超轻多孔金属材料的多功能特性及应用

超轻多孔金属材料的多功能特性及应用
超轻多孔金属材料的多功能特性及应用

多孔金属材料的制备及应用_杨雪娟

多孔金属材料的制备及应用 杨雪娟,刘 颖,李 梦,涂铭旌 (四川大学材料科学与工程学院,成都610065) 摘要 根据制备过程中金属的状态,从液相法、固相法、金属沉积法三方面介绍了多孔金属材料的制备工艺。液态金属的发泡可以通过直接吹气法发泡法、金属氢化物分解发泡法来实现;固态金属可以通过粉末冶金法、粉末发泡法、金属空心球法和金属粉末纤维烧结法来实现;与前两种不同的是,金属沉积法是采用化学或物理的方法来实现的。最后,讨论了多孔金属材料在结构材料和功能材料两方面的应用。 关键词 多孔金属材料 制备工艺 应用   Preparation and Application of the Porous Metal Material YANG Xuejuan,LIU Ying,LI M eng,TU M ingjing (Schoo l of M aterials Scie nce&Engineering,Sichuan U niver sity,Chengdu610065) A bstract I n this pape r,prepara tion and applicatio n of the po ro us metal ma te rials are intr oduced acco rding to the state of the metal in the process———so lid,liquid,gaseous o r ionized state.Liquid metal can be fo rmed directly by in-jecting g as o r gas-releasing blow ing ag ent.Solid metal can be for med by various methods,including metal pow de r slurry foaming,o r ex trusion and sintering o f polymer/pow der mixtures.Diffe rently,metal-depo sitio n can be realized by chemic or phy sical methods.Finally,the structural and functional applicatio ns of po ro us metal materials are presented a s well. Key words po rous metal material,preparation,applicatio n   在材料科学研究中,永不改变的话题是探索新材料。人们注意到许多天然材料因其多孔的结构而具备优良的性能,因此,人们发展出了各种人造多孔材料。作为材料科学研究中较年轻的一员,多孔材料迅速成为近年来国际科学界关注的热点之一。 多孔材料可分为金属和非金属两大类,也可细分为多孔陶瓷材料、高分子多孔材料和多孔金属材料3种不同的类型。多孔金属材料又称为泡沫金属,作为结构材料,它具有密度小、孔隙率高、比表面积大等特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种性能。而且,多孔金属材料往往兼有结构材料和功能材料的双重作用,是一类性能优异的多用途材料。目前,多孔金属材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。多孔金属材料作为多孔材料的重要组成部分,在材料学领域具有不可取代的地位。 从20世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺[1]。根据制备过程中金属所处的状态可以将这些制备方法划分为以下几种:(1)液相法,(2)气相法,(3)金属沉积法。 1 液相法 1.1 直接发泡法 早在19世纪六七十年代,以直接发泡法制备多孔金属就已经获得了成功。相关实验主要集中在A l、M g、Zn等低熔点金属及其合金的闭孔金属材料的制备方面。经过研究者多年的实验和研究,直接发泡法制备多孔金属材料的工艺日渐成熟,目前已广泛应用于工业生产领域。直接发泡法包括两类不同的工艺: (1)直接吹气法发泡法;(2)金属氢化物分解发泡法。 (1)直接吹气法发泡法 对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的金属发泡方法。该方法的工艺是首先向金属液中加入SiC、A l2O3等以提高金属液的粘度,然后使用特制的旋转喷头向熔体中吹入气体(如空气、氩气、氮气)[2]。该法制备泡沫金属的工艺流程如图1所示。 图1 直接吹气法发泡法制备泡沫金属材料的流程图[4] Fig.1 Direct foaming of m elts with blowing agents[4] 该方法主要应用于泡沫铝的生产中。用这种工艺来生产泡沫铝,首先应在熔融铝液中加入一种高熔点材料的细小颗粒,这种难熔颗粒在铝液中既可以增加铝液粘度,又可以在气体和金属的界面上形成一层表面活性剂,从而保证气体能稳定地滞留在铝液中,并在凝固过程中不会导致泡沫塌陷。尽管有多种符合应用条件的难熔材料,但在实际生产中常选用碳化硅作为增加铝液粘度的增粘剂。在这一过程中,碳化硅可与铝液反应形成碳硅铝的合成物,并使铝液保持在相对较低的搅拌温度[3]。  杨雪娟:1983年生,硕士研究生 E-mail:ya ng xuejuan@tom.co m

