重力加速度的测量研究 大学物理实验期末论文

重力加速度的测量研究  大学物理实验期末论文
重力加速度的测量研究  大学物理实验期末论文

重力加速度的测量研究

姓名:*** 学号:******** 班级:*********

摘要:

重力加速度是一个重要的物理常数,其值会随纬度和海拔高度的不同而不同。准确测量不同地区的重力加速度在理论、生产和科学研究中都具有重要意义。目前能够准确测量重力加速度的方法有很多种。本文分析了传统多种测量重力加速度的方法,提出新的实验方法(用压力传感器测重力加速度),并对此方法进行了分析和应用。最后比较了几种方法的特点,说明新方法的可行性。

正文:

伽利略首先证明,如果空气摩擦的影响可以忽略不计,则所有落地的物体都可以以同一速度下降,也就是说物体都具有相同的加速度,这个加速度称为重力加速度g。重力加速度是一个重要的地球物理常数。准确测量它的量值,无论在理论上还是在科研和生产等方面都有极其重要的意义。在历史上,人们曾经花费了很多的精力和时间来研究这个问题,如波兹坦大地测量研究所曾用凯特摆花了八年的时间,才正确地测得了当地的重力加速度。现在我们高中就知道,重力是地球引力的一个分力。地球是绕着自转轴旋转的因此地球上的物体就需要一个垂直于自转轴的向心力,这个向心力就只能由万有引力提供,即向心力是万有引力的一个分力,另一个分力就是重力。

压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。常见的压力传感器有应压片压力传感器和压电式压力传感器(如下图):

在《大学物理实验》(人民邮电出版社)的实验 3.2中我们已经学习了“压力传感器特性研究及其应用”。该实验告诉我们,只要测出了传感器的灵敏度S,就能根据W=Uo×1/S(Uo为测出电压,S为压力传感器的灵敏度),且W=mg,从而得出g=W/m。只要该压力传感器的灵敏度S已知,我们让m=1kg,则g=W= Uo×1/S,从而可以测量不同地区的重力加速度。

下面我先介绍一下传统的几种测量重力加速度的方法:

方法一、用弹簧秤和已知质量的钩码测量:

将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式G=mg得g=G/m.

方法二、用滴水法测重力加速度:

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用m尺测

出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2.

方法三、用单摆测量:

当单摆摆角很小(小于50)时,可看作简谐运动,其固有周期为,

由公式可得故只要测定摆长l和单摆的周期T,即可算出重力加速度g。(见下图)

方法四、用圆锥摆测量.所用仪器为:m尺、秒表、单摆.

使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t

摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtg θ=mω2r由以上几式得:

g=4π2n2h/t2.

将所测的n、t、h代入即可求得g值.

方法五、用斜槽测量,所用仪器为:斜槽、m尺、秒表、小钢球.

按图2所示装置好仪器,使小钢球从距斜槽底H处滚下,钢球从水平槽底末端以速度v作平抛运动,落在水平槽末端距其垂足为H′的水平地面上,垂足与落地点的水平距离为S,用秒表测出经H′所用的时间t,用m尺测出S,则钢球作平抛运动的初速度v=S/t.不考虑摩擦,则小球在斜槽上运动时,由机械能守恒定律得:mgH=mv2/2.所以g=v2/2H=S2/2Ht2,将所测代入即可求得g值.

方法六、用打点计时器测量.所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等.

将仪器按图3装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用m尺测出OP的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

方法七、如图4,标有刻度的粗细均匀的U型管装有适量的水固定在小车上,用不计质量的弹簧秤拉着小车在光滑水平面上作匀加速运动,弹簧秤读数为F,用天平测出整个小车装置的质量为M,小车运动时两液面高度差为Δh,U 型管两管相距为L.

设U型管水平部分横截面积为S,则这段液体质量为m=ρ·S·L,ρ为水的密度.整个系统以加速度a=F/M沿水平方向运动,作用在该段水的合作力应为F=ma=ρ·S·LF/M.这个合外力由两臂液柱的压力差提供,即F=ρ·g·S·Δh.所以ρ·g·S·Δh=ρ·S·LF/M.由此可得:g=F·L/M·Δh,将所测F、L、M、Δh代入可求得g值.

方法八、将方法七中的U型管换成有刻度的玻璃缸(如图5)内径为D,其它条件不变,水与小车一起作匀加速运动时,液面上下高差为Δh,这时测力计的读数为F,整套装置质量为M,加速度a=F/M.

在液体斜面上取一微小体积元,设其质量为m,所受重力为mg,它还受到下面液体给予的支持力N,这两个力的合力是产生加速度a的合力,即mg·tgα=ma.又tgα=Δh/D,所以g=F·D/M·Δh,将所测D、F、M、Δh代入即可求g.

