、屏蔽装置接到静电防护与屏蔽地,其目的是为ESD电流提供一个低阻抗的泄放通道、确保屏蔽装置的屏蔽效果。

1.2.3 接“大地”

安全接大地——电子设备的金属外壳与大地相连接,其目的是防止当事故状态时金属外壳上出现过高的对地电压而危机操作人员的安全,在非事故状态使静电电流泄放到地;

保护接大地——保护地与大地相连接,其目的是为大电流提供一个泄放通道,使大电流分流,保护电路免遭损害;

工作接大地——工作地与大地相连接,其目的是为通讯系统提供稳定的基准电位。

1.3 接地设计的基本原则

接地设计的基本原则是电位相同、内部电路不互相干扰、抵御外来干扰。各种地电位相同使不同性质的电路有一个统一的基准电位,保证电路功能的顺利实现。电位相同要求不同的地就近相连。相互干扰是指较大的泄放电流进入较细的地线回路(例如保护地电流进入工作地回路),从而引起过流、地线上电位波动过大或无用信号的耦合(例如高速逻辑电路对模拟电路的开关干扰)等等,内部电路不互相干扰要求不同的地在较远处相连。所以,电位相同和不互相干扰是一对矛盾的双方,在何处相连应考虑哪一方占主导地位。当设备受到的外来干扰(例如:ESD干扰,EFT干扰,辐射干扰)较大时,提高设备对外来干扰的抵御能力上升为主要矛盾,这时,各种地应合并为大面积接地。

1.4 各种地相连的六种情况

(1)电位基准一致性要求严格而互相之间干扰很小——各种地就近相连,例如模数转换芯片的数字地和模拟地需直接相连。

(2)电位基准一致性要求较严格而互相之间有干扰——各种接地平面除了在印制板插座处相连外,还要在不同电路的互连信号线集中的地方相连(桥接),以减少信号回路面积。例如模拟地平面和数字地平面的相连。

(3)电位基准一致性要求不严格而互相之间有较大干扰——各种接地母线在后背板处相连。例如-48V地与工作地在后背板上(靠近-48V电源输入插座位置)相连。

(4)电位基准一致性无要求而互相之间有大干扰——各种接地母线在接地汇集线或机壳接地螺栓处相连。例如工作地与保护地在接地汇集线或机壳接地螺栓处相连。

(5)印制板接有金属外壳接插件,在接插件附近各种地(保护地除外)应合并为大面积接地以增大其静电容量。例如9芯插座(RS232接口)附近各种地(保护地除外)应合并为大面积接地。

(6)印制板上不同电路互连的信号线很多,应遵循“分区不分割”的原则。例如,互连信号线很多的模拟电路和数字电路应分区布局和布线,但共用一个完整的不分割的接地平面。

1.5 静电防护与屏蔽地

1.5.1功能单板静电防护与屏蔽地的设计

功能单板静电防护与屏蔽地GNDE的设计图见1-1。

在PCB每个层面的3个边缘设置静电防护与屏蔽地GNDE母线,宽度3~5mm,每隔10~13mm用过孔连通,在靠近小面板的一边,GNDE母线断开5mm。GNDE母线与内部电路和工作地隔离2~3mm。

ESD防护器件的接地端、按钮和接插件的金属外壳应尽可能与GNDE母线相连,见图1-1。

图1-1 功能单板静电防护与屏蔽地母线的设计

1.5.2后背板静电防护与屏蔽地的设计

后背板静电防护与屏蔽地GNDE的设计见图1-2。

在后背板的内层面(后背板与机壳结合的层面)4周和外层面4周设置一块环型区域作为静电防护与屏蔽地GNDE母线。宽度为15mm~20mm,并用适量的过孔连通,内层面环型区域与机壳结合的部分不涂绿油,外层面固定螺丝处不涂绿油,固定螺丝孔要金属化,借助于固定螺丝保证静电防护与屏蔽地与机壳良好搭接。

在后背板上,ESD防护器件的接地端和接插件的金属外壳与GNDE母线相连。功能单板的GNDE母线通过插座的最上排插针和最下插针与后背板的GNDE母线相连。

后背板应设置完整的一层作为工作地,工作地层4周应与静电防护与屏蔽地重叠5mm 以上,以提高设备后背板的屏蔽效果。但工作地应与固定螺丝孔边缘相距5mm以上。

图1-2 后背板静电防护与屏蔽地母线的设置

第二章设备的接地设计

2.1 立式大机架设备的接地设计

2.1.1 多层机框的接地

一个设备的多层机框,各机框的部件的工作地和保护地应分别引线接到相应的汇流条上而不能靠导轨条、绞链、螺丝等部件去接地。

2.1.2 设备接大地

(1)工作地、保护地、-48V地连接到机壳接地螺栓,再由机壳接地螺栓用接地线引至接地桩或接地汇集线上,见图2-1。如果-48V电源与±5V或±12V电源有共地的要求(如用户板),-48V地与工作地在后背板上(靠近-48V电源输入插座位置)再相连。如果机房接地汇集线和-48V供电线在地面走线,则接地螺栓应设置在机架下方。或者机架上下方均设置接地螺栓,以方便灵活接线。

(2)对于有多个机架的设备,各个机架的工作地、保护地和机壳接地分别用接地线引到接地桩或接地汇集线上。

(3)对于三相五线制交流供电的设备,机壳要接交流保护地线。

(4)对于无法接大地的载体,如飞机、轮船、汽车,可把其机身的金属壳体当成大地,设备的工作地、保护地和机壳接地直接接到其金属壳体上。

(5)接地线材料为多股铜线,对于安装在移动通信基站的设备,接地线截面积≥35mm 2,其他设备,接地线截面积≥16mm2。接地线两端应接铜鼻子。

(6)设备机壳接地螺栓应足够大(8M),位置要靠近接地汇集线,接地螺栓处应有明显的接地标志。

(7)工作地、保护地、-48V地和设备机壳接地以及建筑防雷接地共用一组接地体,称为联合接地,以避免雷击时出现的地电位反击效应。

2.2台式设备的接地设计

(1)塑料外壳,220VAC三芯插头供电

典型的设备电脑显示器、小型示波器等。220VAC电源通过开关电源或变压器整流稳压电源变换称为直流电源给设备电路供电。三芯插头的接地端接开关电源的地、屏蔽壳和变压器的屏蔽壳,内部电路地处于悬浮状态或者一点接三芯插头的接地端,见图2-2和图2-3.塑料外壳的内层如果镀涂导电屏蔽层,也要接内部电路地。与其他设备互联时,电路工作地作为接口接地,其输出接口芯线通常串接1KΩ电阻防止对地短路,输入接口通常带有隔音电容。

(2)金属外壳,220VAC三芯插头供电

典型的设备家用PC主机、仪器仪表等。220VAC电源通过开关电源或变压器整流稳压电源变换成为直流电源给设备电路供电。三芯插头接地端子引入设备后就近接在外壳上,内部电路地处于悬浮状态或者一点或多点接三芯插头的接地端,见图2-4和图2-5。与其他设备互联时,电路工作地作为接口接地,输出接口芯线通常串接1KΩ电阻防止对地短路或使用变压器隔离输出,输入接口通常带有隔直电容或变压器。