超轻多孔金属材料在军事上的应用

超轻多孔金属材料在军事上的应用 随着加工技术和材料制备的逐渐发展,使得超轻多孔金属出现了新的物理特性而产生一种新型材料。超轻多孔金属这种新型材料的具有良好的可塑性和可改造性,可以依据实际需要在新型材料生产前对材料的结构进行有目的性的设计和组合优化,这样超轻多孔金属的多功能的特性会更好的发挥作用。超轻金属的机械性能也很优良。文章通过对超轻金属多孔材料的发展与回顾,阐述了超轻多孔金属材料的特点与发展趋势,并对其在军事领域的应用做以研究。 标签:超轻;多孔材料;泡沫金属;军事 1 超轻金属多孔材料的分类与性能 相对于传统的材料,超轻金属多孔材料的结构千变万化,这种材料的孔隙率非常的高的且孔径的大小由毫米到微米甚至到纳米级。 1.1 超轻 由于超轻金属多孔材料的孔隙率很高,这样导致超轻多孔材料的密度不如传统材料大,由于多孔材料的分子结构千变万化,因此材料的制备方法也是千变万化,但是超轻金属多孔材料的孔隙率会更大大致在90%-99%之间,这个数据我们可以看出在最小密度可以达到只占基体材料的1%,导致材料的本身很轻。 1.2 高强韧、耐撞击 经过的大量的试验数据表明,超轻多孔金属材料是比较耐撞击和韧性很强的材料,在对这种材料的样本进行试验分析时,材料的承受压力时的应力变化和应变变化在塑性变性阶段几乎不变,在材料承受压力时将能量转化为热能最终以散热的形势耗散。此外超轻多孔金属材料具有很强的韧性,这样的特性可以防止材料存在裂纹和缺陷时出现材料的破坏,有利于对材料进行探伤检测和监控。 1.3 高比强、高比刚度 在航空工业已得到广泛应用的蜂窝铝层合板壳(闭孔)有很好的机械性能,但其价格昂贵(蜂窝铝的国际市场价格~$4000/kg,是闭孔泡沫铝的100-1000倍),同时其性能有很强的方向性。人们发现制造成本相对低得多的点阵材料的比刚度几乎可与蜂窝材料相媲美(见图1),而其比强度甚至更高。 图1 各种最轻重量结构的比较 1.4 高效散热、隔热 超轻多孔金属材料还具有散热、隔热的特殊性能,这种材料是热的良导体,