方法九、在小车上固定一个“⊥”形支架,上面装有量角器.量角器的圆心处挂有一重锤线,如图6所示.用天平测出整套装置的质量M,测力计质量不计,用测力计拉着小车在光滑的水平面上作匀加速运动时,测力计读数为F,重锤线与竖直方向夹角为α,整套装置的加速度为a=F/M,摆球受重力mg和绳子张力T,其合力产生加速度a.即mgtgα=ma,∴g=a/tgα=F/Mtgα.将所测F、M、α代入即可求得g.

方法十、取半径为R的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面(如图7).

重力加速度的计算公式推导如下:

取液面上任一液元A,它距转轴为x,质量为m,受重力mg、弹力N.由动力学知:

Ncosα-mg=0 (1)

Nsinα=mω2x (2)

两式相比得tgα=ω2x/g,又 tgα=dy/dx,∴dy=ω2xdx/g,

∴y/x=ω2x/2g. ∴ g=ω2x2/2y.

.将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g.

以上测量重力加速度的方法,有的是粗略的,有的是较精确的,有的是可以实际做的,有的是不能做但原理上是合理的“理想实验”.下面我来详细介绍一下我利用压力传感器设计的“简便重力加速度测量仪”:下面先介绍一下现在已经出现的可以测量物体加速度的加速度传感器。加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量

变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力

平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动

态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至

更微小的位移。差容式力平衡加速度传感器的机械部分紧靠电路板,把加速

度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出

一个对应的电压值,由此即可以求得加速度值。

但是我所用的是压力传感器,原理也与加速度传感器不同。压力传感器的构造、原理、测量方法和特性在《大学物理实验》(人民邮电出版社)的实验3.2中已经学习过了。实验中,在求压力传感器灵敏度S=△Uo/△F的时候也用到了当地的重力加速度g。所以,我们可以先用多种实验手段,尽可能精确地事先测出当地的重力加速度g,然后求出压力传感器的灵敏度S,选择质量为1kg的物体,再根据g=W/m=W= Uo×1/S,从而可以根据现代电工技术设计出一个“简便重力加速度测量仪”来测量不同地区的重力加速度。

这种测量方法的测量原理类似于方法一的“用弹簧秤和已知质量的钩码

测量:将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式G=mg

得g=G/m.”但是利用压力传感器测量会更精确。

利用现代化手段,制成集成电路板,只需编辑一些简单的程序,再装上

个液晶显示屏,就能简单方便的测出全球各地的重力减速度。该“简便重力

加速度测量仪”体积小,携带方便(如下图中的电子测温计大小),如果实

现产业化而大批量生产的话,它就会像我们生活中的指南针一样走进千家万户。

世界各地都在使用,不仅能测出地球上

的重力加速度,还能拿到月球上测量月球的重力加速度,以及任何星球上的

重力加速度,适用范围非常广泛。

参考文献:《大学物理实验》(人民邮电出版社),百度网(https://www.360docs.net/doc/3d2262920.html,)等。

用凯特摆测量重力加速度实验报告

用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:1、当摆幅很小时,刚体绕O轴摆动的周期: 刚体质量m,重心G到转轴O的距离h,绕O轴的转动惯量I,复 摆绕通过重心G的转轴的转动惯量为I G 。 当G轴与O轴平行时,有I=I G+mh2 ∴ ∴复摆的等效摆长l=( I G+mh2 )/mh 2、利用复摆的共轭性:在复摆重心G旁,存在两点O和O′,可使 该摆以O为悬点的摆动周期T?与以O′为悬点的摆动周期T?相同, 可证得|OO′|=l,可精确求得l。 3、对于凯特摆,两刀口间距就是l,可通过调节A、B、C、D四摆 锤得位置使正、倒悬挂时得摆动周期T?≈T?。 ∴4π2/g=(T?2+T?2)/2l + (T?2-T?2)/2(2h?-l) = a + b 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l,使两刀口相对摆杆基本 对称,并相互平行,用米尺测出l的值,粗略估算T值。 将摆杆悬挂到支架上水平的V形刀承上,调节底座上的螺丝,借 助于铅垂线,使摆杆能在铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。

让摆杆作小角度摆动,待稳定后,按下reset钮,则测试仪开始自 动记录一个周期的时间。 2、测量摆动周期T?和T? 调整四个摆锤的位置,使T?和T?逐渐靠近,差值小于,测量正、 倒摆动10个周期的时间10T?和10T?各测5次取平均值。 3、计算重力加速度g及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G。 测出|GO|即h?,代入公式计算g。 推导误差传递公式计算σg 。 实验数据处理:1、l的值 l=?(l?+l?+l?)= σ=,u A =σ/=, ∴ΔA =t P ?u A =*= u B=ΔB /C=3= ∴u L == T e == 2、T?和T?的值 T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s ∴u T1 ==*10ˉ?s T?= σ=*10ˉ?s,u A =σ/=*10ˉ?s ∴ΔA =t P ?u A =*=*10ˉ?s u B=ΔB /C=3=*10ˉ?s