图2-1 立式大机架设备的接地设计

图2-2 塑料外壳,内部电路接地处于悬浮状态

图2-3 塑料外壳,内部电路地一点接三芯插头的接地端

图2-4 金属外壳,内部电路接地处于悬浮状态

图2-5 金属外壳,内部电路地一点接三芯插头的接地端

2.3 射频设备的接地设计

2.3.1 接地要求

射频电路工作频率高,容易引起无用信号的耦合,要求隔离不用频率的电路,接地引线短,分布参数小,地电位稳定。

2.3.2 射频设备的接地设计

(1)射频设备内,由于相互隔离的要求比较严,大多使用金属外壳封装,金属外壳最好整体浇注成型,电路的地线与金属外壳紧密相连,即外壳作为工作地使用。

(2)为防止接地环路过大,接地点的间距应小于最高频率波长的1/100,至少小于最高频率波长的1/20。

(3)射频设备通过螺钉直接和机壳连接,并保证搭接的直流电阻不大于2.5mΩ。

(4)机壳通过接地线和大地连接。

2.3.3 射频设备天馈系统的接地设计

(1)天馈系统一般使用7/8或1/2英寸射频电缆和基站或附属设备相连,根据使用射频电缆的类型,对应使用相应的接地卡和防雷地通过螺钉就近连接,为保证接地的可靠性,每一个接地卡的接地线最好对应一个安装孔。

(2)铁塔上架设的波导馈线、同轴电缆金属外护层应分别在上、下端及进入机房入口处外侧就近接地,当馈线及同轴电缆长度大于60m时,其屏蔽层宜在它的中间部位增加一个接地连接点,室外走线架始末两端均应坐接地连接。

(3)城市内孤立的高大建筑物或建在郊区及山区,地处中雷区(年平均雷暴日数在25~40天以内的地区)以上的无线通信局(站),当馈线采用同轴电缆时,应在同轴电缆引进机房入口处安装标称放电电流不小于5kA的同轴浪涌保护器,同轴浪涌保护器接地端子的接地引线应从天馈线入口处外侧的接地线、避雷带或地网引接。

(4)基站或附属设备的接地电阻<5Ω。

2.4 监控设备的接地设计

2.4.1 监控设备的特殊性及其接地要求

监控设备可分为三类:现场监控模块、监控中心设备、视音频设备。各模块单元由各种电路组成,有模拟电路、数字电路、电源电路,其中,模拟电路有模拟量输入电路、视频接口电路、音频接口电路;数字电路有开关量接口电路、单片机电路、各种通讯接口电路。

监控设备具有下列特殊性:

(1)监控设备接地设计和工程接地形式的多样化。

(2)监控设备通过I/O通道监控被监控设备,而各种工业测量和监控现场电磁环境十分复杂,所以监控设备的I/O通道极易受到共模干扰影响,同时,被监控设备也可能受到干扰而破坏其工作状态。

(3)被监控对象可能存在高电压,对监控设备存在威胁。

监控设备接地要求设计如下:

(1)监控系统应能监控具有不同接地要求的多种设备,任何监控点的引入都不能破坏被监控设备的接地系统。

(2)监控模块的冰箱外壳应接地良好,并具有抵抗和消除噪声干扰的能力。

(3)监控系统应有很好的电气隔离性能,不得因监控系统而降低被监控设备的交直流隔离度、直流供电与系统的隔离度。

(4)监控系统应具有良好的电磁兼容性,被监控设备处于任何工作状态下,监控系统应能正常工作;同时监控设备本身不应产生影响被监控设备正常工作的电磁干扰。

2.4.2 模拟量输入电路

(1)模拟量输入电路示意图见图2-6。各路输入的模拟信号在PCB上多路装换开关前共地,形成模拟地GNDA,GNDA浮地,不与大地相连。若被监控设备间不能共地,应有如下电位隔离或共模干扰滤波措施:

1)采用多个现场监控模块分别测量被监控设备,使被监控设备模拟信号不共地;

2)在被监控设备或传感器与现场监控模块间加入隔离电量变送器;

3)在被监控设备或传感器现场监控模块间加入共模扼流圈,抑制高频共模干扰。

图2-6 模拟量输入电路示意图

(2)模拟信号经A/D转换后,A/D转换器的数字地引脚应与模拟地引脚相连,数字信号通过光耦CPU电路隔离,隔离抗电强度满足加强绝缘要求;并通过DC-DC模块与主电源部分进行隔离,隔离抗电强度满足基本绝缘要求,保证模拟量电路与其他电路的隔离能力。基本绝缘、加强绝缘的爬电距离、电气间隙和抗电强度见表2-1。

表2-1 监控产品各工作电压要求的基本绝缘、加强绝缘的爬电距离和电气间隙

2.4.3 开关量输入电路

开关量输入电路示意图见图2-7。各路输入的开关量信号分别接到光耦检测电路,各路开关量的地分别隔离,并分别通过光耦与CPU电路部分进行隔离,隔离抗电强度应满足加强绝缘要求。并设计足够的爬电距离和电气间隙,保证开关量电路与其他电路的隔离能力。绝缘距离设计参见表2-1。

图2-7 开关量输入电路示意图

2.4.4 开关量输出电路

开关量输出电路示意图见图2-8。各开关量分别通过继电器输出,各路开关量的地也分别隔离,并通过继电器及光耦与CPU电路部分电位隔离,隔离抗电强度满足加强绝缘要求:通过DC-DC模块与主电源部分电位隔离,隔离抗电强度满足基本绝缘要求。并设计足够的爬电距离和电气间隙,保证开关量输出电路与各电位(包括保护地)间的隔离能力。绝缘距离设计参见表2-1。

图2-8 开关量输出电路示意图

2.4.5 视(音)频模拟电路

(1)视(音)频模拟电路采用多点接地方式连接基准单位,并通过接地桥与CPU电路数字地相接;

(2)视(音)频模拟电路的基准电位可设计跳线或可拆卸接地簧片实现接大地或不接大地。现在应用优先考虑良好接大地,以减少对外骚扰并提高抗扰性,除非现场存在强烈地环路干扰。

2.4.6 监控设备接大地

(1)各设备应在机房连接地汇集线,与大地的接地电阻要求小于4Ω;

(2)设备信号及通讯线应采用屏蔽电缆,接地情况见第五章线缆接地;

(3)设备配置的防雷器应就近保护地安装;

(4)设备接地电缆额定电流不低于设备额定电流的二倍,并采用铜鼻子与机房的接地汇集线连接;

(5)对于图像采集系统,由于图像采集设备已接地,摄像机的供电电源中保护地通常不接,以免形成地环路干扰视频效果。

(6)由于计算机、图像设备、传输交换设备等均直接接地,系统集成项目设备间一般存在地环路,若发现不可接受的干扰,可采用隔离、滤波、浮地、电容接地等技术措施解决,但要注意不能降低系统的性能、安全性和防雷能力。

2.5 浮地设备的接地设计

2.5.1 浮地的基本概念

对电子通讯设备而言,浮地是指设备地线系统或电路的地线在电气上与大地绝缘,相对

于大地是悬浮的。浮地有下列几种应用类型。

(1)无法与大地相连接的场合,如壁挂式的小型设备、台式小型终端设备。

(2)在磁耦合而没有电气连接的电路中(如变压器耦合的内部电路)。

(3)为避免接地环路形成的浮地电路,如通过变压器、光电耦合器隔离形成的电路。2.5.2 浮地设备的特殊问题

浮点设备会出现一些特殊问题:

(1)易产生静电荷的积累,引起静电放电。

(2)在遭受雷击浪涌信号干扰时,由于不能泄放到大地,容易出现故障甚至损坏设备。

2.5.3 浮地设备的接地设计

(1)基本原则

由于浮点设备或电路不与大地连接,如何提高设备的ESD抗扰性和雷击浪涌抗扰性就成为设计的关键。基本原则是将接口与内部电路实现有效的隔离。

(2)电路划分和布局

把电路划分为接口电路和内部电路,使接口电路和内部电路布局在不同的区域,使敏感器件远离接口器件。

(3)地线设置

1)由于设备有借口,不可避免地会引入干扰信号,应在靠近接口的局部区域设置保护地平面,接口浪涌保护器件和ESD防护器件的接地脚接到保护地平面上,由保护地平面吸收干扰信号。

2)为了给内部电路提供公共的参考电平,应设置工作地平面,并遵循“分区不分割”的原则,不同的电路分区安排,工作地平面不分割保持完整,减少地电位的波动,提高内部电路的抗干扰能力。

(4)有效隔离

由于接口保护器件没有接大地,受到干扰时,保护地平面电位波动很大。工作地平面应与保护地平面隔离足够距离。以避免干扰信号串入。

(5)信号耦合

接口电路与内部电路通过接口变压器或光电耦合器实现信号的耦合。

(6)内部电路的抗干扰措施

1)恰当的布局和布线使信号线尽可能短。将敏感的元器件(一般是信号处理芯片、控制芯片、FPGA等)尽量布局在离接口较远的地方;

2)恰当的层面安排使信号回路面积可能小;

3)敏感信号线(如复位信号线和低电平信号线)尽可能在信号里层走线,且应该处于相邻层厚度最小的层上,领近忧完整的参考平面;

4)敏感器件之间的较长的电源线或信号线宜每隔一定间隔与地线的位置对调。以抵消干扰信号的影响。

5)在元器件的电源引脚和接地引脚之间安装高频旁路电容和10μF的钽电容。

2.5.4设计案例

2.5.4.1 问题描述和原因分析

某通讯设备,现场无法接大地,是典型的浮地设备。该设备单板上有RS232接口、10Base-T接口和E1接口,初期设计,接口电路采用了保护器件,但是,ESD防护试验和雷击浪涌保护试验均通不过。

分析初期设计的PCB图,由于该设备是浮地设备,内部电路与接口电路没有实现有效的隔离,静电干扰信号和浪涌干扰信号引起电脑故障。

2.5.4.2 设计改进和实验结果

对原设计进行改进,单板上接口电路和内部电路实现了有效的隔离,分别设置了保护地平面和工作地平面,工作地与保护地隔离17mm,由接口变压器实现信号的耦合,见图2-9。改进后,该设备的各种接口顺利通过了公司规定的ESD防护试验和雷击浪涌保护试验。

图2-9 浮地设备的接地设计示意图

第三章PCB的接地设计

3.1 共模干扰、信号串扰和辐射

PCB中,理想的工作地是电路参考点的等电位平面。但在实际的设计中,工作地被作为信号电流的低阻抗回路。这样就会产生常遇到的三个问题:共模干扰、信号串扰和辐射。

3.1.1 共模干扰

工作地(地线或地平面)具有一定的阻抗,电流流经时会产生压降。流经工作地的电流主要来自两个方面,一是信号的回流;另一个是信号状态发生改变时器件电源的瞬态电流。典型的信号和电源共地逻辑电路PCB上共模电压的产生见图3-1。其中,Vnoise是电流流经工作地时产生的共模噪声电压,该电压引起地电位的波动造成共模干扰。

图3-1 PCB上共模噪声电压的产生

3.1.2 串扰

PCB上相邻的印制线之间存在互感和耦合电容,当信号电压或电流随时间快速变化时,会对周围的信号产生不可忽视的串扰。见图3-2,图3-2(a)是串扰的等效电路。图3-2(b)是集总参数下串扰(Crosstalk)与线间距D和印制线离参考平面高度H之间的关系。

参考平面是与信号线邻进的平面,可以是地平面也可以是电源平面。

3-2 串扰

3.1.3 辐射与干扰

PCB上的快速变化的电流回路,其作用相当于小回路天线,它会向外进行电磁场辐射。图3-3(a)属于差模辐射方式。辐射的电场强度与回路中电流的大小Io、回路的面积A、电流频率f的平方成正比。同理,PCB上的信号回路(小回路天线)也会接收周围快速变化的电磁场,而产生干扰电流。

如图3-3(b),当出入PCB的电缆上存在共模电流时,会产生共模辐射。辐射的电场强度与共模电流Icm的大小、共模电流的频率f、线的长度L成正比。同时,它也会对PCB上的电路产生共模干扰。

图3-3 辐射

共模干扰、串扰和辐射干扰都与PCB的接地设计有密切的关系。一个好的设计可以有效控制信号回路的阻抗和回路面积,减小公共阻抗耦合,降低干扰电流的幅度。

3.2 PCB接地设计原则

3.2.1 确定高di/dt电路

PCB设计开始时,首先要确定电路中可能的干扰源。一般是高di/dt电路,如:时钟、总线缓冲器/驱动器、高功率振荡器。在设计时注意隔离和屏蔽。

3.2.2 确定敏感电路

确定电路中易受干扰的敏感电路,如:低电平模拟电路、复位电路、高速数据和时钟。在设计时注意隔离和保护。

3.2.3 最小化地电感和信号回路

信号线应该尽量短,信号回路面积尽量小。对速度较高的电路应采用有地平面的多层板。关键电路包括器件和走线,应尽量远离板的边缘。板的边缘存在较强的干扰场。

3.2.4 地层分割和地层不分割的合理应用

对于混合电路,若数字地与模拟地分割,不会出现或能够很好解决信号跨越和信号回路的问题,可以采用分割。否则,建议采用“分区但不分割”的方法。即:布局和布线时严格区分数字与模拟区域,但地层并不分割开。避免信号跨越而形成大的信号回路。

分割地和电源平面时,特别留意关键网络的信号回路。

3.2.5 接口地保持“干净”,使噪声无法通过耦合出入系统

出入PCB板信号,特别是通过电缆连接的信号易将噪声耦合出入系统,注意保持I/O 地不受到共模干扰。接口部分的地尽量采用平面。

3.2.6 电路合理分区,控制不同模块之间的共模电流

对于纯数字电路,应该注意按电路工作速率高、中、低以及I/O进行分区。以减少电路模块之间的共模电流。

3.2.7贯彻系统的接地方案

PCB上的接地设计,应该贯彻设备系统的总体接地方案。特别是单板、背板,以及与机框机架需要搭接的地方,PCB上应该具有系统要求的安装孔、喷锡或采用其他镀层的导电接触面。

3.3 双面板的接地设计

在进行双面板设计时,首先要构思好电源和地线的安排,然后才确定布局。布线时最安全的方法是,从地线和电源开始,接着布需要与地非常靠近的关键网络。电源和地线有以下两种结构:

3.3.1 梳形电源、地结构

梳形(Comb)也称指形(Finger)结构,见图3-4,地线和电源线由PCB板的一边引出,形状象梳子,由图可以看出信号的回流都必须折回根部,回路面积大。所以,任何电路都不宜直接采用梳形的地结构。

梳形电源、地结构的唯一优点是由于电源、地都在PCB的同一层,有较完整的布线空间。缺点是信号的回路面积大。但只要对较重要的信号加以地保护,布线完成之后将空的地方都敷上地铜皮,并用多个过孔将两层的地连接在一起,这个缺陷可以得到弥补。这种结构只适用于低速电路、PCB上信号的走向较单一、而且走线密度较低的情况。