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

多孔金属材料

多孔金属材料 总论 所谓多孔金属材料即金属内部弥散分布着大量的有方向性的或随机的孔洞,这些孔洞的直径约2um~3mm之间。由于对孔洞的设计要求不同,孔洞可以是泡沫型的,藕状型的,蜂窝型的等等。多孔金属材料还可以根据其孔洞的形态可以分为独立孔洞型的和连续孔洞型的二大类。独立型的材料具有比重小,刚性、比强度好,吸振、吸音性能好等特点;连续型的材料除了具有上述特点之外,还具有浸透性、通气性好等特点。正因为多孔金属材料具有结构材料利功能材料的特点,所以被广泛应用于航空航天、交通运输、建筑工程、机械工程、电化学工程、环境保护工程等领域。 图为多孔模具钢的金相组织(ESEM)。从图中可以看出,该材料内部随机分布着大量三维空间互通的孔洞。由于该模具钢的透气性好,所以,铸出的铸件表面轮廓清晰;其二,充型阻力减小,于是充型动力也可以减小;其三,模具的合模力可以减小;其四,模具的重量可以减轻,仅为原来模具的三分之二,节约了金属材料;其五,上述优点的综合,可以简化模具结构的设计和对注塑机、压铸机型号的选择。从多孔钢在模具上的应用实例可以看出,多孔金属材料的研制利应用具有省能源,省资源,有利于材料的循环利用l地球环境的保护,所以具有广阔的应用前景利深远的经济效益及社会效益。 多孔金属材料的特性和用途 1.比重小,比强度大 由于金属材料中存在火量的孔洞,所以材料的比重显著减小,如上述的多孔模具钢的比重经测试只有 5.0g/cm ,比无孔的该材料(比重7.6g/cm )减少34.2%。如果是铝合金或镁合金的多孔材料,它们的比重可以小于l,只要材料的外表是致密的,那么它们可以浮出水面。 有人认为,金属材料内部分布大量的孔洞,那么其强度会大大削弱。一些文献指出,在材料的轻量化时,材料的形状因子是一个关键因素,形状因子包括了宏观形状因子和微观形状因子。在机械设计时经常不用圆棒而采用空心管,不用矩形截面而采工字型、兀字型等材料,所有这些都是改变宏观形状因子的措施。而将材料制备成多

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

多孔金属材料的应用

多孔泡沫金属材料的性能及其应用 摘要:多孔泡沫金属是一种在金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的孔洞的金属材料.由于其结构特殊,因此具备了多方面的特殊性能。作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能,因此在国内外一般工业领域及高技术领域都得到了越来越广泛的应用.本文对这种多孔泡沫金属材料的性能及其应用进行了较为全面的介绍。 关键词:多孔泡沫金属;性能;应用 0多孔泡沫金属是近几十年发展起来的一种功能材料,对其概念或分类学术界不尽统一,但基本上有如下定义方式:多孔泡沫金属是一种金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的金属材料.概括起来,主要有如下分类方式:(1)按孔径和孔隙率的大小分为两类:多孔金属和泡沫金属.孔径小于013mm,孔隙率在45%~90%的,称为多孔金属(porousmetal);而孔径在015~6mm,孔隙率大于90%的,称为泡沫金属(foammetal);(2)按孔的形状特征进行分类:具有通孔结构的称为多孔金属,具有闭孔结构的称为胞状金属(cellu2larmetal).但用得最多的是多孔金属和泡沫金属,且多数作者都将两者视为等同的概念.目前更为合适的名称为多孔泡沫金属(porousfoammetal)[1-3].多孔泡沫金属材料实际上是金属与气体的复合材料,正是由于这种特殊的结构,使之既有金属的特性又有气泡特性,综合表现为能量吸收性(如吸音、减震等)、渗透性、阻燃耐热性、轻质等,故一直被期望用于建筑材料、吸音材料、减震材料、过滤器材料、电池电极材料等方面.如果在气孔结构的工艺控制、短流程连续化工业生产等关键性技术方面取得突破,多孔泡沫金属材料将为金属材料及其它相关领域带来革命性进展1多孔泡沫金属材料的结构特点[4]泡沫金属的孔径一般较大,011~10mm或更大(一般粉末冶金金属孔径不大于0.3mm)。孔隙率较高,一般随其种类不同而不同,在40%~98%的范围内变化。直接发泡法制作的泡沫金属,孔隙率在40%~60%左右,而通孔的海绵态泡沫金属的孔隙率可高达98%。随孔隙率的提高,泡沫金属的密度降低,泡沫金属的密度低,一般只有同体积金属的1/10~3/5。它的比表面积则较大,为10~40cm2/cm3。例如孔隙率大于63%的泡沫铝合金,其密度可达1以下,能够浮于水面上. 2多孔泡沫金属的性能及其应用泡沫金属材料的性能主要取决于气孔在基体材料内的分布情况,包括气孔的类型、形状、大小、数量、均匀性、以及比表面积等.多孔泡沫金属材料自问世以来,作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能[5];因此它在国内外一般工业领域及高技术领域都得到了越来越广泛的应用。 2.1渗透性能及应用渗透性是高孔隙率材料在过滤、液-液分离、噪声抑制等方面的关键性能。泡沫金属中闭孔的数目对渗透性的影响较大,只有那些具有通孔结构的泡沫材料才有渗透性能,另外,渗透性还与孔径大小、孔的表面光洁度、渗透物体的性质(如黏度、流速)、渗透压力等因素有关.因其多孔性可将其应用于化学过滤器(如滤掉液体、气体中的固体颗粒等)、供净化水使用的气化处理器、自动加油的含油轴承、带香味的装饰品等。通过对泡沫金属孔结构(如孔隙度、孔径大小、通孔度等)的调整,可以获得不同透过性能要求的泡沫金属材料。 2.2消声减震性能及应用[6-8]具有通孔结构的泡沫金属材料,当有声波或机械振动波进入时,孔内介质(一般为空气)在声波作用下产生周期性的震动而与孔壁摩擦形成摩擦热,孔内介质在声波作用下发生压缩─膨胀形变也使部分声能变为热能,这种能量转换是不可逆的,对消声起主导作用;另外,泡沫材料本身也可以因弹性震动而消耗一部分声能;又由于泡沫材料具有的特殊结构,使其具有改变声源特性的功效,可以使难以消除的中低频段噪声峰值移向高频段,这些特征均为采用常规手段进一步降低气流噪声提供了有利条件。与其它的消音材料

