按定义definition创建二叉树的说明

按定义definition创建二叉树的说明
按定义definition创建二叉树的说明

操作CreateBiTree(T,definition)的实现

首先要清楚逻辑上怎样唯一地确定二叉树,课堂上讲了3类方法。下面以第一类为例。即带空子树的先序遍历序列。由于实验中二叉链表作为二叉树的物理结构,这样就可以确定CreateBiTree(T,definetion)的说明为

CreateBiTree(BiTree T,ElemType definition[])

这里BiTree是结点指针类型,definition是数据元素数组,这个数组无法给出数组的大小(像学C语言时,整数序列排序,sort(int a,int n))。这个就要求输入时不要出错。

具体在菜单选择时:

case 3:

1. 输入带空子树的先序遍历序列:definition;

2. 调用CreateBiTree(T,definition)。

实现操作CreateBiTree功能,可用多个函数实现。

CreateBiTree(BiTree T,ElemType definition[]){

。。。。。

调用P131的创建函数CreatBitree1

}

CreatBitree1(BiTree T,definition[](第2个参数提供结点数据definition,思考一下具体形式,甚至为了方便取数组元素,设置3个参数都可以))

{

依次输入definition的结点数据ch

根据ch的值,按教材流程处理。

}

以上是假定设计时,规定了按树的定义definition创建二叉树,提供了这个统一的使用方式,使用者按这个统一的接口使用创建操作、创建二叉树。

当然,如果直接按书上的程序,也能实现创建二叉树,也不会影响到后续的其它操作。但是这个调用接口被自行改变了,就显得不规范。

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

二叉排序树的建立及遍历的实现

课程设计任务书 题目: 二叉排序树的建立及遍历的实现 初始条件: 理论:学习了《数据结构》课程,掌握了基本的数据结构和常用的算法; 实践:计算机技术系实验室提供计算机及软件开发环境。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、系统应具备的功能: (1)建立二叉排序树; (2)中序遍历二叉排序树并输出排序结果; 2、数据结构设计; 3、主要算法设计; 4、编程及上机实现; 5、撰写课程设计报告,包括: (1)设计题目; (2)摘要和关键字; (3)正文,包括引言、需求分析、数据结构设计、算法设计、程序实现及测试、设计体会等; (4)结束语; (5)参考文献。 时间安排:2007年7月2日-7日(第18周) 7月2日查阅资料 7月3日系统设计,数据结构设计,算法设计 7月4日-5日编程并上机调试7月6日撰写报告 7月7日验收程序,提交设计报告书。 指导教师签名: 2007年7月2日 系主任(或责任教师)签名: 2007年7月2日 排序二叉树的建立及其遍历的实现

摘要:我所设计的课题为排序二叉树的建立及其遍历的实现,它的主要功能是将输入的数据 组合成排序二叉树,并进行,先序,中序和后序遍历。设计该课题采用了C语言程序设计,简洁而方便,它主要运用了建立函数,调用函数,建立递归函数等等方面来进行设计。 关键字:排序二叉树,先序遍历,中序遍历,后序遍历 0.引言 我所设计的题目为排序二叉树的建立及其遍历的实现。排序二叉树或是一棵空树;或是具有以下性质的二叉树:(1)若它的左子树不空,则作子树上所有的结点的值均小于它的根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;(3)它的左,右子树也分别为二叉排序树。对排序二叉树的建立需知道其定义及其通过插入结点来建立排序二叉树,遍历及其输出结果。 该设计根据输入的数据进行建立排序二叉树。对排序二叉树的遍历,其关键是运用递归 调用,这将极大的方便算法设计。 1.需求分析 建立排序二叉树,主要是需要建立节点用来存储输入的数据,需要建立函数用来创造排序二叉树,在函数内,需要进行数据比较决定数据放在左子树还是右子树。在遍历二叉树中,需要建立递归函数进行遍历。 该题目包含两方面的内容,一为排序二叉树的建立;二为排序二叉树的遍历,包括先序遍历,中序遍历和后序遍历。排序二叉树的建立主要运用了循环语句和递归语句进行,对遍历算法运用了递归语句来进行。 2.数据结构设计 本题目主要会用到建立结点,构造指针变量,插入结点函数和建立排序二叉树函数,求深度函数,以及先序遍历函数,中序遍历函数和后序遍历函数,还有一些常用的输入输出语句。对建立的函明确其作用,先理清函数内部的程序以及算法在将其应用到整个程序中,在建立排序二叉树时,主要用到建立节点函数,建立树函数,深度函数,在遍历树是,用到先序遍历函数,中序遍历函数和后序遍历函数。