图3-4 梳形电源、地结构

3.3.2 栅格形地结构

栅格形地结构,见图3-5,电源和地分别从PCB的顶层和底层,以正交方式引出,在电源和地交叉处放置去耦电容,电容的两端分别接电源和地。

与梳形比较,栅格形地结构信号回路较小。栅格形地结构适用于低速的CMOS和普通的TTL电路,但应该注意对较高速的信号加以足够的地保护,使回路面积和回流路径的电感达到最小。

图3-5 栅格形电源、地结构

3.4 多层板的接地设计

3.4.1 多层板的好处

对于RF电路和高数字电路,或者器件的组装密度较高的设计,必须采用多层板(层数大于等于4),电源和地采用平面的形式。其好处有三个:

(1)为信号提供较稳定的参考电平和低电感的信号回路,使所有信号线具有确定的阻抗值;

(2)为电路提供低电感的工作电源供电;

(3)可以控制信号间的串扰。

3.4.2 信号回路

3.4.2.1 信号回流路径

当信号频率很低时,信号的回流主要沿最低电阻路径,即几何最短路径,见图3-6(a),图中的虚线表示信号的回流。当信号达到一定频率(F>1KHz)时,信号的回流集中沿最低电感路径,见图3-6(b)。返回电流主要沿印制线的下方回流。图中的虚线表示信号的回流。

图3-6 信号回流路径

3.4.2.2 回流分布

信号频率较高时回流分布的近视计算公式为:

(公式插图)

防雷接地设计规范标准

第一章总则 第1.0.1条为使建筑物(含构筑物,下同)防雷设计因地制宜地采取防雷指施,防止或减少雷击建筑物所发生的人身伤亡和文物、财产损失,做到安全可靠、技术先进、经济合理,制定本规. 第1.0. 2条本规适用于新建建筑物的防雷设计. 本规不适用于天线塔、共用天线电视接收系统、油罐、化工户外装置的防雷设计. 第1.0.3条建筑物防雷设计,应在认真调查地理、地质、土壤、气象、环境等条件和雷电活动规律以及被保护物的特点等的基础上,详细研究防雷装置的形式及其布置. 第 1.0.4条建筑物防雷设计除应执行本规的规定外,尚应符合国家现行有关标准和规的规定. 第二章建筑物的防雷分类 第2.0.1条建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类. 策2.0.2条遇下列情况之一时,应划为第一类防雷建筑物: 一、凡制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者. 二、具有0区或10区爆炸危险环境的建筑物. 三、具有1区爆炸危险环境的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者. 第2.0.3条遇下列情况之一时,应划为第二类防雷建筑物: 一、国家级重点文物保护的建筑物. 二、国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站、国宾馆、国家级档案馆、大型城市的重要给水水泵房等特别重要的建筑物. 三、国家级计算中心、国际通讯枢纽等对国民经济有重要意义且装有大量电子没备的建筑物. 四、制造、使用或贮存爆炸物质的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和 人身伤亡者. 五、具有1区爆炸危险环境的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者. 六、具有2区或11区爆炸危险环境的建筑物. 七、工业企业有爆炸危险的露天钢质封闭气罐. 八、预计雷击次数大于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物. 九、预计雷击次数大于0.3次/a的住宅、办公楼等一般性民用建筑物. 注,预计雷击次数应按本规附录一计算; 第2.0.4条遇下列情况之一时,应划为第三类防雷建筑物 一、省级重点文物保护的建筑物及省级档案馆. 二、预计雷击次数大于或等于0.012次/a,且小于或等于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物. 三、预计雷击次数大于或等于0.06次/a,且小于或等于0.3次/a的住宅、办公楼等一般性民用建筑物. 四、预计雷击次数大于或等于0.06次/a的一般性工业建筑物. 五、根据雷击后对工业生产的影响及产生的后果,并结合当地气象、地形、地质及周围环境

化工现场通用仪表接地规范知识

接地的自控设备如:仪表盘、仪表柜、仪表箱、DCS/PLC/EDS的机柜和操作站、仪表供电设备、电缆桥架、穿线管、接线盒及铠装电缆的铠装层,以及控制室内的防静电地板。 一般来讲,使用DC24V为电源的现场仪表、变送器等无特殊要求的可不作保护接地。 保护接地的方法 现场仪表桥架、穿线管应每隔30m用接地线与已接地的金属构件相连。特别要指出的是,现场接地绝不能利用储存、输送可燃性介质的金属设备、管道以及与之相连的金属构件进行接地。 控制室的仪表自控设备、机柜、仪表盘等应单独设置保护接地汇流排。其接地体可与电力系统的接地体共用。 仪表保护接地连接线标识颜色为绿色。 二、工作接地 工作接地包括信号回路接地、屏蔽接地、本质安全接地。 1、信号回路接地 在非隔离的信号系统中,应建立一个统一的信号参考点。即进行信号回路接地。通常为直流电源的负极接地。使用非隔离的信号系统设计中一般的首选方法。在运行时,系统受到干扰的情况极其少见。 在隔离的信号系统中,隔离信号可不接地。这里指的隔离是每一个输入/输出信号与其他输入输出信号的电路是绝缘的。做到电源独立、

相互隔离、参考点浮空。在回路较多的系统,不要轻易使用这种方法。 在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/绿线。 2、屏蔽接地 电缆的屏蔽层、排扰线应作屏蔽接地。 在强雷击区,室外架空不带屏蔽的普通多芯电缆,备用芯应屏蔽接地。主要是为了避免雷电在信号线路感应出高电压。 现场接线箱内,端子两侧的电缆屏蔽线应在箱内进行跨接。 同一信号回路,同一屏蔽层应该单点接地。 一般屏蔽接地应在控制室一侧接地。 在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/绿线。 3、本质安全接地 齐纳安全栅的汇流排必须与直流电源公共端相连(主要是保证当电源故障时能够对危险场所进行保护)。其汇流排或导轨作本安接地。 在控制内应设置本安接地汇流排。 接地线颜色标识为兰/绿线。 工作接地的方法 信号及屏蔽接地汇流排、本安接地汇流排通过各自的接地线接至工作接地汇流排。

移动通信基站防雷与接地设计规范YD

移动通信基站防雷与接地设计规范YD5068-98 1 总则 1.0.1 为防止移动通信基站遭受雷击,确保移动通信基站内设备的安全和正常工作,确保构筑物、站内工作人员的安全,特制定本规范。 1.0.2 本规范适用于新建移动通信基站的防雷与接地设计。对于改建、扩建移动通信基站的防雷与接地设计,已建基站的防雷与接地技术发行亦可参照执行。设在综合通信楼内移动通信基站的防雷与接地设计应按YDJ26-89《通信局(站)接地设计暂行技术规定》与本规范一并执行。 对于利用商品房(居民住、高用办公楼等)作机房的通信基站,亦应参照本规范执行,其地网应根据现场环境条件的呆能进行布设,但机房的工作接地、保护接地、建筑防雷接应共用一个地网。 1.0.3 移动通信基站的防雷与接地设计应本着综合治理、全方位系统防护的原则,统筹设计、统筹施工,以确保工程质量,切实做到安全可靠。 1.0.4 移动通信基站的防雷与接地工程设计中采用有理论依据、经实践证明行之有效、并经部级主管部门鉴定合格的产品。 2 术语 2.0.1 环形接地装置 围绕移动通信基站房四周,接规定浓度埋设于地下的封闭环形接地体(含垂直接地体)。 2.0.2 接地体 埋入地下并直接与大地接触的导体。 2.0.3 接地汇集线 引出机房、电力室等各种接地线的公共接地母线 2.0.4 接地引入线 接地汇集线与接地体之间的连接线。 2.0.5 接地线 通信设备与接地汇集线之间的连接。 2.0.6 接地系统 接地线、接地汇集线、接地引入线以及接地体的总称。