大学物理创新实验论文

光杠杆测量杨氏模量实验的改进 李XX (重庆交通大学土木建筑学院,重庆市南岸区,400074) 摘要:测量杨氏模量中常用光杠杆来测量加载重物后的微小形变量△L,而光杠杆在使用前要先调节镜尺之间的相对位置,在用传统光杠杆调节时比较麻烦。本实验通过对传统光杠杆装置作了一点改进,取消了传统光杠杆中的望远镜,而改用光斑来指示标尺上的读数。用这种改进后的光杠杆能快速调节光杠杆,且不会在调节与读取数据过程中使眼睛疲劳,大大提高了实验的效率。 关键词:杨氏模量,激光,光杠杆,仪器改进 中文分类号:文献标识码: 引言:杨氏模量是描述固体材料抵抗形变能力的重要物理量,是工程技术上极为重要的常用参数,是工程技术人员选择材料的重要依据之一。测量杨氏模量的方法较多,本文主要介绍用改进后的光杠杆测量杨氏模量。 1 传统光杠杆的缺点 传统光杠杆在使用时要先调节光杠杆、望远镜和标尺之间的相对位置,使在望远镜中能看清平面镜内反射的标尺的像,这就是这个实验的难点。在做这个实验的时候,我们发现这个调节过程是相当麻烦的,而且当我们调节好后如果稍不小心,轻轻碰一下实验装置,便前功尽弃,又得重调,这让我们相当苦恼。我们用传统光杠杆调节了很久才使望远镜中能看到标尺的像,而且调节过程中眼睛非常疲劳,对视力非常不好。 2 实验装置的改进及实验原理

针对传统光杠杆的不足,且为了提高做实验的效率,我对光杠杆进行一些改进,使得改进后的光杠杆使用起来更为方便。我们可以不用望远镜,而在原来望远镜处放置一个能发射光点的光源。使该光源发出的光经光杠杆的平面镜反射后又射在标尺上。则先后之间两个光点的高度差就是经光杠杆放大了的微小形变。 2.1 改进措施及改进后光杠杆的原理 因为氦-氖激光平行性好,能量集中,在各种常用的激光器中,氦-氖激光器输出激光的单色性最好以便能方便精确的在标尺上读数。此外,它还具有结构简单、使用方便、成本低等优点。因此我们用氦-氖激光器作为发射光点的光源。 在标尺中央零刻度处开一个小孔,将氦-氖激光发射器与标尺固连,且使其发出的光从小孔处穿过且光路与标尺面垂直。如图所示: 设由激光器发出的光开 始时反射到标尺上所指的刻度 为S0,当钢丝长度变化时,光杠 杆一端下降。并带动镜面转动。 设转角为θ,则激光光线转过 2θ。设标尺上激光光点对应的 读数为S ,令△δ = S - S0 . 当△L<< b 时,tanθ=△L / b ≈θ,tan2θ=△δ/ D≈2θ , 则有:△L=b*△δ/(2D) (1),所以△L被放大了2D / b 倍. 2.2 用拉伸法测金属丝的杨氏模量的原理 杨氏模量是反映固体材料形变与应力关系的物理量。本实验中形变为拉伸形变,即金属丝仅发生轴向拉伸形变。设金属丝长度为L,横截面积为S,沿长度方向受一外力F后金属丝伸长△L,称为线应变。实验结果表明:在弹性形变范围内,正应力与线应变成正比,即:F / S=Y*△L/L (2) , Y称为杨氏模量,微小形变△L用上面的光杠杆测量。由(1)、(2)得,杨氏模量Y=8*F*L*D/(π*d^2*b*△δ) ,其中d为钢丝直径。

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

大学物理实验论文

武汉工程大学邮电与信息工程学院大学物理实验课程论文 论大学物理试验数据处理 姓名:陈凯旋 学号: 6502150203 系别:机械与电气工程系 专业:自动化 年级班级:15自动化02 指导教师:张乐 2016年11月1日