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

多孔金属材料的制备方法及应用研究

多孔金属材料的制备方法及应用研究 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 多孔金属材料是金属基体与孔隙共同组成的复合材料,也是一种新型的集结构和功能于一体的材料,因其具有独特的性质而备受广大科研工作者的热切关注. 它不仅比重低、强度高,而且具有消音、减振、耐热、渗透等诸多良好的性能,因而在化工、建筑、国防、医学、环保等领域有广泛的应用. 从多孔金属材料的性质考虑,多孔金属既承接了金属方面的性能,又具有多孔材料方面的性能. 作为金属材料,相比玻璃、陶瓷、塑料等非金属,它具有耐高温、良好的导电导热性、高强度,易加工成型的特点; 作为多孔材料,它比致密金属有诸多良好的性能,如轻质、比表面积大、吸能好等. 根据金属的状态和孔隙形成的来源,逐渐产生了许多制备多孔金属材料的工艺,有些在原有的工艺条件下进行了优化和创新,并取得了一定的成效. 1 多孔金属材料的制备方法 从多孔金属材料的定义上讲,它是多孔和金属两个词的统一体,这给科研工作者提供了制备多孔金属

的着手点,从而衍生出一系列制备多孔金属的工艺,包括材料的选择、孔隙结构的来源、设备调整、工艺参数的确定等方面. 金属的状态可以分为液态、固态、气态和离子态,而气孔的产生通常是以直接和间接的方式,两者相结合从而产生了不同的制备工艺. 传统上可分为铸造法、金属烧结法、沉积法等. 1. 1 铸造法 铸造法分为熔融金属发泡法、渗流铸造法和熔模铸造法等. 1. 1. 1 熔融金属发泡法 熔融金属发泡法包括气体发泡法和固体发泡法. 此方法的关键措施是选择合适的增粘剂,控制金属粘度和搅拌速度,以优化气泡均匀性和样品孔结构控制的程度. 此法主要用于制备泡沫铝、泡沫镁、泡沫锌等低熔点泡沫金属. 对于熔融金属发泡法,当前研究较多的是泡沫铝. 李言祥对泡沫铝的制备工艺、泡沫结构特点及气孔率方面进行了深入的实验研究; 于利民等人根据采用此法生产泡沫铝在国内外泡沫金属的发展形势,总结并探讨了其制备工艺及优缺点. 1) 气体发泡法 气体发泡法指的是向金属熔体的底部直接吹入气体的方法. 为增加金属熔体的粘度,需要加入高熔点