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

二叉树的建立及其遍历实验报告

数据结构实验报告 ———二叉树的建立及其遍历 一、实验目的 1、了解二叉树的建立的方法及其遍历的顺序,熟悉二叉树的三种遍历 2、检验输入的数据是否可以构成一颗二叉树 二、实验的描述和算法 1、实验描述 二叉树的建立首先要建立一个二叉链表的结构体,包含根节点和左右子树。因为耳熟的每一个左右子树又是一颗二叉树,所以可以用递归的方法来建立其左右子树。二叉树的遍历是一种把二叉树的每一个节点访问完并输出的过程,遍历时根结点与左右孩子的输出顺序构成了不同的遍历方法,这个过程需要按照不同的遍历的方法,先输出根结点还是先输出左右孩子,可以用选择语句实现。 2、算法 #include #include #define OVERFLOW 0 #define OK 1 #define ERROR 0 typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree CreateBiTree(BiTree T)

{ scanf("%c",&e); if(e==' ') T=NULL; else { if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) exit(OVERFLOW); T->data=e; T->lchild=CreateBiTree(T->lchild); T->rchild=CreateBiTree(T->rchild); } return T; } /************************前序遍历***********************/ char PreOrderTraverse(BiTree T,char (* Visit)(char e)) { if(T) { if(Visit(T->data)) if(PreOrderTraverse(T->lchild,Visit)) if(PreOrderTraverse(T->rchild,Visit)) return OK; return ERROR; } else return OK; } char Visit(char e) { printf("%5c",e); return OK; } main() {

设计一个完整的程序,实现二叉树的各种算法

实验6 实验目的: 1、掌握二叉树的所有算法 2、熟悉计算机英语和术语 实验步骤: 1、二叉树算法的模拟 2、完型填空 3、翻译 具体要求: 一、设计一个完整的程序,实现二叉树的各种算法 要求:/*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 输入: 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 输出: 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 代码: #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType;

#define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement Status PreOrderTraverse( BiTree T, Status(*Visit)(ElemType) ) { // 前序遍历二叉树T的递归算法,对每个数据元素调用函数Visit。 //补全代码,可用多个语句

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

数据结构课程设计_线索二叉树的生成及其遍历

数据结构课程设计 题目: 线索二叉树的生成及其遍历 学院: 班级: 学生姓名: 学生学号: 指导教师: 2012 年12月5日

课程设计任务书

摘要 针对以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。 关键词二叉树,中序线索二叉树,中序线索二叉树的遍历

目录 摘要 ............................................ 错误!未定义书签。第一章,需求分析................................. 错误!未定义书签。第二章,概要设计 (1) 第三章,详细设计 (2) 第四章,调试分析 (5) 第五章,用户使用说明 (5) 第六章,测试结果 (5) 第七章,绪论 (6) 第八章,附录参考文献 (7)