论大学物理实验数据处理 摘要:本文基于电磁场理论,得出了单色平面光波在左手材料中传播时其电场强度、磁场强度和波矢量遵循左手螺旋关系。解释了逆多普勒效应,负折射现象。重新推导出了单色平面光波从真空中投射到左手介质中的菲涅尔公式,并且讨论了电磁波从真空中到左手介质中的一种特殊的光学现象,由此得出了存在两个布儒斯特角。(楷体小四) 关键词:电磁场理论;左手材料;负折射率;布儒斯特角(楷体小四) 引言 1967年,前苏联物理学家Veselago发表了一篇文章首次提出了一种假想材料即左手材料。其实自然界中尚未发现介电常数ε和磁导率μ都为负值的材料。此材料需要通过人工获得。因此,在此领域的研究进展一直处于停滞阶段。直到1996年,英国皇家学院的Pendry提出了通过巧妙的设计结构来实现负的介电常数的材料。接着在1999年他又提出了可以用开口谐振环阵列来构造磁导率为负的人工介质[]1。(参考文献以上标的形式标出)从此,该课题越来越热。具有突破性进展的是2000年美国加州大学Smith将两者结合起来,首次制备出了一维的左手材料。2001年,Shelby制备出了二维的左手材料,并从实验上验证了负折射率材料的负折射现象。被“Science”杂志评为2003年度十大科技突破之一[]2。2003年美国Parazzoli等人及Hauck等人分别进行了一系列实验,清晰地展示了负折射现象。2006年,我国东南大学毫米波实验室的崔铁军教授领导的研究小组提出了一种能使磁导率为负的双螺旋共振结构[]3。一系列的研究成果引起了众多学者的关注,使得左手材料的研究成为国际电磁学界的一个引人注目的前沿领域。(宋体,小四,英文,Times New Roman) (正文部分3000字左右) 1.电磁波在介质界面上的反射和折射(一级标题,宋体四号,加黑)(内容宋体小四) 1.1电磁波在右手介质界面上的反射和折射(二级标题宋体小四,加黑) (内容宋体小四) (正文中图要有标题,示例如下)

测量重力加速度实验Acceleration due to gravity

Acceleration due to gravity 1. Aim: To measure ‘g’, the acceleration due to gravity using a simple pendulum. 2. Theory: A simple pendulum consists of a particle of mass m, attached to a frictionless pivot P by a cable of length L and negligible mass. When the particle is pulled away from its equilibrium position by an angle θand released, it swings back and forth as Figure 1 shows. By attaching a pen to the bottom of the swinging particle and moving a strip of paper beneath it at a steady rate, we can record the position of the particle as time passes. The graphical record reveals a pattern that is similar (but not identical) to the sinusoidal pattern for simple harmonic motion. Figure 1 A simple pendulum swinging back and forth about the pivot P. If the angle θis small, the swinging is approximately simple harmonic motion. Gravity causes the back-and-forth rotation about the axis at P. The rotation speeds up as the particle approaches the lowest point and slows down on the upward part of the swing. Eventually the angular speed is reduced to zero, and the particle swings back. If the angle of oscillation is large, the pendulum does not exhibit simple harmonic motion. The motion of a simple pendulum is nearly simple harmonic. The periodic time T is related to the length L of the pendulum and the local acceleration due to gravity g. 2 T=or 2 2 4 T L g π ?? = ? ?? If we measure the periodic time T for different lengths L, and plot T2 versus L,

大学物理实验小论文

大学物理实验小论文 The Standardization Office was revised on the afternoon of December 13, 2020

大学物理实验小论文 班级姓名学号 摘要:主要介绍我在本次大学物理实验中获得的知识与体会。 关键词:认识体会数据处理总结 一、对大学物理实验的认识 大学物理实验是非常重要的基础课,其目的是培养我们掌握实验的基本理论、方法和技巧;培养我们严谨的思维能力和创新精神,特别是与现代科学技术发展相适应的综合能力;培养严肃认真的工作作风和科学态度。对于我们将来独立从事实际工作是十分有必要的。 二、大学物理实验中的体会 1、养成实验前预习的好习惯。 实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要认真地预习,才能在课上更好的学习,收获的更多、掌握的更多。根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的,基本原理,了解实验所采用的方法的关键与成功之处;思考实验可能用到的相关实验仪器,对照教材所列的实验仪器,了解仪器的工作原理,性能,正确的操作步骤,特别是要注意那些可能对仪器造成损坏的事项。然后写预习报告,包括目的,原理,仪器,操作步骤等。

2、上课时认真听老师做讲解,切记老师所讲的重点内容。 记下老师实验指导的内容有助于自己实验时避免犯错及实验报告的书写。 3、大学物理实验培养了我做事的耐心与细心。 课堂操作时需要严格的遵守实验的各项原则,要将仪器放置在合理的位置,以方便使用和确保安全。读数,需要有足够的耐心和细心,尤其是对一些精度比较高的仪器,读数一定要按照正确的读数方法并且一定要细心。对于数据的记录,则要求我们要有原始的数据记录,它是记载物理实验全部操作过程的基础性资料。 4、培养自己的动手能力。 现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。 三、大学物理实验数据处理 1、作图法 选取适当的自变量,通过作图可以找到反映物理量之间的变化关系,并便于找出其中的规律,确定对应量的函数关系。作图法是最常用的实验数据处理方法之一。 描绘图象的要求是:①根据测量的要求选定坐标轴,一般以横轴为自变量,纵轴为因变量。坐标轴要标明所代表的物理量的名称及单位。②坐标轴标度的选择应合适,