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

金属多孔材料压缩行为的评述

万方数据

万方数据

万方数据

万方数据

金属多孔材料压缩行为的评述 作者:乔吉超, 奚正平, 汤慧萍, 王建永, 朱纪磊, Qiao Jichao, Xi Zhengping, Tang Huiping, Wang Jianyong, Zhu Jilei 作者单位:乔吉超,Qiao Jichao(西北工业大学,陕西,西安,710072;西北有色金属研究院金属多孔材料国家重点实验室,陕西,西安,710016), 奚正平,汤慧萍,王建永,朱纪磊,Xi Zhengping,Tang Huiping,Wang Jianyong,Zhu Jilei(西北有色金属研究院金属多孔材料国家重点实验室,陕 西,西安,710016) 刊名: 稀有金属材料与工程 英文刊名:RARE METAL MATERIALS AND ENGINEERING 年,卷(期):2010,39(3) 被引用次数:0次 参考文献(52条) 1.Nakajima H查看详情 2007 2.Gibson L J.Ashby M F Cellular Solid:Structure and Properties 1997 3.Ashby M F Metal Foams:A Design Guide 2000 4.Banhart J查看详情 2001 5.Evans A G查看详情 1999 6.Sypeck D J查看详情 2002(4) 7.Neubert V查看详情 2007 8.Neville B P查看详情 2008 9.Gülsoy H (o)zkan查看详情 2008 10.Zhou Z Y查看详情 2002 11.Shirizly A查看详情 1999 12.Cao Xiaoqing查看详情 2006 13.Wang Zhihu查看详情 2006 14.Yu Sirong查看详情 2008 15.Romero PA查看详情 2008 16.Amsterdam E查看详情 2008 17.Dawson M A查看详情 2007 18.Okumura D查看详情 2008 19.Liu Jiaan查看详情 2008 20.Liu Jiaan查看详情 2008 21.Jeon I查看详情 2005 22.Mukai T查看详情 2006 23.Kitazono K查看详情 2007 24.Aly M S查看详情 2007 25.Tan P J查看详情 2005 26.Mondal D P查看详情 2007 27.Peroni L查看详情 2008 28.Papadopoulos D P查看详情 2004

机械常用金属材料与特性

1、45——优质碳素结构钢,是最常用中碳调质钢。(欢迎关注自动化爱好者论坛,更多学习资料,更多交流者) 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件