3 移动通信基站的离雷与接地 3.1 供电系统的防雷与接地 3.1.1 移动通信基站的交流供电系统应采用三相互线制供电方式。 3.1.2 移动通信基站宜设置专用电力变压器,电力线宜采用具有金属护套或绝缘护套电缆钢管埋地引入移动通信基站,电力电缆金属护套或钢管两端应就近可靠接地。 3.1.3 当电力变压器高在站外时,对于地处年雷暴日大于20天、大地电阻率大于100Ω·m的暴露地区的架空高压电力线路,宜在其上方架设避雷线,其长度不宜小于500m。电力线应避雷线的25°角保护范围内,避雷线(除终端杆处)应每杆作一次接地。 为确保安全,宜在避雷线终端杆的前一杆上,增装一组氧化锌避雷器。 若已建站的架空高压电力线路防雷改造采用避雷线有困难时,可在架空高压电力线路终端杆、终端杆前第一、第三或第二、第四杆上各增设一组氧化锌避雷器,同时在第三杆或和四杆增设一组高大保险丝。 避雷线与避雷器的接地体宜设计成辐射形或环形。 3.1.4 当电力变压器设在站内时,其高大电力线应采用电力电缆从地下进站,电缆长度不宜小于200m,电力电缆与架空电力线连接处三根相线应加装氧化锌避雷器,电缆两端金属外护层应就近接地。 3.1.5 移动通信箕站交流电力变压器高压侧的三根相线,应分别就近对地加装氧化锌避雷器,电力变压器低压侧三根相线应分别地加装无间隙氧化锌避雷器,变压器的机壳、低压侧的交流零线,以及与变压器相连的电力电缆的金属外护运载,应就近接地。出入基站的所有电力线均应在出口处加装避雷器。 3.1.6 入移动通信基站的低压电力电缆宜从地下引入机房,其长度不宜小于50m(当变压器高压侧已采用电力电缆时,低压电力电缆长度不限)。电力电缆在时入机房交流屏处应加装避雷器,从屏内引出的零线不作重复接地。 3.1.7 动通信基站供电设备的正常不带电的金属部分、避雷器的接地端,均应作保护接地,严禁作接零保护。 3.1.8 动通信基站直流工作地,应从室内接地汇集线上就近引接,接地线截面积应满足最大负荷的要求,一般为35~95㎜2,材料为我股铜线。 3.1.9 移动通信基站电源设备应满足相关标准、规范中关于耐雷电冲击指标的规定,交流屏、整流器(或高频开关电源)应设有分级防护装置。 3.1.10 电源避雷器和天馈线避雷器的耐雷电冲击指标等参数应符合相关标准、规范的规定。 3.2 铁塔的防雷与接地 3.2.1 移动通信基站铁塔应有完善的防直击雷及二次感应雷的防雷装置。

仪表接地规范

1. 0. 1本规范适用于石油化工企业自动控制工程的仪表、PLC DCS计算机系统等的接地 设计,装置的改造可参照执行。 本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1 . 0. 2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1. 0. 3 执行本规范时,尚应符合现行有关标准规范的要求。 2 保护接地 2. 0. 1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2. 0. 2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。 2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3 工作接地 3. 0. 1仪表、PLC DCS计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3. 0. 2当仪表、PLC DCS计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3. 0. 3当PLC DCS计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。 3. 0. 4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。 3. 0. 5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。 3. 0. 6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一

石油化工静电接地设计规范

石油化工静电接地设计规范 自2000-10-1 起执行 、八— 前言 本规范是根据中石化(1995)建标字269 号文的通知,由我公司主编的。本规范共分四章和两个附录。主要内容有:静电接地的范围、静电接地方式与静电接地系统接地电阻的要求:静电接地端了、接地板、接地支线、连接线、接地干线、接地体以及具体连接的一般规定:石油化工企业存在静电危害场所的具体规定。 在编制过程中,进行了比较广泛的调查研究,总结了近几年来石油化工有关静电接地设计(施工)经 验,吸取了国外先进标准(日本的《静电安全指南》1988年版、美国《静电作业规范》NFPA77-93《对静 电、闪点和杂散电流引燃的预防》APIRP2003-91、英国《防静电通用规范》BS5958 1983年版等)有关静电 接地范围、非导体带电性指标、物质分类及具体作法等内容。征求了有关设计、生产、科研等方面的意见,对其中主要问题进行了多次讨论,最后经审查定稿。 本规范在实施过程中,如发现需要修改补充之处,请将意见和有关资料提供给我公司,以便今后修订时 我公司的地址是:北京朝阳区安慧北里安园21 号 邮编:100101 本规范的主编单位:中国石化集团北京石油化工工程公司参加编制单位:中国石油天然集团石化安全技术研究所中国石化集团洛阳石油化工工程公司中国石化集团上海金山石油化工工程公司主要起草人:张洁谭凤贵于长一朱耀祥目次 1 总则 2 名词术语 3 一般规定 3.1 静电接地的范围 3.2 静电接地方式 3.3 静电接地系统的接地电阻 3.4 静电接地端子和接地板 3.5 静电接地支线和连接线 3.6 静电接地干线和接地体 3.7 静电接地的连接 4 具体规定 4.1 固定设备 4.2 储罐 4.3 管道系统 4.4 铁路栈台与罐车 4.5 汽车站台与罐车 4.6 码头

仪表及控制系统接地知识科普

仪表及控制系统接地知识科普 仪表及控制系统接地不是一个新的论题,很多问题早有结论,也有正确的设计方法。但在部分工程技术人员中,仍存在一些模糊概念和疑虑。接地的作用、接地的分类很多文献都讨论过,由不同的方法可以有不同的分类,都有道理,本文不再讨论。本文主要讨论接地设计怎么做,为什么。 仪表及控制系统接地的目的主要有两个:一是为人身安全和电气设备的运行,包括保护接地、本安接地、防静电接地和防雷接地等;二是为信号传输和抗干扰的工作接地。但二者又是相关的,不能截然分开。 关于仪表系统接地,我国目前还没有制定相应的国家标准。但电气专业关于保护接地、防雷接地的国家标准中的有关规定,是可以参照执行的。 IEC和ISA等国际组织的有关标准提供了很好的参考,特别是信息技术装置功能接地和保护接地通过等电位连接以及合用接地的规定,为设计人员提供了权威的、明确的工程设计依据。 01 保护接地 保护接地是为人身安全和电气设备安全而设置的接地(也称为安全接地),仪表专业的保护接地与电气专业的保护接地一样,属于低压配电系统接地,因此,应按电气专业的有关标准、规范和方法进行。例如:GBJ65-83《工业与民用电力装置的接地设计规范》等。 对于低压配电系统接地,电气专业有一系列比较完善的设计、计算、试验、施工及验收的标准规范,对接地系统的各个环节都有较完整的理论、实验和方法,绝不是某个接地电阻值就可以概括的。 仪表专业用电一般来自不间断电源UPS或电气专业的建筑物配电,大体可分为控制室用电和现场仪表用电。控制室用电一般采用TN-S系统(整个系统中的保护线和中线是分开的)[1]。现场仪表用电一般采用TT系统(分散接地)。 根据等电位连接原则,仪表用电的保护接地应当是电气接地系统。不但建筑物内实施等电

仪表接地规范标准[详]