大学物理实验论文

大学物理实验论文 标题:物理实验的心得与体会 简介:通过这个学期的大学物理实验课程,我体会颇深。物理实验是物理学习的基础,很多物理实验中我们不只是复现课堂上所学理论知识的原理与结果。因为影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。老师们通过精心设计实验方案,严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际独立动手能力、思维能力以及分析解决问题的综合能力,加深了我们对有关知识的理解。比如我通过做实验了解了许多实验的基本原理和实验方法,进行了许多基本操作与基本技能的训练,还学会了基本物理量的测量和不确定度的分析方法、基本实验仪器的使用等,使我深深感受到做实验要具备科学的态度、认真态度和创造性的思维。总之,通过物理实验课程,获得甚多的心得与体会。 绪论:大学物理实验具有非常重要的意义。首先,物理概念的建立、物理规律的发现依赖于物理实验,是以实验为基础的,物理学作为一门科学的地位是由物理实验予以确立的;其次,已有的物理定律、物理假说、物理理论必须接受实验的检验,如果正确就予以确定,如果不正确就予以否定,如果不完全正确就予以修正。最后对于我们将来独立从事实际工作也是十分必要的,这是大学物理理论课不能做到,也不能取代的。我将把在实验课学到

的运用到今后的学习和工作中,不断改进、完善;在此间发现的不足,我将努力改善,通过学习、实践等方式不断提高,克服那些前进的障碍。在今后的学习、工作中获得更大的收获,在不断地探索中、在刻苦地学习中、在无私地奉献中实现自身的价值!正文:在这学期的物理实验课程中,我的收获与心得颇多。 下面说说在做实验时的一些技巧、方法与心得。 第一,养成课前预习的好习惯。实验时,为了在规定的时间内快速高效率地完成实验,达到良好的实验效果,需要认真地预习,才能在课上更好的学习,收获的更多、掌握的更多。首先是根据实验题目复习所学习的相关理论知识,并根据实验教材的相关内容,弄清楚所要进行的实验的总体过程,弄懂实验的目的,基本原理,了解实验所采用的方法的关键与成功之处;思考实验可能用到的相关实验仪器,对照教材所列的实验仪器,了解仪器的工作原理,性能,正确操作步骤,特别是要注意那些可能对仪器造成损坏的事项。然后写预习报告,包括目的,原理,仪器,操作步骤,数据表格,思考题等。这里应注意,数据表格与操作步骤密切相关,数据表格的排列顺序应与操作步骤的顺序相一致。这样就可以随时将数据按顺序填入表中,也可以随时观察和分析数据的规律性。开始我们不注意预习报告里的数据表格,将数据随便记录,结果整理数据时出现混乱和错误,尤其是数据比较多的时候。比如《液体表面张力系数测定》实验,由于未提前设计好表格,数据记录得随便,处理时很困难.后来汲取了教训,在实验前根据所要测的物理量和

重力加速度的测量及应用

重力加速度的测量及应用 重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义。 测量: 最早测定重力加速度的是伽利略。约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,。1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,使其产生一微小加速度a =mg/(2M+m),测得a后,即可算出g。 1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度。当时的计量结果为:g=9.80991m/s2。 1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2。 根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统。国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2。根据上述修正了的波茨坦系统,在地球上的一级点位置的g值的不确定度可小于5×10-7。 应用: 地球对表面物体具有吸引力,重力加速度是度量地球重力大小的物理量。按照万有引力定律,地球各处的重力加速度应该相等。但是由于地球的自转和地球形状的不规则,造成各处的重力加速度有所差异,与海拔高度、纬度以及地壳成分、地幔深度密切相关。 重力预震:地球物理学研究中要求观测重力长期的细微的变化,即所谓g的长度;这种变化可能是由于地壳运动,地球的内部结构和形状的演变,太阳系中动力常数的长度以及引力常数G的变化等等。观测这些变化要求g值的计量不确定度达10-8至10-9量级。观测g值的变化可能对预报地震有密切的关系.据有关方面报道,七级地震相对应的g值变化约为0.1×10-5m/s2。目前,许多国家都在探索用g值的变化作临震预报。 重力探矿:利用地下岩石和矿体密度的不同而引起地面重力加速度的相应的变化。故根据在地面上或海上测定g的变化,就可以间接地了解地下密度与周围岩石不同的地质构造、矿体和岩体埋藏情况,圈定它们的位置。所用的仪器是重力仪和扭秤(目前已为高精度重力仪所代替)。