去合金化制备纳米多孔金属材料的研究进展_谭秀兰

去合金化制备纳米多孔金属材料的研究进展 * 谭秀兰 1,2 ,唐永建1,刘 颖2,罗江山1,李 恺1,刘晓波 2 (1 中国工程物理研究院激光聚变研究中心,绵阳621900;2 四川大学材料科学与工程学院,成都610065)摘要 用去合金化制备的孔隙尺寸小于100nm 的纳米多孔金属材料,开拓了多孔金属材料一个新的应用领域。目前的研究主要集中于通过不同的合金体系制备出不同的纳米多孔金属,分别介绍了纳米多孔金、铂、铜、钯、钛的制备工艺,并对孔洞形成的溶解-再沉积机制、体扩散机制、表面扩散机制、渗流机制及相分离模型进行了简述。对纳米多孔金的现有研究表明,纳米多孔金具有良好的化学稳定性、高的比表面积以及高的屈服强度,目前应用研究包括作为热交换器、传感器及催化材料等方面。 关键词 纳米多孔金属 制备 去合金化 Prog ress in R esearch on Preparations of Nanoporours M etals by Dealloying T AN Xiulan 1,2,T ANG Yongjian 1,LIU Ying 2,LU O Jiang shan 1,LI Kai 1,LIU Xiaobo 2 (1 R esear ch Center of L aser F usio n,CAEP ,M iany ang 621900;2 Depar tment o f M ater ial Science and Eng ineering ,Sichuan U niv ersity ,Cheng du 610065) Abstract N anoporo us metals made by dealloy ing display no vel pro per ties in many applicat ions.T he pr esent research concentr ates o n pr epar atio ns of mult-i nano po ro ur s metals fro m different alloys.P reparatio ns of nano po rous go ld,plat inum,co pper ,palladium and t itanium ar e r eview ed.T he mechanisms of po re for ming dur ing deallo ying a re summar ied,including the r eso lutio n -redeposit ion mechanism,volume diffusion mechanism,surface diffusio n mecha -nism,the per co lation mechanism and phase separ ation mo del.Nano po rous g old has a go od chemical stabilit y,a high specific surface area,as well as a hig h y ield str eng th.T he cur rent application r esear ches include the applications as heat ex chang ers,sensors and catalytic mat erial,and so on. Key words nanopor ous metals,preparations,deallo ying *中国工程物理研究院科学技术发展基金资助(2007B08007) 谭秀兰:女,1983年生,硕士研究生,研究方向为多孔泡沫金属 E -mail:tx l725@https://www.360docs.net/doc/3d15894066.html, 0 引言 近年来利用去合金化方法制备的孔隙尺寸小于100nm 的纳米多孔金属材料由于比表面积高、密度低而具有特殊的物理、化学、机械性能,开拓了多孔金属材料新的应用领域,作为潜在的传感器和驱动器而受到国际材料学界的高度重视[1,2]。 去合金化,即选择性腐蚀,是指合金组元间的电极电位相差较大,合金中的电化学性质较活泼元素在电解质的作用下选择性溶解进入电解液而留下电化学性质较稳定元素的腐蚀过程。组元既可以是单相固溶体合金中的一种元素,又可以是多相合金中的某一相。最典型的例子是黄铜脱锌和铸铁的石墨化腐蚀。目前,对二元固溶体合金去合金化制备纳米多孔金属成为国内外研究的一大热点,特别是对通过A g -Au 系合金选择性腐蚀制备纳米多孔金的研究。现有的研究主要集中于采用不同的合金体系制备出各种不同的纳米多孔材料。本文对去合金化制备的几种纳米多孔金属及其制备过程、孔洞形成机制和应用方面的研究进行介绍。 1 去合金化制备的纳米多孔材料 纳米多孔金属材料可通过不同的合金体系制备,如通过Ag -Au [1,3-9]、Zn -A u [10]、A-l A u [11]、Cu -Au [12,13]、N-i Au [14]均已制备出纳米孔隙尺寸金。在研究纳米多孔金的基础上,国内外科学研究者们将这种方法拓展应用于其他金属体系,如S-i Pt [15]、Cu -Pt [16]、Cu -Zr [17]、M n -Cu [18]、Cu -Pd [19,20]和A-l T i [21] 等,已制备出纳米多孔铂、纳米多孔铜、纳米多孔钯和纳米多孔钛等多种纳米多孔金属材料。 1.1 纳米多孔金的制备 目前,国际上对去合金化的研究主要集中在以Ag -Au 合金体系为主的均匀固溶体。一方面从相图上看Ag -Au 在所有组成范围内形成单相无限固溶体,另一方面A g 和Au 都为面心立方结构,两元素的点阵常数分别为0.40786nm 和0.40862nm,点阵错配度仅为0.2%,在整个成分范围内点阵常数变化不大。利用Ag -Au 合金的去合金化已制备出多重孔隙尺寸的纳米多孔金块体、纳米孔隙金薄膜、纳米多孔金丝等多种多孔结构。 约翰-霍普金斯大学的Eriebac h er 教授[1]采用2.4g (12