1 总则 1.0.1 本规适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。 本规不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1.0.2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0.3 执行本规时,尚应符合现行有关标准规的要求。 2 保护接地 2.0.1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。 2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3 工作接地 3.0.1 仪表、PLC、DCS、计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0.2 当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3.0.3 当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。 3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。 3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一

接地阻值国家标准

接地电阻的国家标准 依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第条:每根引下线的冲击接地电阻不宜大于30Ω。第条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ 16-2008《民用建筑电气设计规范》第14章接地与安全:

第条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。 依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重复接地,接地电阻不应大于10Ω。 石化接地电阻的要求 依据GB50074-2002《石油库设计规范》第14章:电气装置;第条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线

石油化工仪表接地设计规范

石油化工仪表接地设计规范 1范围 本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。 本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。 本规范适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。改造设计可参照执行。 2接地分类 2.1保护接地 2.1.1 保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。仪表及控制系统的外露导电部

分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。 2.1.2 低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。 2.1.3 当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.2 工作接地 2.2.1 仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。本规定中的工作接地,均指仪表及控制系统工作接地。 2.2.2 隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。 2.2.3 非隔离信号通常以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.2.4 仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。

静电接地设计规范标准[详]

静电接地设计规范 1 总则 1.0.1 为了防止和减少静电伤害,贯彻预防为主的方针,采取防静电措施,做到技术先进、经济合理、安全适用,特制定本规范。 1.0.2 本规范适用于存在静电危害的新建、扩建和改建工程的静电接地设计。 1.0.3 静电接地是防止静电危害的主要措施之一。石油化工企业的防静电设计,应由工艺、配管、设备、储运、通风、电气等专业相互配合,综合考虑,并采取下列防止静电危害措施: 1 改善工艺操作条件,在生产、储运过程中应尽量避免大量产生静电荷: 2 防止静电积聚,设法提供静电荷消散通道,保证足够的消散时间,泄漏和导走静电荷; 3 选择适用于不同环境的静电消除器械,对带电体上积聚着的静电荷进时行中和及消散; 4 屏蔽或分隔屏蔽带静电的物体,同时屏蔽体应可靠接地; 5 在设计工艺装置或制作设备时,应尽量避免存在高能量静电放电的条件,如在容器内避免出现细长的导电性突出物和未接地的孤立导体等; 6 改善带电体周围环境条件,控制气体中可燃物的浓度,使其保持在爆炸极限以外; 7 防止人体带电。 1.0.4 静电接地设计,除应符合本规范外,尚应符合国家现地有关强制性标准规范的规定。 静电接地体的接地电阻计算,应符合现行国家标准《工业与民用电力装置的接地设计规范》GBJ65-83的有关规定。 2 名词术语 2.0.1 工业静电industrial static electricity 静电是对观测者处于相对静止的电荷。由它所引起的磁场效应较之电场效应可以忽略不计。静电可由物质的接触与分离、静电感应、介质极化和带电微粒的附着等物理过程而产生。工业静电是生产、储运过程中在物料、装置、人体、器材和构筑物上产生和积累起来的静电。 2.0.2 带电体electrified body

仪器仪表接地的技巧

仪器仪表接地的技巧 仪器仪表行业接地也是有研究的,只有正确的接地才能保证测量精度及人身及设备的安全。今天小编Agitekservice就为大家指出十个小技巧,能帮助您更好地接地。 一、控制系统AC电源应该来自于一个分开的系统,与其他设备和使用分开; 二、电源在设计时应该考虑到初始电流的冲击,至少能承受10个周期; 三、控制系统AC接地应该建立在隔离变压器或UPS上,或者在附近; 四、控制系统工作站AC电源应该使用专门的插座; 五、当连接现场设备电源有几个I/O接口转接器时,应该使用隔离栅条; 六、控制系统AC电源应该由隔离变压器或UPS供给; 七、当AC和DC输入连接到同样的接线排,接线排必以适当的警告标签标出; 八、AC接地线应该与载流线型号相当或大一号; 九、预留一根额外的线或使用一终端盒,以提供测试点。 十、接地系统的电阻必须进行测试,以保证接地能满足控制系统制造商的要求电磁波测试。 仪器仪表接地规定: 1.仪表接地系统分为保护接地和工作接地两种。接地对于抑制干扰信号、保证测量精度、保护人身及设备安全、保证高产稳产具有十分重要的作用。 2.保护接地与装置电气系统接地网相连,一般接地电阻≤4Ω。 3.工作接地包括信号回路接地、屏蔽接地和本安系统接地。其中信号回路接地和屏蔽接地与仪表系统接地网相连接,接地电阻符合制造厂标准;独立设置本安接地系统时,单独的本安接地极与装置电气系统的接地网或其他接地网之间的距离≥5.0m,接地电阻≤1Ω或符合制造厂标准。 4.电缆屏蔽层应在控制室一端接地,接到仪表设备的接地汇流排上,信号屏蔽层在整个电缆连接中应保持连续。 5.接地线采用多股铜芯绞线,采用压接法连接。 6.接地线的绝缘护套颜色宜为黄绿相间色,两端应有标牌表明接地类型。

接地设计规范和指南

目录 第一章概述 (1) 1.1 “地”的定义 (3) 1.2 “接地”的分类及目的 (4) 1.2.1 接“系统基准地” (4) 1.2.2 接“静电防护与屏蔽地” (4) 1.2.3 接“大地” (4) 1.3 接地设计的基本原则 (4) 1.4 各种地相连的六种情况 (5) 1.5 静电防护与屏蔽地 (5) 1.5.1功能单板静电防护与屏蔽地的设计 (5) 1.5.2后背板静电防护与屏蔽地的设计 (6) 第二章设备的接地设计 (7) 2.1 立式大机架设备的接地设计 (7) 2.1.1 多层机框的接地 (7) 2.1.2 设备接大地 (7) 2.2 台式设备的接地设计 (8) 2.3 射频设备的接地设计 (10) 2.3.1 接地要求 (10) 2.3.2 射频设备的接地设计 (10) 2.3.3 射频设备天馈系统的接地设计 (10) 2.4 监控设备的接地设计 (10) 2.4.1 监控设备的特殊性及其接地要求 (10) 2.4.2 模拟量输入电路 (11) 2.4.3 开关量输入电路 (12) 2.4.4 开关量输出电路 (12) 2.4.5 视(音)频模拟电路 (13) 2.4.6 监控设备接大地 (13) 2.5 浮地设备的接地设计 (13) 2.5.1 浮地的基本概念 (13) 2.5.2 浮地设备的特殊问题 (14) 2.5.3 浮地设备的接地设计 (14) 2.5.4设计案例 (15) 2.5.4.1 问题描述和原因分析 (15) 2.5.4.2 设计改进和实验结果 (15) 第三章PCB的接地设计 (16) 3.1 共模干扰、信号串扰和辐射 (16) 3.1.1 共模干扰 (16) 3.1.2 串扰 (16) 3.1.3 辐射与干扰 (17) 3.2 PCB接地设计原则 (17) 3.2.1 确定高di/dt电路 (17) 3.2.2 确定敏感电路 (17) 3.2.3 最小化地电感和信号回路 (18)