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

重力加速度的测量研究 大学物理实验期末论文

重力加速度的测量研究 姓名:*** 学号:******** 班级:********* 摘要: 重力加速度是一个重要的物理常数,其值会随纬度和海拔高度的不同而不同。准确测量不同地区的重力加速度在理论、生产和科学研究中都具有重要意义。目前能够准确测量重力加速度的方法有很多种。本文分析了传统多种测量重力加速度的方法,提出新的实验方法(用压力传感器测重力加速度),并对此方法进行了分析和应用。最后比较了几种方法的特点,说明新方法的可行性。 正文: 伽利略首先证明,如果空气摩擦的影响可以忽略不计,则所有落地的物体都可以以同一速度下降,也就是说物体都具有相同的加速度,这个加速度称为重力加速度g。重力加速度是一个重要的地球物理常数。准确测量它的量值,无论在理论上还是在科研和生产等方面都有极其重要的意义。在历史上,人们曾经花费了很多的精力和时间来研究这个问题,如波兹坦大地测量研究所曾用凯特摆花了八年的时间,才正确地测得了当地的重力加速度。现在我们高中就知道,重力是地球引力的一个分力。地球是绕着自转轴旋转的因此地球上的物体就需要一个垂直于自转轴的向心力,这个向心力就只能由万有引力提供,即向心力是万有引力的一个分力,另一个分力就是重力。 压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。常见的压力传感器有应压片压力传感器和压电式压力传感器(如下图):

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

单摆测重力加速度实验报告

一、实验目的 1.学会秒表、米尺的正确使用。 2.理解单摆法测定重力加速的原理。 3.研究单摆振动的周期与摆长、摆角的关系。 4.学习系统误差的修正及在实验中减小不确定度的方法。 二、实验仪器 单摆装置,停表(精度为0.01s ),钢卷尺(精度为0.05cm ),游标卡尺(精度为0.02mm )。 三、实验原理 单摆的振动周期决定于重力加速度g 和摆长L ,只需要量出摆长L 并测定摆动周期,就能够得到g 。 如图:当θ<5?时,圆弧可近似的看成直线,f 也可 近似的看成沿着这条直线,则有sin θ=x L ,f=Fsin θ= -mg x L =-m g L x 由牛顿第二定律得:a=f m 则有 a=-g L x 令ω=g L x 最终得单摆的运动方程为 X=A cos(ωt +2π+φ) 其中T=2π ω =2π√ g =4π2 L T 考虑到摆 球是有大小的,故g =4π2 L+ d 2T 摆长L 用米尺测量,摆球直径d 用游 标卡尺测量,周期T 用停表测量。 四、实验步骤 1.测量摆长L 。用米尺测量摆线支点与摆球顶点的距离l 。用游标卡尺测量小球的直径d ,则摆长L=l+d 2 。 2.测量摆动周期T 。用手把摆球拉直偏离平衡位置5度左右,让其在

一个垂直面内自由摆动,小球越过平衡位置瞬间开始计时,连续默数 。 100次全振动时间t,T=t 100 3.为了减小误差,重复测量5次将数据记录于下表中。 五、数据记录与处理

六、结果与讨论 兰州的重力加速度g=9.973±0.005m/s2,结果有偏差,原因有以下几点; 1、测量单摆周期时的反应时间。 2、在测量摆线长度时对最后一位数字的估读。 3、环境方面,温度、湿度、空气阻力的变化都会影响实验结果。 4、悬线质量的影响。 5、摆角角度的影响。 七、试验问题 1、直接测量单摆往返一次的时间会受到人的反应时间的影响,通过多次测量求平均值的方法可以减小误差。 2、1 11.4 3、受空气阻力影响摆幅越来越小,但其周期不变;用木球代替铜球时,因木球密度较小,受空气阻力的影响会变大。

大学物理实验论文

大学物理实验论文 Prepared on 22 November 2020

实验数据处理方法及其在实验中的应用引言:过去的一年中,我完成了大学物理实验这门课程的学习。物理实验是物理学习的基础,虽然在很多物理实验中我们只是复现课堂上所学理论知识的原理与结果,但这一过程与物理家进行研究分子和物质变化的科学研究中的物理实验是一致的。在物理实验中,影响物理实验现象的因素很多,产生的物理实验现象也错综复杂。老师们通过精心设计实验方案、严格控制实验条件等多种途径,以最佳的实验方式呈现物理问题,使我们通过努力能够顺利地解决物理实验呈现的问题,考验了我们的实际动手能力和分析解决问题的综合能力,加深了我们对有关物理知识的理解。这一年,我共做了14个物理实验,用到了各种实验数据处理方法。 正文: 一、误差: 1、分类 系统误差 随机误差 粗大误差 2、表现形式 绝对误差 相对误差 引用误差