线索二叉树的生成及其遍历 第一章需求分析 以二叉链表作为存储结构时,只能找到结点的左、右孩子的信息,而得不到结点的前驱与后继信息,为了使这种信息只有在遍历的动态过程中才能得到。增设两个指针分别指示其前驱和后继,但会使得结构的存储密度降低;并且利用结点的空链域存放(线索链表),方便。同时为了记下遍历过程中访问结点的先后关系,附设一个指针pre始终指向刚刚访问过的结点,若指针p 指向当前访问的结点,则 pre指向它的前驱。由此得到中序遍历建立中序线索化链表的算法 本文通过建立二叉树,实现二叉树的中序线索化并实现中序线索二叉树的遍历。实现对已生成的二叉树进行中序线索化并利用中序线索实现对二叉树的遍历的效果。主要任务: 1.建立二叉树; 2.将二叉树进行中序线索化; 3.编写程序,运行并修改; 4.利用中序线索遍历二叉树 5.书写课程设计论文并将所编写的程序完善。 第二章概要设计 下面是建立中序二叉树的递归算法,其中pre为全局变量。 BiThrNodeType *pre; BiThrTree InOrderThr(BiThrTree T) { /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/ BiThrTree head; head=(BitThrNodeType *)malloc(sizeof(BiThrType));/*设申请头结点成功*/ head->ltag=0;head->rtag=1;/*建立头结点*/ head->rchild=head;/*右指针回指*/ if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/ else{head->lchild=T;pre=head; InThreading(T);/*中序遍历进行中序线索化*/ pre->rchild=head; pre->rtag=1;/*最后一个结点线索化*/ head->rchild=pre; }; return head; } void InThreading(BiThrTree p) {/*通过中序遍历进行中序线索化*/ if(p)

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树排序算法

实验报告 课程名称:数据结构实验课程 实验四、串的基本操作练习 一、实验目的 1. 掌握二叉树的存储实现 2. 掌握二叉树的遍历思想 3. 掌握二叉树的常见算法的程序实现 二、实验环境 VC++6.0 三、实验内容 1.输入字符序列,建立二叉树的二叉链表结构。(可以采用先序序列) 2.实现二叉树的先序、中序、后序的递归遍历算法。 3.实现二叉树的先序、中序、后序的非递归遍历算法。 4.求二叉树的高度。 5.求二叉树的结点个数。 6.求二叉树的叶子结点的个数。 四、实验要求: 分别编写实现上述算法的子函数,并编写一个主函数,在主函数中设计一个简单的菜单,分别调用上述子函数。 五、实验步骤和结果 1.打开vc,新建文本,命名二叉树算法,编写代码。 2.编写代码: #include #include #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 int i=0; /*--------------------------------------建立堆栈------------------------------------------*/ typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; } BiTNode,*BiTree;//树类型 typedef struct SqStack {

BiTNode *base; BiTNode *top; int stacksize; } SqStack;//栈类型 void InitStack(SqStack *S)//创建二叉树 { S->base=(BiTNode*)malloc(STACK_INIT_SIZE*sizeof(BiTNode)); S->top=S->base; S->stacksize=STACK_INIT_SIZE; } void Push(SqStack *S,BiTNode e)//进栈 { if(S->top - S->base >= S->stacksize)//如果栈空间不足 { S->base=(BiTNode*)realloc(S->base,(S->stacksize+STACKINCREMENT)*sizeof(B iTNode)); S->top=S->base+S->stacksize; S->stacksize+=STACKINCREMENT; } *(S->top)=e; S->top++; } BiTNode Pop(SqStack *S)//出栈 { S->top --; return *S->top; } int StackEmpty(SqStack *S)//判断栈是否非空 { if(S->top == S->base ) return 1; else return 0; } /*---------------------------------------------递归部分-------------------------------------------*/

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历 #include "stdio.h" #include "string.h" #define NULL 0 typedef struct BiTNode{ char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTree T){ char ch; ch=getchar(); if(ch=='#') T=NULL; else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("Error!"); T->data=ch; T->lchild=Create(T->lchild); T->rchild=Create(T->rchild); } return T;

} void Preorder(BiTree T){ if(T){ printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild); } } int Sumleaf(BiTree T){ int sum=0,m,n; if(T){ if((!T->lchild)&&(!T->rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T->rchild); sum+=n; } return sum; } void zhongxu(BiTree T){ if(T){

zhongxu(T->lchild); printf("%c",T->data); zhongxu(T->rchild); } } void houxu(BiTree T){ if(T){ houxu(T->lchild); houxu(T->rchild); printf("%c",T->data); } } int Depth(BiTree T){ int dep=0,depl,depr; if(!T) dep=0; else{ depl=Depth(T->lchild); depr=Depth(T->rchild); dep=1+(depl>depr?depl:depr); } return dep; }