仪表接地区别

仪表系统接地分为保护接地、工作接地 一、保护接地 通常需要做接地的自控设备如:仪表盘、仪表柜、仪表箱、DCS/PLC/ED的机柜和操作站、仪表供电设备、电缆桥架、穿线管、接线盒及铠装电缆的铠装层,以及控制室内的防静电地板。 一般来讲,使用DC24V为电源的现场仪表、变送器等无特殊要求的可不作保护接地。 保护接地的方法 现场仪表桥架、穿线管应每隔30m 用接地线与已接地的金属构件相连。特别要指出的是,现场接地绝不能利用储存、输送可燃性介质的金属设备、管道以及与之相连的金属构件进行接地。 控制室的仪表自控设备、机柜、仪表盘等应单独设置保护接地汇流排。其接地体可与电力系统的接地体共用。 仪表保护接地连接线标识颜色为绿色。 二、工作接地 工作接地包括信号回路接地、屏蔽接地、本质安全接地。 1、信号回路接地 在非隔离的信号系统中,应建立一个统一的信号参考点。即进行信号回路接地。通常为直流电源的负极接地。使用非隔离的信号系统这是我在设计中一般的首选方法。在运行时,系统受到干扰的情况极其少见。 在隔离的信号系统中,隔离信号可不接地。这里指的隔离是每一个输入/输出信号与其他输入输出信号的电路是绝缘的。做到电源独立、 相互隔离、参考点浮空。我认为在回路较多的系统,不要轻易使用这种方法。 在控制内应设置信号及屏蔽接地汇流排接地线颜色标识为黄/ 绿线。

2、屏蔽接地电缆的屏蔽层、排扰线应作屏蔽接地。在强雷击区,室外架空不 带屏蔽的普通多芯电缆,备用芯应屏蔽接地。主 要是为了避免雷电在信号线路感应出高电压。现场接线箱内,端子两侧的电缆屏蔽线应在箱内进行跨接。同一信号回路,同一屏蔽层应该单点接地。一般屏蔽接地应在控制室一侧接地。在控制内应设置信号及屏蔽接地汇流排。 接地线颜色标识为黄/ 绿线。 3、本质安全接地齐纳安全栅的汇流排必须与直流电源公共端相连(主要是保证当电源故障时能够对危险场所进行保护)。其汇流排或导轨作本安接地。 在控制内应设置本安接地汇流排。接地线颜色标识为兰/ 绿线。工作接地的方法信号及屏蔽接地汇流排、本安接地汇流排通过各自的接地线接至工作接地汇流排。 九十年代以来,一些相关规定都明确指出,当电气专业把建筑物、装置的金属支撑、钢结构、金属管道、屋顶架构等全部接地后,仪表工作接地可与电气专业合用接地装置。这样可减小雷击伤害,降低干扰。当电气专业未作这种接地连接时,仪表工作接地应采用单独接地体接地。接地体应与电气接地体不小于5m 的距离。接地电阻应不大于 4 欧姆。

仪表接地规范

1总则 1.0. 1本规范适用于石油化工企业自动控制工程的仪表、PLG DCS计算机系 统等的接地设计,装置的改造可参照执行。 本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1. 0. 2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0. 3 执行本规范时,尚应符合现行有关标准规范的要求。 2保护接地 2.0. 1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电 盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地幵关等,若无特殊要求时,可不作保护接地。 2.0. 3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3工作接地 3.0. 1仪表、PLC DCS计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0. 2当仪表、PLC DCS计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3. 0. 3当PLG DCS计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点

3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。 3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一起。 4仪表系统防雷接地 4.0. 1位于多雷击区或强雷击区内的石油化工装置,当控制室内PLG DCS计 算机系统仪表电缆引入处及现场仪表已设置了电涌保护器时,电涌保护器应进行仪表系统防雷接地。 4.0. 2 在强雷击区室外架空敷设且不在金属电缆槽内或穿管的多芯电缆,其备用芯宜作防雷接地。 5接地连接方式和接地电阻要求 5.0。1仪表、PLC DCS计算机系统等电子设备的保护接地,应接至厂区电气系统接地网,接地电阻小于4Q。 5.0. 2仪表、PLC DCS计算机系统等电子设备的工作接地(信号回路接地、屏蔽接地),可按以下两种方式进行: 5.0. 2. 1当厂区电气系统接地网接地电阻值小于4Q,且能满足仪表系统的要 求而仪表制造厂又无特殊要求时,可直接接至厂区电气系统接地网; 5. 0. 2. 2 当厂区电气系统接地网接地电阻值较大或仪表制造厂有特殊要求时, 应独立设置仪表接地系统,接地电阻应小于4Q (或按仪表制造厂要求确定) 5.0.3 一般情况下,仪表回路和系统,应只有一个信号回路接地点。当使用变压器耦合型隔离器或光电耦合型隔离器时,在隔离器两侧也可分别设置信号回路接地点。

接地设计规范

石油化工仪表接地设计规范 关键词:石油化工仪表接地设计规范 1范围 本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。 本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。 本规范适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。改造设计可参照执行。 2接地分类 2.1保护接地 2.1.1 保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。仪表及控制系统的外露导电部分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。 2.1.2 低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。 2.1.3 当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。 2.2 工作接地 2.2.1 仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。本规定中的工作接地,均指仪表及控制系统工作接地。 2.2.2 隔离信号可以不接地。这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。 2.2.3 非隔离信号通常以直流电源负极为参考点,并接地。信号分配均以此为参考点。 2.2.4 仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。 2.3本安系统接地 2.3.1 采用隔离式安全栅的本质安全系统,不需要专门接地。 2.3.2 采用齐纳式安全栅的本质安全系统则应设置接地连接系统。 2.3.3 齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。 2.4防静电接地 2.4.1 安装DCS、PLC、SIS等设备的控制室、机柜室、过程控制计算机的机房,应考虑防静电接地。这些室内的导静电地面、活动地板、工作台等应进行防静电接地。 2.4.2 已经做了保护接地和工作接地的仪表和设备,不必要另做防静电接地。 2.5防雷接地 2.5.1 当仪表及控制系统的信号线路从室外进入室内后,需要设置防雷接地连接的场合,应实施防雷接地连接。 2.5.2 仪表及控制系统防雷接地应与电气专业防雷接地系统共用,但不得与独立避雷

白话说电气_工作接地与保护接地的区别与详解(有图)

首先明确两个概念,工作接地和保护接地。 1什么是工作接地,什么是保护接地? 工作接地,在正常或故障情况下为了保证电气设备的可靠运行,而将电力系统中某一点接地称为工作接地。例如电源(发电机或变压器)的中性点直接(或经消弧线圈)接地,能维持非故障相对地电压不变,电压互感器一次侧线圈的中性点接地,能保证一次系统中相对低电压测量的准确度,防雷设备的接地是为雷击时对地泄放雷电流。 保护接地,将在故障情况下可能呈现危险的对地电压的设备外露可导电部分进行接地称为保护接地。电气设备上与带点部分相绝缘的金属外壳,通常因绝缘损坏或其他原因而导致意外带电,容易造成人身触电事故。为保障人身安全,避免或减小事故的危害性,电气工程中常采用保护接地。 接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理

是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。TT系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;TN系统(TN系统又可分为TN-C、TN-C-S、TN-S三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 低压配电系统中,按保护接地的形式,分为TN系统,TT系统,IT系统。