3、误差的处理 随机误差的处理 系统误差的处理 粗大误差的处理 仪器误差 二、有效数字 概念 三、测量结果的不确定度评定 1、测量不确定度 概念 分类 2、测量结果的表示 3、直接测量的结果及评定 最佳估计值 不确定度评定 A类评定 B类评定 4、间接测量的结果及评定 间接测量量的最佳值 间接测量量不确定度 四、数据处理的常用方法 1、列表法

2、作图法 优点 规则 应用 3、逐差法 4、最小二乘法 5、excel软件处理实验数据 五、实验数据处理方法在试验中的应用 1、落球法测量油品的粘滞系数 结束语: 一年内,只做的14个实验,但是我所学的实验数据的处理方法应用已经基本得到了应用。通过大学物理实验,不只是把课堂上学到的基本知识得到的应用,更重要的是我的动手能力得到的充足的锻炼,学会了自己动手,自己独立的思考,学会了做完实验后总结自己的不足,并在下一次实验过程中得到完善。现在所学到的实验数据处理方法不光是能用在大学物理实验数据的处理中。我相信,在以后的工作过程中,现在所学到的知识也一样能得到应用。 摘要: 大学物理实验数据处理方法主要误差的处理、测量结果不确定度的评定,数据处理的常用方法主要有:列表法、作图法、逐差

大学物理实验论文02

浅谈迈克尔逊干涉仪 材料科学与工程 0510班韩达 0120501010618 在物理量的测量中,有时由于被测量量过分小,以至无法被实验者或仪器直接感受和反应,此时可先通过一些途径将被测量量放大,然后再进行测量,放大被测量量所用的原理和方法称为放大法。 光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。-7~8×10-7 m之间),根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等。迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。它的特点是光源,两个反射面,接受器(观察者)四者在空间完全分开,东西南北各据一方,便于在光路中安插其它器件。利用它可以观察到很多干涉现象,例如在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。利用该仪器的原理,研制出多种专用干涉仪。 关键词:干涉光程差波长位移明纹暗纹 (一)迈克尔逊干涉仪的原理 (1)光路图:

(2)干涉原理:从光源 S 发的光照射到分光镜 G 1 上,光被分成两束,反射光入射到平面反射镜 M 1 , 透射光经补偿镜 G 2 入射到平面反射镜 M 2 ,两束光分别被 M 1 、 M 2 反射,重新在 G 1 处会合,若满足相干条件就会产生干涉效应。 迈克尔逊干涉仪产生干涉的原理与“空气平板”所产生的干涉相同,在测量光波长时,首先将仪器调出较少的等倾条纹,仪器的附加光程为入 /2 。则中央处的光程差: Δ =2h+ 入 /2 ( 5 — 1 ) 式中: h — M 1 与 M 2 ' 之间的距离入—光源的波长 若中央调成一个暗斑时,则光程差 Δ = ( m + 1/2)入( 5 — 2 ) 由式( 1 — 1 )和( 1 — 2 )得: : 2 h = m 入 2 Δ h = Δ m 入 其中:Δ h = h 1 - h 2 Δ m = m 1 - m 2 式中:Δ h — M 1 移动的距离

大学物理实验报告单摆测重力加速度

——利用单摆测重力加速度 班级: 姓名: 学号: 西安交通大学模拟仿真实验实验报告 实验日期:2014年6月1日 老师签字:_____ 同组者:无 审批日期:_____ 实验名称:利用单摆测量重力加速度仿真实验 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。单摆带动是满足下列公式: 进而可以推出: 式中L 为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g 为重力加速度。如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。 西安交通大学物理仿真实验报告

三、实验内容 1. 用误差均分原理设计单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤. (3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△ 米≈0.05cm;卡尺精度△ 卡 ≈0.002cm;千分尺精度△ 千 ≈0.001cm; 秒表精度△ 秒 ≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s 左右,所以实验人员开,停秒表总的反应时间近似为△ 人 ≈0.2s. 2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否 达到设计要求. 3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关 系,试分析各项误差的大小. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)