多孔材料的应用及发展

多孔材料的应用及发展 摘要:本文综合介绍了多孔金属材料的应用,目的在于促进该材料性能结构的进一步改善,并获得更好的应用前景。 关键词: 多孔金属;应用;介绍 1引言 多孔金属由金属骨架及孔隙所组成,具有金属材料的可焊性等基本的金属属性。相对于致密金属材料,多孔金属的显著特征是其内部具有大量的孔隙。而大量的内部孔隙又使多孔金属材料具有诸多优异的特性,如比重小、比表面大、能量吸收性好、导热率低(闭孔体)、换热散热能力高(通孔体)、吸声性好(通孔体)、渗透性优(通孔体)、电磁波吸收性好(通孔体)、阻焰、耐热耐火、抗热震、气敏(一些多孔金属对某些气体十分敏感)、能再生、加工性好,等等。多孔有机高分子材料强度低且不耐高温,多孔陶瓷则质脆且不抗热震,因此,多孔金属材料被广泛应用于航空航天、原子能、电化学、石油化工、冶金、机械、医药、环保、建筑等行业的分离、过滤、布气、催化、电化学过程、消音、吸震、屏蔽、热交换等工艺过程中,制作过滤器、催化剂及催化剂载体、多孔电极、能量吸收器、消音器、减震缓冲器、电磁屏蔽器件、电磁兼容器件、换热器和阻燃器,等等[1~7] 。另外,还可制作多种的复合材料和填充材料。多孔金属既可作为许多场合的功能材料,也可作为一些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用工程材料。本文以文献[1~7]为基础分别介绍该材料的不同用途。 2过滤与分离 多孔金属具有优良的渗透性,是适合于制备多种过滤器的理想材料。利用多孔金属的孔道对流体介质中固体粒子的阻留和捕集作用,将气体或液体进行过滤与分离,从而达到介质的净化或分离作用。多孔金属过滤器可用于从液体(如石油、汽油、致冷剂、聚合物熔体和悬浮液等)或空气和其它气流中滤掉固体颗粒。使用最广的金属过滤器材料是多孔青铜和多孔不锈钢。多孔金属材料用作分离媒介,如从水中分离出油、从冷冻剂中分离水。还可作充气液体或液体分布CO 2 等的扩散媒介。在生物化学领域,金属泡沫用作肾器中渗透膜的支撑体。该原理也能扩展到那些取决于渗透或反向渗透作用的过程,如流出物处理中的脱盐和脱氢。日本住友电气工业公司在世界上首次开发出能容易净化柴油机废气的、并且实用而廉价的柴油机微粒过滤器(DPF)系统,采用的过滤材料是孔率为85%的三维网状Ni-Cr-Al合金多孔体,从而通过了1997年以后的排放烟灰量限制值[8] 。在发动机排气管道上安装DPF的方法,在十几年前就已研究过采用陶瓷作为过滤器材料来捕集废气中烟灰的系统。若烟灰的捕集量过多,则燃烧部分会发生局部温升,由于陶瓷热导率较低而产生过度的温差,过滤器就会发生破裂而熔化的现象。Ban等[9] 发明的Ni-20Cr和Ni-33Cr-1.8Al合金多孔体,可以抵抗柴油机废气的高温腐蚀且无多孔陶瓷的开裂问题,同样适于柴油机的排气过滤材料,大大减少环境污染。 经过青铜、不锈钢、镍等多孔金属过滤器净化的空气,已广泛用于各种厌氧细菌的生长,它几乎取代了原用的活性炭加脱脂棉的空气过滤器。大输液制取中的脱炭,采用多孔不锈钢或钛,过滤效果提高数倍,而且降低了维护费用,它已基本取代原用的砂滤棒。在冶金工业湿法冶炼钽粉生产中,熔融金属钠采用镍过滤器。

相关文档
最新文档