石油化工静电接地设计规范

石油化工静电接地设计规范 SH3097-2000 国家石油和化学工业局2000-06-30批准2000-10―01实施 3 一般规定 3.1 静电接地的范围 3.1.1 在生产加工、储运过程中,设备、管道、操作工具及人体等,有可能产生和积聚静电而造成静电危害时,应采取静电接地措施。 3.1.2 在进行静电接地时,必须注意下列部位的接地: 1 装在设备内部而通常从外部不能进行检查的导体; 2 装在绝缘物体上的金属部件; 3 与绝缘物体同时使用的导体; 4 被涂料或粉体绝缘的导体; 5 容易腐蚀而造成接触不良的导体; 6 在液面上悬浮的导体。 3.1.3 各种静电消除器的接地端,应按产品说明书的要求进行接地。 3.1.4 在下列情况下,可不采取专有的静电接地措施(计算机、电子仪器等除外): 1 当金属导体已与防雷、电气保护、防杂散电流、电磁屏蔽等的接地系统有电气连接时; 2 当埋入地下的金属构造物、金属配管、构筑物的钢筋等金属导体间有紧密的机械连接,并在任何情况下金属接触面间有足够的静电导通性时; 3 当金属管段已作阴极保护时。 3.2 静电接地方式 3.2.1 需要进行静电接地的物体,应根据物体的类型采取下列静电接地方式: 1 静电导体应采用金属导体进行直接静电接地。 2 人体与移动式设备应采用非金属导电材料或防静电材料以及防静电制品进行间接静电接地。 3 静电非导体除应间接静电接地外,尚应配合其它的防静电措施。 3.3 静电接地系统的接地电阻 3.3.1 静电接地系统静电接地电阻值不应大于106Ω。专设的静电接地体的对地电阻值不应大于100Ω,在山区等土壤电阻率较高的地区,其对地电阻值也不应大于1000Ω。 3.3.2 当其它接地装置兼作静电接地时,其接地电阻值应根据该接地装置的要求确定。 3.4 静电接地端子和接地板 3.4.1 应在设备、管道的一定位置上,设置专有的接地连接端子,作为静电接地的连接点。 3.4.2 接地连接端子的位置应符合下列要求: 1 不易受到外力损伤; 2 便于检查维修; 3 便于与接地干线相连; 4 不妨碍操作; 5 尽量避开容易积聚可燃混合物以及容易锈蚀的地点。 3.4.3 静电接地端子有下列几种: 1 设备、管道外壳(包括设备支座、耳座)上预留出的裸露金属表面。 2 设备、管道的金属螺栓连接部位。 3 接地端子排板。 4 专用的金属接地板。 3.4.4 专用金属接地板的设置应符合下列要求: 1 金属接地板可焊(或紧固)于设备、管道的金属外壳或支座上。 2 金属接地板的材质,应与设备、管道的金属外壳材质相同。 3 金属接地板的截面不宜小于50×10(mm),最小有效长度对小型设备宜为60mm,大型设备宜为110mm。如设备有保温层,该板应伸出保温层外。 接地用螺栓规格不应小于M10。 4 当选用钢筋混凝土基础作静电接地体时,应选择适当部位预埋200×200×6(mm)钢板,在钢板上再焊专用的金属接地板。预埋钢板的锚筋应与基础主钢筋(或通过一段钢筋)相焊接。 3.5 静电接地支线和连接线 3.5.1 静电接地支线和连接线,应采用具有足够机械强度、耐腐蚀和不易断线的多股金属线或金属

仪表接地规范

1 总则 1.0.1 本规范适用于石油化工企业自动控制工程的仪表、PLC、DCS、计算机系统等的接地设计,装置的改造可参照执行。 本规范不适用于操作控制室、DCS机房、计算机机房等的防静电接地设计。 1.0.2 接地系统按功能可分为保护接地、工作接地与仪表系统防雷接地。 1.0.3 执行本规范时,尚应符合现行有关标准规范的要求。 2 保护接地 2.0.1 用电仪表、自控设备的金属外壳和正常不带电的金属部分,由于绝缘破坏而有可能带危险电压时,均应作保护接地。 它们包括:仪表盘、仪表柜、仪表箱、PLC及DCS机柜、操作站及辅助设备、供电盘、供电箱、接线盒、电缆槽、电缆托盘、穿线管、铠装电缆的铠装护层等。 2.0.2 24V或低于24V供电的现场仪表、变送器、就地开关等,若无特殊要求时,可不作保护接地。 2.0.3 安装在非爆炸危险场所的金属表盘上的按钮、信号灯、继电器等小型低压电器的金属外壳,当与已接地的金属表盘框架电气接触良好时,可不作保护接地。 3 工作接地 3.0.1 仪表、PLC、DCS、计算机系统等,应作工作接地。工作接地包括:信号回路接地、屏蔽接地、本质安全仪表系统接地。 3.0.2 当仪表、PLC、DCS、计算机系统等电子设备,需要建立统一的基准电位时,应进行信号回路接地。 3.0.3 当PLC、DCS、计算机系统与模拟仪表联用时,应对模拟系统与数字系统两者提供一个公共的信号回路接地点。 3.0.4 仪表系统中用以降低电磁干扰的部件(如电缆的屏蔽层、排扰线、仪表上的屏蔽接地端子等),应作屏蔽接地。除信号源本身接地者外,屏蔽接地应在控制室侧实施。 3.0.5 本质安全仪表系统中必须接地的本安关联设备,应根据仪表制造厂的要求可靠接地。3.0.6 本质安全仪表系统的信号回路地和屏蔽地,可通过接地汇流与本质安全地连接在一

SHT_3081-2003_石油化工仪表接地设计规范

SHT_3081-2003_石油化工仪表接地设计规范.txt如果背叛是一种勇气,那么接受背叛则需要更大的勇气。爱情是块砖,婚姻是座山。砖不在多,有一块就灵;山不在高,守一生就行。本文由美蓝度贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 0.01ICSs042P27 3820备案号:J2-04 中华人民共和国石油化口千)-`-巨rj韦A"rJ ST8-20H/31030 代替H197S38-190 石油化工仪表接地设计规范 Dsndfrtungonigeiceisrmetudngoonr iptceaidsrclutynrhmineo 20-31发布040-0 20-70实施040-1 中华人民共和国国家发展和改革委员会 发布 ST8-20H/31030 目 次 前言?…”?????? ????????价???? ????????? ??????? …m ? ??????? ???????? ???? ???? ???????????… ????? ????????? ?,?? ??????????? ? 1范围???????? ???????????????????????????““““…1 ?? ????????????????????? ????????”“““ ? ?? ?? ????????????????????“ ???????? 2接地分类?????? ??????????????????????????????“…1 ???? ??????????????????????? ????????? ? ?? ?? ??? ??? ??? ???????? ? ?? ????????? 21保护接 ??????????? ?? ??????????????????? ?? .地?????????????? ????????????? ??? ? ? ? ? 1 ?? ???? ??? ?? ??????????? ? ???? ? ? 一 ? ? ? ? ??? 22工作.接地????????????????????,?????????”““? ……1??????????????”“??????????? ? ? ? ? ?? ?? ?? ?? ? ? ???????? ” ? “ ?“? ? 23本安系统接地??? ??????????????????????????????……1. ? ??????????????????????? ???“?? ?? ? ??????? ???????????? ? ??? ?? ”24防静电接地???? ??????????????????????????????? .?? ??????????????????????? ?????????一?? ????????????????????? ?? ????????? 25防雷接地????? ??????????????? ???????????????? . ??? ???????“????????????????????????一??? ????? ? ????????????? ?? ????????? 3接地方法?????? ??????,????。??? ?? ?????????????? ?????? ????,??????????????????????”??一?? ?? ???????????????????????? ????? ? 31保护接地 ??????? ???????????????? ????????????? . ?????? ????“?????? ???????????????? ? 一 ???? ?????? ????????????????? ????? ? 2222 32工作接地?? ??????? ???? ???????????? ?????????……

相关文档
最新文档