实验10 二叉树的基本操作

浙江大学城市学院实验报告 课程名称数据结构基础 实验项目名称实验十二叉树的基本操作 学生姓名专业班级学号 实验成绩指导老师(签名)日期2014-12-18 一.实验目的和要求 1、掌握二叉树的链式存储结构。 2、掌握在二叉链表上的二叉树操作的实现原理与方法。 3、进一步掌握递归算法的设计方法。 二.实验内容 1、按照下面二叉树二叉链表的存储表示,编写头文件binary_tree.h,实现二叉链表的定义与基本操作实现函数;编写主函数文件test4_1.cpp,验证头文件中各个操作。 二叉树二叉链表存储表示如下: struct BTreeNode { ElemType data; // 结点值域 BTreeNode *lchild , *rchild ; // 定义左右孩子指针 } ; 基本操作如下: ①void InitBTree( BTreeNode *&BT ); //初始化二叉树BT ②void CreateBTree( BTreeNode *&BT, char *a ); //根据字符串a所给出的广义表表示的二叉树建立二叉链表存储结构 ③int EmptyBTree( BTreeNode *BT); //检查二叉树BT是否为空,空返回1,否则返回0 ④int DepthBTree( BTreeNode *BT); //求二叉树BT的深度并返回该值 ⑤int FindBTree( BTreeNode *BT, ElemType x); //查找二叉树BT中值为x的结点,若查找成功返回1,否则返回0 ⑥void PreOrder( BTreeNode *BT); //先序遍历二叉树BT ⑦void InOrder( BTreeNode *BT); //中序遍历二叉树BT ⑧void PostOrder( BTreeNode *BT); //后序遍历二叉树BT

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

C++二叉树的创建与遍历实验报告

二叉树的创建与遍历 一、实验目的 1.学会实现二叉树结点结构和对二叉树的基本操作。 2.掌握对二叉树每种操作的具体实现,学会利用递归和非递归方法编写对二叉树这种递归数据结构进行处理的算法。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归和非递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历。 四、实验步骤 源程序代码1 #include #include using namespace std; template struct BinTreeNode //二叉树结点类定义 { T data; //数据域 BinTreeNode *leftChild,*rightChild; //左子女、右子女域 BinTreeNode(T x=T(),BinTreeNode* l =NULL,BinTreeNode* r = NULL ) :data(x),leftChild(l),rightChild(r){} //可选择参数的默认构造函数 }; //------------------------------------------------------------------------- template void PreOrder_2(BinTreeNode *p) //非递归前序遍历 { stack * > S;

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

二叉树的各种算法

二叉树的各种算法.txt 男人的承诺就像80 岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /* 用函数实现如下二叉排序树算法: ( 1 )插入新结点 ( 2 )前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1, 失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n 个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列第九行:插入新结点后的二叉树的中序遍历序列(非递归算法)第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1

#define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;// 左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e 的值 printf("%d ", e ); return OK; }// PrintElement

用递归和非递归算法实现二叉树的三种遍历

○A ○C ○D ○B ○E○F G 《数据结构与算法》实验报告三 ——二叉树的操作与应用 一.实验目的 熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用 二. 实验要求(题目) 说明:以下题目中(一)为全体必做,(二)(三)任选其一完成 (一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历; (三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合) 三. 分工说明 一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。 四. 概要设计 实现算法,需要链表的抽象数据类型: ADT Binarytree { 数据对象:D是具有相同特性的数据元素的集合 数据关系R: 若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系; (1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集; (3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素 Xr,∈H,且存在Dr上的关系Hr为H的子集;H={,,H1,Hr}; (4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr}) 是一颗符合本定义的二叉树,称为根的右子树。 基本操作: Creatbitree(&S,definition) 初始条件:definition给出二叉树S的定义 操作结果:按definition构造二叉树S counter(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树的总的结点数 onecount(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树单分支的节点数 Clearbintree(S) 初始条件:二叉树S已经存在 操作结果:将二叉树S清为空树 Bitreeempty(S) 初始条件:二叉树S已经存在 操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE Bitreedepth(S,&e) 初始条件:二叉树S已经存在 操作结果:返回S的深度 Parent(S) 初始条件:二叉树S已经存在,e是S中的某个结点 操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。 操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。 一旦visit失败,则操作失败。 Inordertraverse (S,&e) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

相关文档
最新文档