大学物理实验小论文

用稳恒电流场模拟静电场 赵文梅(2011104155) 楚雄师范学院楚雄市 651600 摘要:学习用稳恒电流场模拟静电场的原理和方法,加深对静电场性质的认识,掌握静电场的描绘方法。关键词:导电介质;稳恒电流场;静电场。 By the steady current field simulating electrostatic field Zhao Wenmei 2011104155. Chuxiong Normal University 651600 Abstract: To study the steady current field simulating electrostatic field theory and methods, to deepen the understanding of the nature of the electrostatic field, electrostatic field description method of master. Key words: conductive medium; steady current field; electrostatic field. 中图分类号:O441 文献标识码:A 引言:理论上常用电场E和电位V来描述静电场。用电位V的分布来描述静电场便于测量和计算。对于一些简单的带电体,或一些具有某种对称性的带电体,其电场的分布可用电场的叠加原理、电势的叠加原理和高斯定理等求出。而对于无对称性的、不规则的带电体的电场,用理论计算就显得很繁杂。为了克服上述困难,一般采用一种间接的测定方法—模拟法。所谓模拟法,就是根据导电介质中稳恒电流场与电介质中的静电场的相似性,用稳恒电流场来模拟静电场。 1.模拟法要求俩个场的类比物理量需要满足俩个条件 (1)在所考虑的区域内,俩者遵从的物理规律有相似的数学形式。 (2)俩者的边界条件相同或相似。 静电场和稳恒电流场本是俩种不同性质的场。在一定条件下,它们具有某些相似性,因而测出稳恒电流场的电位分布,就可知道与之相似的静电场的分布情况。 2.实验原理 2.1静电场与稳恒电流场 模拟法的基本思想:仿造另一个场(称模拟场),使它与原来的静电场完全一样,当探

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

[中学]大学物理演示实验心得论文

[中学]大学物理演示实验心得论文大学物理演示实验心得 在本学期的演示实验课中,我学到了很多在平时的学习中学习不到的东西。在实验课上,老师给我们认真的讲解实验原理,让我们通过奇妙的物理现象来感受伟大的自然科学的奥妙,老师向我们展示了一些很新奇的仪器和实验,我们都带着好奇心仔细的观看了每一个实验,并亲手操作了部分实验,一些看似不正常的现象都能用科学的自然知识来解释~ 实验物理和理论物理是物理学的两大组成部分,其发展共同形成整个物理学史的前进足迹,二者相互促进、共同发展。当实验物理中有新的发现、出现新的结果时,就会激励和促进理论物理研究出现新的模型、理论,使人类对自然规律的探索向广深推进。大学物理演示实验更是激发了同学们的试验兴趣和热情,通过奇妙的物理实验增进我们的理论学习~在演示实验课上,一些奇妙的实验引起了同学们的极大兴趣,如:磁悬浮列车,锥上滚,人高压带电却安然无恙,人在转盘上伸开手臂转速减慢…… (—)锥体上滚实验. 操作:将锥体滑滚移到导轨较低的一端,再放开双手,锥体将会自动上滚。说明:这个实验是由一个锥体和两根互成角度同时又与水平面成一定角度的导轨组成的,因此,从表面上看,物体是由低向高运动,但这其中锥体的形状以及导轨高低不等给人造成了一种错觉,实际上锥体的重心自始至终还是在下降。原理:物体在重力场中因受到重力和地球引力的作用而会自然降低重心位置。 (二)转盘加减速实验. 操作:人坐在转盘的椅子上,双手拿一个重锤,当伸开手臂时转盘转

速减慢,当手臂收回时,转盘转速又增大。原理:角动量守恒定律。说明:当手臂收回时可知转动惯量变小,根据角动量守恒定律可知角速度增大,所以转盘的转速增大。 (三)磁悬浮列车. 操作:1、模型放在液氮中浸泡一定时间(约3分钟),使里面的超导材料由正常态转变为超导态。(超导态就是电阻率为零的状态). 2、将列车放置在磁轨道上,轻轻推动一下列车,给它一初速度,列车便沿着轨道无摩擦地运动起来。实验现象:列车悬浮并沿轨道前进。说明:磁悬浮列车实验是同学们最感兴趣的实验之一,因为磁悬浮列车与当今的其他高速列车相比具有无比比拟的优点:由于磁悬浮列车是轨道上行驶,导轨与机车之间不存在任何实际的接触,成为“无轮”状态,故其几乎没有轮、轨之间的摩察,时速高达几百公里。2悬浮列车可靠性大、维修简便、成本低,其能源消耗仅是汽车的一半、飞机的四分之一。3 噪音小,当磁悬浮列车时速达300公里以上时,噪声只有656分贝,仅相当于一个人大声地说话,比汽车驶过的声音还小;4由于它以电为动力,在轨道沿线不会排放废气,无污染,是一 种名副其实的绿色交通工具。 …… …… 本学期的大学物理实验课程结束了,这是一个充满特色的课程,是我进入大学以后给我印象最好的一门课程。他给我的感觉是能为自己创造一种独立的环境,在没有其他人的干扰,更不会有什么人代替你做一些工作的情况下来做一些事情。实验中遇到的问题也要自己尽量解决。每次实验之前我们都要做好预习工作,这是与其他课程不同的地方。每个实验中我都会遇到许多麻烦,突破这些问题的阻碍,完成实验的任务给我带来成功的喜悦。在课程结束后期的物理演示实验更是增大了我对物理实验的兴趣,

相关文档
最新文档